JPH0461684B2 - - Google Patents

Info

Publication number
JPH0461684B2
JPH0461684B2 JP62195018A JP19501887A JPH0461684B2 JP H0461684 B2 JPH0461684 B2 JP H0461684B2 JP 62195018 A JP62195018 A JP 62195018A JP 19501887 A JP19501887 A JP 19501887A JP H0461684 B2 JPH0461684 B2 JP H0461684B2
Authority
JP
Japan
Prior art keywords
adsorption
tank
nitrogen
pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62195018A
Other languages
Japanese (ja)
Other versions
JPS6438124A (en
Inventor
Tsuneo Genma
Takeshi Tamaru
Tetsuhiko Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP62195018A priority Critical patent/JPS6438124A/en
Publication of JPS6438124A publication Critical patent/JPS6438124A/en
Publication of JPH0461684B2 publication Critical patent/JPH0461684B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は空気等、窒素及び酸素を主成分とする
混合ガスを原料とし、分子篩炭(以下、MSCと
記す)よりなる吸着床を用いた圧力変動吸着方式
(以下、PSA方式と記す)で99.99%以上の純度を
有する窒素(窒素純度とは窒素とアルゴン合計の
容量%、以下同じ)を安価に分離する方法に関す
るものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention uses a mixed gas such as air whose main components are nitrogen and oxygen as a raw material, and uses an adsorption bed made of molecular sieve charcoal (hereinafter referred to as MSC). It relates to a method for inexpensively separating nitrogen with a purity of 99.99% or higher (nitrogen purity is the volume % of the total of nitrogen and argon, the same applies hereinafter) using a pressure fluctuation adsorption method (hereinafter referred to as the PSA method).

(従来技術) 従来よりMSCを吸着剤として用い、空気等の
混合ガスよりPSA方式で窒素を分離する方法は
広く知られており、当該装置を消費場所の近くに
置き連続的に安価な窒素を供給する手段として実
用化されている。
(Prior art) The method of separating nitrogen from a mixed gas such as air using the PSA method using MSC as an adsorbent is widely known. It has been put into practical use as a means of supply.

MSCに対する酸素及び窒素の平衡吸着量は、
温度及び吸着圧力を規定すればほぼ同等の値を示
すが、初期段階の吸着速度において顕著な差異が
認められ、MSCを用いたPSA方式で窒素ガスを
分離する際この特性を利用する。即ち、酸素及び
水分等が平衡に近い領域までMSCに吸着され、
然も窒素及びアルゴン等の成分が殆ど吸着されな
い通常60秒近傍の時間内に吸着操作を完了する。
The equilibrium adsorption amount of oxygen and nitrogen on MSC is
If the temperature and adsorption pressure are specified, the values are almost the same, but there is a noticeable difference in the adsorption rate in the initial stage, and this characteristic is used when separating nitrogen gas using the PSA method using MSC. In other words, oxygen, moisture, etc. are adsorbed by MSCs to a region close to equilibrium,
However, the adsorption operation is normally completed within a time of around 60 seconds, when almost no components such as nitrogen and argon are adsorbed.

得られる製品の窒素純度は一般に吸着床を常圧
再生する場合99.0%、真空再生において99.9%が
実用化の限界とされており、99.99%以上の窒素
純度まで到達しうる性能を有するMSCを吸着床
としたPSA方式窒素ガス分離槽は市場に存在し
ない。
The nitrogen purity of the resulting product is generally considered to be 99.0% when the adsorption bed is regenerated under normal pressure, and 99.9% when the adsorption bed is regenerated under vacuum. There is no PSA type nitrogen gas separation tank with a floor on the market.

従つて、更に高純度の窒素を必要とする場合
は、残存する0.1〜1.0容量%の酸素を水素又はア
ンモニア等と触媒によつて反応させ、生成する水
を除去する方法、或いは被酸化金属と接触させて
除去する方法等を利用した精製装置と組合わすが
通例である。然し、これ等の精製装置を採用する
に当つては、上記の如く反応或いは再生に危険性
の高いガスを使用するほか、未反応ガスの混入並
びに設備費、運転費の大巾な増大等多くの課題を
残している。
Therefore, if higher purity nitrogen is required, there is a method in which the remaining 0.1 to 1.0% by volume of oxygen is reacted with hydrogen or ammonia using a catalyst, and the resulting water is removed, or the method is to react with the metal to be oxidized. It is customary to combine it with a purification device that utilizes a contact removal method. However, when adopting such purification equipment, in addition to using highly dangerous gases for reaction or regeneration as described above, there are many other problems such as the contamination of unreacted gas and a significant increase in equipment and operating costs. issues remain.

