JPH0462021B2 - - Google Patents

Info

Publication number
JPH0462021B2
JPH0462021B2 JP59143167A JP14316784A JPH0462021B2 JP H0462021 B2 JPH0462021 B2 JP H0462021B2 JP 59143167 A JP59143167 A JP 59143167A JP 14316784 A JP14316784 A JP 14316784A JP H0462021 B2 JPH0462021 B2 JP H0462021B2
Authority
JP
Japan
Prior art keywords
liquid
salt bridge
solid salt
internal liquid
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59143167A
Other languages
Japanese (ja)
Other versions
JPS6120852A (en
Inventor
Masaichi Bando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP59143167A priority Critical patent/JPS6120852A/en
Publication of JPS6120852A publication Critical patent/JPS6120852A/en
Publication of JPH0462021B2 publication Critical patent/JPH0462021B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/401Salt-bridge leaks; Liquid junctions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は内部液(基準液)と被検液を混合する
ことなく電気的に接続するところの固体塩橋に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a solid salt bridge that electrically connects an internal liquid (reference liquid) and a test liquid without mixing them.

〈従来技術〉 内部液と被検液とを電気的に接続するものとし
て液絡部と塩橋がある。
<Prior Art> There are liquid junctions and salt bridges that electrically connect the internal liquid and the test liquid.

液絡部は内部液と被検液が直接接触するので、
被検液の侵入による内部液の汚染、液絡部の詰ま
りといつた支障があり、さらに、内部液の補給を
必要とするためメンテナンスが大変である。この
ような支障を解消するため、液絡部に導電性樹脂
を用いた技術が特公昭38−9998号公報において提
案されているが、この技術は導電性樹脂のもつ小
さな抵抗によつて両液を接続した、いわば抵抗接
続の原理によるため、液間電位を安定化するとい
う点は考慮されていないものである。液間電位は
測定値に大きな影響を与えるので、その値が安定
していることが要求され、従つて、液間電位の安
定性を考慮していない上記技術は、不測の測定誤
差を発生するという支障がある。
At the liquid junction, the internal liquid and the test liquid come into direct contact, so
There are problems such as contamination of the internal liquid due to intrusion of the test liquid and clogging of the liquid junction, and furthermore, maintenance is difficult because the internal liquid needs to be replenished. In order to solve this problem, a technology using conductive resin in the liquid junction was proposed in Japanese Patent Publication No. 38-9998. Since this is based on the so-called resistance connection principle, stabilization of the liquid junction potential is not taken into consideration. Since the liquid junction potential has a large influence on the measured value, it is required that the value be stable. Therefore, the above technology that does not take into account the stability of the liquid junction potential will cause unexpected measurement errors. There is a problem.

一方、塩橋として基本的なものとしては、ガラ
ス製の逆U字管にゼラチン等で固めた塩類溶液を
満たし、両端を夫々の液に浸すものがある。しか
るに、かかる塩橋も塩橋自体が乾燥し易く、内部
液(基準液)も乾燥・変質し易いという欠点があ
る。
On the other hand, a basic salt bridge is one in which an inverted U-shaped glass tube is filled with a salt solution hardened with gelatin or the like, and both ends are immersed in each solution. However, such a salt bridge also has the disadvantage that the salt bridge itself tends to dry out, and the internal liquid (reference liquid) also tends to dry out and deteriorate in quality.

〈発明の目的〉 本発明は、このような点にあつて内部液と被検
液が直接接触せず、しかも液間電位の安定した固
体塩橋を提供するものである。
<Objective of the Invention> In view of the above, the present invention provides a solid salt bridge in which the internal liquid and the test liquid do not come into direct contact with each other and the liquid junction potential is stable.

〈発明の構成〉 上記目的を達成するため本発明に係る固体塩橋
は、KClとAgClの混合溶融物からなることを要
旨としている。
<Structure of the Invention> In order to achieve the above object, the solid salt bridge according to the present invention is made of a mixed melt of KCl and AgCl.