(発明が解決しようとする問題点) 深冷分離方式に代表される既存の高純度窒素製
造方法に関しては、一般に大規模な設備が前提と
なるため多額の投資を必要とし、又消費場所に隣
接して設置しうる可能性は低く、輸送に要する経
費を加味すると製品価格は極めて高いものとな
る。又、窒素と酸素の平衡吸着能の差を利用した
合成ゼオライトを吸着床とするPSA方式の窒素
ガス分離方法については非常に複雑な機構が要求
され、製品価格に占める固定費の割合が著しく上
昇する。
(Problems to be Solved by the Invention) Existing high-purity nitrogen production methods, such as the cryogenic separation method, generally require large-scale equipment, which requires a large amount of investment, and requires close proximity to the place of consumption. It is unlikely that the product can be installed in a similar manner, and the price of the product becomes extremely high when the cost of transportation is taken into account. In addition, the PSA nitrogen gas separation method, which uses synthetic zeolite as an adsorption bed that takes advantage of the difference in equilibrium adsorption capacity between nitrogen and oxygen, requires an extremely complex mechanism, which significantly increases the proportion of fixed costs in the product price. do.

一方、比較的単純な機構よりなりたち、低価格
の窒素が容易に得られるMSCを吸着床とした
PSA方式の窒素ガス分離方法は、窒素純度の点
で用途面の制約があり、また前述の如く当該窒素
ガス分離装置に精製装置を付加した場合も問題点
が多く、安価な高純度窒素の供給方法に関する開
発が待たれていた。
On the other hand, MSC, which has a relatively simple mechanism and can easily obtain nitrogen at low cost, was used as an adsorption bed.
The PSA nitrogen gas separation method has application limitations in terms of nitrogen purity, and as mentioned above, there are many problems when a purification device is added to the nitrogen gas separation device, making it difficult to supply inexpensive high-purity nitrogen. Development of a method was awaited.

(問題点を解決するための手段) 本発明者等は、MSCを吸着床とするPSA方式
で、空気等を原料とする混合ガスより窒素を
99.99%以上の純度で安価に分離することの可能
性について鋭意研究の結果、次の方法を発明する
に至つた。
(Means for solving the problem) The inventors of the present invention have developed a PSA method using MSC as an adsorption bed to absorb nitrogen from a mixed gas using air etc. as a raw material.
As a result of intensive research into the possibility of inexpensive separation with a purity of 99.99% or higher, we came up with the following method.