〈実施例〉 第1図イ,ロに本発明の一実施例としての固体
塩橋を示す。この塩橋は、塩化銀(以下、AgCl
という。)と塩化カリウム(以下、KClという。)
との溶融物1を例えばカーボン型で適宜の形状に
成型した後、その表面を疎水性樹脂2でコーテイ
ングし、最後に熱衝撃を加えて、疎水性樹脂2に
マイクロクラツク3…を形成して構成してある。
溶融物1中のAgClとKClの比は10:3程度とし
ている。固体塩橋を疎水性樹脂2でコーテイング
したのは、塩橋の消耗を抑え、寿命を長くするた
めである。但し、疎水性樹脂で完全にコーテイン
グしてしまうと、塩橋と被検液若しくは内部液と
の間の電気的接続が断たれてしまうので、マイク
ロクラツク3…を形成してそれらの間の電気的接
続を確保している。尚、塩橋の寿命を問題にしな
い場合には、上記のようなコーテイングをしない
で実施すればよい。
<Example> Figures 1A and 1B show a solid salt bridge as an example of the present invention. This salt bridge is made of silver chloride (hereinafter referred to as AgCl).
That's what it means. ) and potassium chloride (hereinafter referred to as KCl).
After molding the melt 1 into an appropriate shape using, for example, a carbon mold, its surface is coated with a hydrophobic resin 2, and finally thermal shock is applied to form microcracks 3 in the hydrophobic resin 2. It is configured as follows.
The ratio of AgCl to KCl in the melt 1 is about 10:3. The reason why the solid salt bridge was coated with hydrophobic resin 2 was to suppress the wear and tear of the salt bridge and extend its life. However, if the salt bridge is completely coated with hydrophobic resin, the electrical connection between the salt bridge and the test liquid or internal liquid will be severed, so microcracks 3 will be formed and the connection between them will be severed. Electrical connection is ensured. Incidentally, if the life of the salt bridge is not a problem, it may be carried out without coating as described above.

この構成の固体塩橋によれば、AgClには導電
性があるので、内部液と被検液とを電気的に接続
できるし、また液絡と異なり、通気性、透水性が
無いので、内部液を密閉でき、被検液の侵入によ
る内部液の汚染や液絡部の詰まりといつた支障は
起らず、内部液の補給の必要もない。更に加えて
固体塩橋がAgClとKClの溶融物からなるので、
一種の電池を構成し、安定した電位を発生する結
果、内部液と被検液との液間電位が安定すること
となる。
According to the solid salt bridge with this configuration, since AgCl has conductivity, it is possible to electrically connect the internal liquid and the test liquid, and unlike a liquid junction, there is no air permeability or water permeability, so the internal The liquid can be sealed tightly, and problems such as contamination of the internal liquid or clogging of the liquid junction due to intrusion of the test liquid do not occur, and there is no need to replenish the internal liquid. In addition, since the solid salt bridge consists of a melt of AgCl and KCl,
As a result of forming a type of battery and generating a stable potential, the liquid potential between the internal liquid and the test liquid becomes stable.