すなわち、78容量%以上の窒素と、酸素を主体
とする残成分で構成された加圧状態にある混合ガ
スを原料とし、分子篩炭を充填した2本の吸着槽
よりなる圧力変動吸着方式の窒素ガス分離装置に
おいて、 a 吸着操作が完了した吸着槽Aと、真空再生操
作を終えている吸着槽B双方の各原料ガス入口
部、並びに各製品窒素出口部どうしをそれぞれ
連通し、加圧下の吸着槽Aから減圧状態に置か
れている吸着槽Bへ槽内ガスを短時間に移動せ
しめ、両槽が等圧となる前にガス移動を停止す
る工程と、 b 次に、吸着槽Bの製品窒素出口部と製品貯槽
入口部を連通して製品窒素を吸着槽B内に逆流
せしめ、吸着槽B内のゲージ圧力が吸着操作時
における最高ゲージ圧力の50%に到達した時点
で原料混合ガスを吸着槽B内に導入して吸着操
作を開始する工程、 c 然も、上記b)の工程において吸着槽Bに製
品窒素ガスが逆流している期間をも含め、製品
貯槽内のゲージ圧力は常に吸着操作時に示す吸
着槽最高ゲージ圧力の70%以上を保持し、 d 一方、吸着槽Aはa)の工程における吸着槽
間のガス移動を停止した時点より、槽内の残存
ガスを大気圧近傍まで外気中に放出、引続いて
真空ポンプを用い150Torr以下まで減圧するこ
とによつて再生操作を行い、以降、吸着槽A及
びBは交互に吸着と再生の両操作を繰返すが、
当該再生操作並びに製品窒素ガス逆流過程を含
む吸着操作に要する時間がそれぞれ90秒〜180
秒の範囲内、 であることを特徴とする窒素純度が99.99容量%
以上製品を得るための窒素ガス分離方法である。
上記各号は目的達成上必須条件で全てを満足する
ことによつてはじめて本発明はなりたつことにな
る。
In other words, the nitrogen adsorption method is a pressure fluctuation adsorption method that uses a pressurized mixed gas consisting of 78% by volume or more of nitrogen and a residual component mainly composed of oxygen as a raw material, and consists of two adsorption tanks filled with molecular sieve coal. In the gas separation equipment, a. The raw material gas inlets and product nitrogen outlets of both adsorption tank A, which has completed adsorption operation, and adsorption tank B, which has completed vacuum regeneration operation, are communicated with each other, and adsorption under pressure is carried out. A process of moving the gas in the tank from tank A to adsorption tank B placed in a reduced pressure state in a short time, and stopping the gas movement before both tanks reach equal pressure; The nitrogen outlet and the inlet of the product storage tank are connected to allow the product nitrogen to flow back into the adsorption tank B, and when the gauge pressure in the adsorption tank B reaches 50% of the maximum gauge pressure during adsorption operation, the raw material mixed gas is removed. The step of introducing the nitrogen gas into the adsorption tank B and starting the adsorption operation, c. However, the gauge pressure in the product storage tank is always maintained, including the period when the product nitrogen gas is flowing back into the adsorption tank B in the step b) above. Maintain at least 70% of the maximum gauge pressure in the adsorption tank during adsorption operation, dMeanwhile, in adsorption tank A, from the time when gas transfer between the adsorption tanks in step a) is stopped, the residual gas in the tank is brought to near atmospheric pressure. The regeneration operation is performed by releasing the gas into the outside air until the temperature reaches 150 Torr, and then reducing the pressure to below 150 Torr using a vacuum pump. From then on, adsorption tanks A and B alternately repeat both adsorption and regeneration operations.
The time required for the regeneration operation and the adsorption operation including the product nitrogen gas backflow process is 90 seconds to 180 seconds each.
Within seconds, the nitrogen purity is 99.99% by volume
The above is a nitrogen gas separation method for obtaining the product.
The above-mentioned items are essential conditions for achieving the purpose, and the present invention can only be achieved by satisfying all of them.

以下、第1図を用いて本発明を更に詳しく説明
する。
Hereinafter, the present invention will be explained in more detail using FIG. 1.

空気、又は空気が混入した回収窒素ガス等窒素
と酸素を主成分とする混合ガスを原料とし、
MSCを吸着床とするPSA方式で99.99%以上の純
度を有する窒素を連続的に得るためには吸着槽が
最低限2本必要となる。
Using air or a mixed gas mainly composed of nitrogen and oxygen, such as recovered nitrogen gas mixed with air,
In order to continuously obtain nitrogen with a purity of 99.99% or higher using the PSA method using MSC as an adsorption bed, a minimum of two adsorption tanks are required.

加圧状態の混合ガスは弁5を経由して吸着槽
(A)1に入り、酸素等の除去すべき成分を槽内
に充填しているMSCで吸着し、分離された製品
窒素は弁9を通つて製品貯槽3に一旦貯蔵のうえ
消費されるが、この吸着槽内の圧力は製品窒素の
純度面に影響を与える。
The pressurized mixed gas enters the adsorption tank (A) 1 via valve 5, and components to be removed such as oxygen are adsorbed by the MSC filled in the tank, and the separated product nitrogen is passed through valve 9. The nitrogen is temporarily stored in the product storage tank 3 and then consumed, but the pressure within this adsorption tank affects the purity of the product nitrogen.

MSCの特性によつても異るが本発明者等の実
験結果、実用化するためには最低5Kg/cm2G以上
の到達圧力が必要で、10Kg/cm2G以上の領域にな
ると圧力の結果は殆ど認められなくなる。従つて
6〜10Kg/cm2Gの範囲がより好ましい。然も、供
給する混合ガスの圧力変動は可能な限り避けなけ
ればならない。
Although it varies depending on the characteristics of the MSC, the experimental results of the present inventors show that an ultimate pressure of at least 5 kg/cm 2 G is required for practical use, and when the pressure reaches a region of 10 kg/cm 2 G or more, the pressure decreases. The results will be almost unrecognizable. Therefore, the range of 6 to 10 kg/cm 2 G is more preferable. However, pressure fluctuations in the supplied mixed gas must be avoided as much as possible.

特に、99.99%以上の高純度窒素を分離する際、
僅かのMSCに吸着されている酸素等の脱着、吸
着槽内の圧力差に起因する不完全を吸着分離、或
いは残存している低純度窒素の混入等が重大な阻
害因子となる。
Especially when separating high purity nitrogen of 99.99% or more,
Desorption of oxygen etc. adsorbed by a small amount of MSC, incomplete adsorption separation due to pressure difference within the adsorption tank, contamination of remaining low-purity nitrogen, etc. become serious inhibiting factors.

弁5,9を閉止し、吸着操作が完了した吸着槽
A1と、真空再生操作を終えている吸着槽B2は
弁11を開くことにより両槽の製品窒素出口部ど
うしを連通(以下、上部連通と記す)し、同時に
弁12を開き各原料ガス入口部どうしを連通(以
下、下部連通と記す)することによつて、加圧下
の吸着槽A1から減圧状態に置かれている吸着槽
B2に槽内の窒素比率が高い残存ガスを移動さ
せ、原料ガス原単位の向上を図る。
Valves 5 and 9 are closed, and adsorption tank A1, in which the adsorption operation has been completed, and adsorption tank B2, in which the vacuum regeneration operation has been completed, are connected to each other by opening valve 11 to communicate the product nitrogen outlet sections of both tanks (hereinafter referred to as upper communication). At the same time, by opening the valve 12 and communicating the raw material gas inlets with each other (hereinafter referred to as lower communication), the adsorption tank A1 under pressure is transferred from the adsorption tank A1 under pressure to the adsorption tank B2 under reduced pressure. The remaining gas with a high nitrogen content in the tank is moved to improve the raw material gas consumption rate.

この操作において、上部連通部を移動するガス
量は下部連通部の移動ガス量を上回ることが必要
で、上部連通部の移動ガス流量に対して下部連通
部を移動するガス流量は3〜30%の範囲が望まし
く、オリフイス15,16によつてこれ等の流量
を調整する。
In this operation, the amount of gas moving through the upper communication section must exceed the amount of gas moving through the lower communication section, and the flow rate of gas moving through the lower communication section is 3 to 30% of the flow rate of gas moving through the upper communication section. These flow rates are preferably adjusted by orifices 15 and 16.

又、このガス移動は両吸着槽が等圧となる以前
に停止しなければならない。理由は明らかでない
がMSCに吸着されている成分の脱着量が急激に
増大するためと思われる。弁11、及び弁12を
閉止し、ガス移動を停止する時期貯内ガスを供給
する側の吸着槽A1に対し、受入れる側の吸着槽
B2内圧が絶対圧力比で0.10〜0.70、より好まし
くは0.15〜0.40の範囲に到達した時点である。な
お、当該ガス移動に要する時間は2秒以内に止め
るよう、オリフイス15及び16の半径を調整す
る。
Moreover, this gas movement must be stopped before both adsorption tanks become equal pressure. The reason is not clear, but it seems to be because the amount of components adsorbed to MSCs that are desorbed increases rapidly. When valves 11 and 12 are closed to stop gas movement, the internal pressure of adsorption tank B2 on the receiving side is 0.10 to 0.70 in absolute pressure ratio, more preferably 0.15 with respect to adsorption tank A1 on the side supplying stored gas. This is when the range of ~0.40 is reached. Note that the radius of the orifices 15 and 16 is adjusted so that the time required for the gas movement is stopped within 2 seconds.