次に、第2図は上記の固体塩橋を用いたイオン
濃度測定装置の一実施例を示す。この実施例では
イオン電極として同一のISFET(イオン選択性電
界効果トランジスタ)2個4,5を同一基板6上
に設け、各ISFET4,5のゲートGを露出した
状態でエポキシ樹脂7で被覆し、一方のISFET
4のゲートGは直接被検液Aと接触し、他方の
ISFET5のゲートGは固体塩橋8とエポキシ樹
脂7とで密封された内部液B(ゲル化してある。)
と接触するようにしている。2つのISFET4,
5は逆極性に接続され、両ISFETの出力の差が
測定出力として発される。前記固体塩橋8として
は第1図に示したものを用いている。固体塩橋は
液絡部と異なつて内部液を密封することができる
ので、内部液を少し使用するだけで足り、従つて
ISFETのような小型のイオン電極には特に有用
で、装置の大幅な小型化が図れ、またメンテナン
スが不要であるといつた利点をもたらす。しか
も、ISFETをイオン電極とする測定装置におい
て内部液を有せしめることできるので、ISFET
が等温交点をもたないにも拘らず、等温交点をも
つた測定装置を得ることができる。この結果、PH
計であれば、PH7のときの出力を零付近にするこ
とができ、従来のPHメータと接続しやすくなると
いつた効果がある。
Next, FIG. 2 shows an example of an ion concentration measuring device using the above solid salt bridge. In this embodiment, two identical ISFETs (ion selective field effect transistors) 4 and 5 are provided as ion electrodes on the same substrate 6, and the gates G of each ISFET 4 and 5 are covered with an epoxy resin 7 while being exposed. One ISFET
Gate G of No. 4 is in direct contact with test liquid A;
The gate G of ISFET 5 is an internal liquid B (gelled) sealed with a solid salt bridge 8 and an epoxy resin 7.
I'm trying to get in touch with. two ISFET4,
5 is connected with opposite polarity, and the difference between the outputs of both ISFETs is issued as a measurement output. The solid salt bridge 8 shown in FIG. 1 is used. Solid salt bridges, unlike liquid junctions, can seal the internal liquid, so only a small amount of internal liquid is needed, and therefore
It is particularly useful for small ion electrodes such as ISFETs, and has the advantages of significantly downsizing the device and requiring no maintenance. Moreover, since it is possible to have an internal liquid in a measuring device that uses an ISFET as an ion electrode, the ISFET
It is possible to obtain a measuring device that has an isothermal intersection even though it does not have an isothermal intersection. As a result, PH
If you use a PH meter, you can reduce the output to near zero at PH7, which has the effect of making it easier to connect to a conventional PH meter.

また、固体塩橋が既述の如く電位の安定な電池
として作用するので、液間電位が従来のものに比
べて頗る安定し、従つて高精度にイオン濃度の測
定を行なうことができる。
In addition, since the solid salt bridge acts as a battery with a stable potential as described above, the liquid junction potential is much more stable than in the prior art, and the ion concentration can therefore be measured with high precision.

その他、2つのイオン電極の差をとることによ
り電位ドリフトが打ち消しあつて小さくなるし、
ネルンスト式に示される以外の温度影響が打ち消
されるといつた効果もある。
In addition, by taking the difference between the two ion electrodes, the potential drift cancels out and becomes smaller.
There is also the effect that temperature effects other than those shown in the Nernst equation are canceled out.

イオン電極としては、ISFETには限らない。
第3図イ,ロはイオン電極として薄膜PHセンサ1
0,11を用いたイオン濃度測定装置を示す。図
中12は感応部、13は固体塩橋、14はサフア
イヤ若しくはアルミナ基板、15は薄膜サーミス
タ、B′は内部液である。
The ion electrode is not limited to ISFET.
Figure 3 A and B show thin film PH sensor 1 as an ion electrode.
This figure shows an ion concentration measuring device using 0,11. In the figure, 12 is a sensitive part, 13 is a solid salt bridge, 14 is a sapphire or alumina substrate, 15 is a thin film thermistor, and B' is an internal liquid.

〈発明の効果〉 本発明に係る固体塩橋によれば次のような効果
がある。
<Effects of the Invention> The solid salt bridge according to the present invention has the following effects.

内部液を密封できるので、被検液による内部
液の汚染や特に微量サンプルの際問題となる内
部液による被検液の汚染といつた問題が生じ
ず、液絡部の詰まりといつた支障もなく、また
少量の内部液で済み、測定装置の小型化が図れ
る。
Since the internal liquid can be sealed, there are no problems such as contamination of the internal liquid by the test liquid or contamination of the test liquid by the internal liquid, which is a problem especially when using a small amount of sample, and there is no problem such as clogging of the liquid junction. In addition, only a small amount of internal liquid is required, and the measuring device can be made smaller.