次に弁10を開き、製品貯槽3から製品窒素を
吸着槽B2へ逆流させる。この逆流操作は、従来
より吸着槽間の均圧操作等で吸着槽上部に連結さ
れている配管中等に滞留した低純度窒素を洗滌す
る目的で採用されているが、製品槽の圧変動をも
たらす関係で通常逆流量はあまり多くなく、逆流
操作と原料混合ガスの提供を同時に実施するのが
一般的である。
Next, the valve 10 is opened to allow the product nitrogen to flow back from the product storage tank 3 to the adsorption tank B2. This backflow operation has traditionally been used to wash out low-purity nitrogen that has accumulated in piping connected to the upper part of the adsorption tank due to pressure equalization between the adsorption tanks, but it causes pressure fluctuations in the product tank. For this reason, the amount of backflow is usually not so large, and it is common to carry out backflow operation and supply of raw material mixed gas at the same time.

本発明における逆流操作は上記洗滌効果と同等
以上に、吸着操作開始時、吸着槽内圧力と供給す
る原料混合ガスの圧力差が大きいことに起因する
分離不充分な窒素ガスの生成を阻止する意図を持
つている。従つて、逆流操作により吸着槽B2内
のゲージ圧力が吸着操作時到達最高ゲージ圧力の
50%以上、より好ましくは70%以上となつた時点
ではじめて弁7を開き、原料混合ガスを吸着槽B
2に供給して吸着操作を開始する。
The purpose of the backflow operation in the present invention is to prevent the generation of insufficiently separated nitrogen gas due to the large pressure difference between the internal pressure of the adsorption tank and the supplied raw material mixed gas at the start of the adsorption operation, which is equivalent to or more effective than the above-mentioned washing effect. have. Therefore, due to the backflow operation, the gauge pressure in the adsorption tank B2 becomes lower than the maximum gauge pressure reached during the adsorption operation.
Only when the concentration reaches 50% or more, preferably 70% or more, valve 7 is opened and the raw material mixed gas is transferred to adsorption tank B.
2 and start the adsorption operation.

然も、製品貯槽3は一定量の製品窒素ガスを消
費のため流出しながら、更に、吸着槽B2へ逆流
操作を実施している期間といえども、製品貯槽3
内のゲージ圧力は吸着操作時吸着槽の到達最高ゲ
ージ圧力の70%以上、より好ましくは80%以上を
常に保持するよう製品貯槽3の容積を選定しなけ
ればならない。
However, while a certain amount of product nitrogen gas flows out from the product storage tank 3 due to consumption, even during the period when the backflow operation is being performed to the adsorption tank B2, the product storage tank 3
The volume of the product storage tank 3 must be selected so that the gauge pressure within the tank is always maintained at 70% or more, more preferably 80% or more, of the maximum gauge pressure reached by the adsorption tank during adsorption operation.

一方、吸着槽A1は吸着槽間のガス移動を停止
した時点で弁6及び弁13を開き、槽内の吸着及
び残存しているガスを大気圧近傍まで外気中に放
出、引続いて弁13を閉止、弁14を開いて真空
ポンプ4を用いて150Torr以下、好ましくは50〜
100Torrの範囲まで減圧し、真空再生操作を吸着
槽B2における吸着操作が完了するまで行なう。
以降、吸着槽A1及び吸着槽B2は180°の位相差
をもつて交互に吸着と再生の両操作を繰返すが、
当該再生操作、又は製品窒素ガス逆流工程を含む
吸着操作を行なうのに最適な時間、即ち半サイク
ル時間は、同一MSCを用い、従来方式の製品窒
素ガス純度99.0〜99.9%の場合60〜90秒であつた
ものが、本発明の方法においては90〜180秒の範
囲への移行が必要となる。
On the other hand, in the adsorption tank A1, valves 6 and 13 are opened when the gas movement between the adsorption tanks is stopped, and the adsorbed and remaining gas in the tank is released to the outside air to near atmospheric pressure. Close the valve 14 and use the vacuum pump 4 to reduce the pressure to 150 Torr or less, preferably 50 to
The pressure is reduced to a range of 100 Torr, and a vacuum regeneration operation is performed until the adsorption operation in adsorption tank B2 is completed.
After that, adsorption tank A1 and adsorption tank B2 alternately repeat adsorption and regeneration operations with a phase difference of 180°.
The optimal time to perform the regeneration operation or the adsorption operation including the product nitrogen gas backflow process, that is, the half cycle time, is 60 to 90 seconds when using the same MSC and using the conventional method with a product nitrogen gas purity of 99.0 to 99.9%. However, in the method of the present invention, it is necessary to shift to a range of 90 to 180 seconds.

PSA方式の窒素ガス分離システムの効率を表
わす重要な動的指標として空間速度がある。空間
速度とは1分間に得られる標準状態の製品窒素流
量を常時吸着操作に用いられるMSCの容量、即
ち本発明においては1本の吸着槽に充填された
MSC容量、により除した値であり、MSC自体の
性能もこの特性に影響を与える。
Space velocity is an important dynamic index that represents the efficiency of a PSA nitrogen gas separation system. Space velocity refers to the capacity of the MSC that is used for constant adsorption operation, i.e., the capacity of the MSC that is used for constant adsorption operation, i.e., the capacity of the MSC filled in one adsorption tank in the present invention.
This is the value divided by the MSC capacity, and the performance of the MSC itself also affects this characteristic.

従つて、空間速度が小さな値を取ると、必要な
吸着槽の内容積は大きくなり、これに伴つて外気
へ放出するガス量が増大すること等で原料混合ガ
スの原単位は高くなる。この現象は吸着槽のほか
原料混合ガス用圧縮機、真空ポンプ等装置全体の
大型化を意味しており、設備費のみならず、電力
費を中心とする運転費の上昇をもたらし、実用化
の上で致命的な阻害因子となつて来る。
Therefore, when the space velocity takes a small value, the necessary internal volume of the adsorption tank becomes large, and the amount of gas released to the outside air increases accordingly, so that the basic unit of raw material mixed gas becomes high. This phenomenon means that in addition to the adsorption tank, the entire equipment such as the compressor for raw material mixed gas and the vacuum pump becomes larger. This increases not only the equipment cost but also the operating cost, mainly electricity cost, which makes it difficult to put it into practical use. It becomes a fatal inhibiting factor.

本発明の方法における空間速度は0.6min-1
上、より好ましくは1.2min-1以上を前提としてお
り、能力範囲1〜1000Nm3/Hrの設備を必要な
場所に設置し、99.99%以上の高純度窒素を安価
に提供することが可能となつた。
The space velocity in the method of the present invention is assumed to be 0.6 min -1 or more, more preferably 1.2 min -1 or more, and equipment with a capacity range of 1 to 1000 Nm 3 /Hr is installed in the necessary location to achieve a high speed of 99.99% or more. It has become possible to provide pure nitrogen at low cost.

実施例 25℃1気圧の状態で酸素平衡吸着量7.7c.c./g、
吸着時間60秒における酸素/窒素吸着容量比8.44
の性能を有するMSCを吸着槽に充填し、図面に
示す様なPSA方式窒素ガス分離装置を用いた。
Example Equilibrium adsorption amount of oxygen 7.7cc/g at 25℃ and 1 atm.
Oxygen/nitrogen adsorption capacity ratio at 60 seconds adsorption time: 8.44
An adsorption tank was filled with MSC having the following performance, and a PSA nitrogen gas separation device as shown in the drawing was used.

8.5Kg/cm2Gに加圧した空気を原料とし、半サ
イクル時間120秒で吸着及び再生操作を行なつた。
再生操作時の到達真空度は80Torrである。吸着
操作を完了した吸着槽と真空再生操作を終つた吸
着槽間のガス移動は、上部連通流量に対し下部連
通流量を6%となる様調節し、ガス供給側の吸着
槽に対し受入個吸着槽の絶対圧力比が0.25となつ
た時点でガスの移動を停止した。このガス移動に
要した時間は1.2秒であつた。
Air pressurized to 8.5 kg/cm 2 G was used as a raw material, and adsorption and regeneration operations were performed in a half cycle time of 120 seconds.
The ultimate vacuum level during regeneration operation is 80 Torr. For gas movement between the adsorption tank that has completed the adsorption operation and the adsorption tank that has completed the vacuum regeneration operation, adjust the lower communication flow rate to 6% of the upper communication flow rate, and transfer the gas to the adsorption tank on the gas supply side. Gas movement was stopped when the absolute pressure ratio of the tank reached 0.25. The time required for this gas movement was 1.2 seconds.