固体塩橋はAgClとKClとの溶融物からなる
ので、固体塩橋自体が一種の電池として機能す
る。従つて内部液と被検液は電池を介して接続
されることとなるので液間電位が安定する。
Since the solid salt bridge consists of a melt of AgCl and KCl, the solid salt bridge itself functions as a type of battery. Therefore, since the internal liquid and the test liquid are connected through the battery, the potential between the liquids is stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イは本発明の一実施例としての固体塩橋
の斜視図、同図ロはその断面図である。第2図は
本発明の固体塩橋を用いたイオン濃度測定装置を
示す図、第3図イはイオン濃度測定装置の他の一
実施例を示す一部切欠平面図、図ロは同図イの
−断面図である。 1…溶融物。
FIG. 1A is a perspective view of a solid salt bridge as an embodiment of the present invention, and FIG. 1B is a sectional view thereof. FIG. 2 is a diagram showing an ion concentration measuring device using a solid salt bridge of the present invention, FIG. 3 A is a partially cutaway plan view showing another embodiment of the ion concentration measuring device, and FIG. FIG. 1...Melted material.

Claims (1)

【特許請求の範囲】[Claims] 1 KClとAgClの混合溶融物からなることを特
徴とする固体塩橋。
1. A solid salt bridge characterized by being made of a mixed melt of KCl and AgCl.
JP59143167A 1984-07-09 1984-07-09 Solid salt bridge and instrument for measuring concentration of ion Granted JPS6120852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59143167A JPS6120852A (en) 1984-07-09 1984-07-09 Solid salt bridge and instrument for measuring concentration of ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59143167A JPS6120852A (en) 1984-07-09 1984-07-09 Solid salt bridge and instrument for measuring concentration of ion

Publications (2)

Publication Number Publication Date
JPS6120852A JPS6120852A (en) 1986-01-29
JPH0462021B2 true JPH0462021B2 (en) 1992-10-02

Family

ID=15332472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59143167A Granted JPS6120852A (en) 1984-07-09 1984-07-09 Solid salt bridge and instrument for measuring concentration of ion

Country Status (1)

Country Link
JP (1) JPS6120852A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0682247A1 (en) * 1994-05-13 1995-11-15 Siemens Plessey Controls Limited Improvements in or relating to reference electrodes
KR100700713B1 (en) 2006-02-27 2007-03-28 한국표준과학연구원 A miniaturized electrochemical system with a novel polyelectrolyte reference electrode and its application to thin layer electroanalysis

Also Published As

Publication number Publication date
JPS6120852A (en) 1986-01-29

Similar Documents

Publication Publication Date Title
Bakker et al. Ion sensors: current limits and new trends
US4401548A (en) Reference electrode with internal diffusion barrier
US3272725A (en) Method of electrolytically testing oxygen concentration
Comte et al. A field effect transistor as a solid-state reference electrode
JPH06194336A (en) Gas sensor
JP4456303B2 (en) pH sensor
US3282817A (en) Glass electrode and method of making the same
Kahlert Reference electrodes
US4814060A (en) Ion selective electrodes and method of making such electrodes
JP3318405B2 (en) Reference electrode
JPH0462021B2 (en)
Dumschat et al. Potentiometric test strip
US3681205A (en) Method and cell for repetitive high precision ph and like measurements
CA1228895A (en) Ambient sensing devices
JPH0266442A (en) Electrochemical cell for measuring ion activity in solution and usage thereof
JP2855718B2 (en) Potentiometric sensor
JPH0626846Y2 (en) Flow-through sensor
Van den Vlekkert Ion-sensitive field effect transistors
Christiansen The Achilles' heel of potentiometric measurements, the liquid junction potential
Pita Potentiometric determination of carbon dioxide partial pressure and pH in ultramicro volumes of biological fluids
US20030024812A1 (en) Solid-state reference electrode system
JP2001066276A (en) One-chip ion concentration-measuring device
JPS62250353A (en) Semiconductor chemical sensor
JPH0532766Y2 (en)
JPS6243557A (en) Solid electrode for electrochemical sensor