次に、製品貯槽から上記受入個吸着槽へ製品窒
素を0.2秒間逆流し、吸着操作時における到達最
高ゲージ圧力の85%になつた時点で原料加圧空気
の供給を開始した。
Next, product nitrogen was flowed back from the product storage tank to the receiving adsorption tank for 0.2 seconds, and when the pressure reached 85% of the maximum gauge pressure reached during the adsorption operation, supply of pressurized raw material air was started.

製品貯槽は外部設備に10Nm3/Hrの供給を続
けながら逆流工程においても常に吸着操作時吸着
槽到達最高ゲージ圧力の85%以上を確保すること
が出来た。なお使用した製品貯槽は吸着槽に対し
て4倍の容量積をもつている。
While the product storage tank continued to supply 10Nm 3 /Hr to external equipment, it was possible to always maintain 85% or more of the maximum gauge pressure reached in the adsorption tank during adsorption operation, even during the backflow process. The product storage tank used has a capacity four times that of the adsorption tank.

本実施例で得られた製品窒素の品質は、残存酸
素濃度73ppm、大気圧露点−70℃以下の値が安定
に得られ、この時の空間速度は1.5min-1であつ
た。
The quality of the product nitrogen obtained in this example was such that a residual oxygen concentration of 73 ppm and an atmospheric pressure dew point of −70° C. or less were stably obtained, and the space velocity at this time was 1.5 min −1 .

又、本装置を用い製品貯槽より外部設備への供
給量を5Nm3/Hrまで減少すると、製品窒素中の
残存酸素濃度は5.7ppmまで低下した。
Furthermore, when the supply amount from the product storage tank to external equipment was reduced to 5Nm 3 /Hr using this device, the residual oxygen concentration in the product nitrogen decreased to 5.7ppm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一例を示すフローシートであ
る。図中1,2はそれぞれ吸着槽A及びB、3は
製品貯槽、4は真空ポンプ、5,6,7,8,
9,10,11,12,13,14は弁、15,
16はオリフイスを示す。
FIG. 1 is a flow sheet showing an example of the present invention. In the figure, 1 and 2 are adsorption tanks A and B, respectively, 3 is a product storage tank, 4 is a vacuum pump, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14 are valves, 15,
16 indicates an orifice.

Claims (1)

【特許請求の範囲】 1 78容量%以上の窒素と酸素を主体とする残成
分で構成された加圧状態にある混合ガスを原料と
し、分子篩炭を充填した2本の吸着槽よりなる圧
力変動吸着方式の窒素ガス分離装置において、 a 吸着操作が完了した吸着槽Aと、真空再生操
作を終えている吸着槽B双方の各原料ガス入口
部、並びに各製品窒素出口部どうしをそれぞれ
連通し、加圧下の吸着槽Aから減圧状態に置か
れている吸着槽Bへ槽内ガスを短時間に移動せ
しめ、両槽が等圧となる前にガス移動を停止す
る工程と、 b 次に、吸着槽Bの製品窒素出口部と製品貯槽
入口部を連通して製品窒素を吸着槽B内に逆流
せしめ、吸着槽B内のゲージ圧力が吸着操作時
における最高ゲージ圧力の50%以上に到達した
時点で原料混合ガスを吸着槽B内に導入して吸
着操作を開始する工程、 c 然も、上記b)の工程において、吸着槽Bに
製品窒素ガスが逆流している期間をも含め、製
品貯槽内のゲージ圧力は常に吸着操作時に示す
吸着槽最高ゲージ圧力の70%以上を保持し、 d 一方、吸着槽Aはa)の工程における吸着槽
間のガス移動を停止した時点より、槽内の残存
ガスを大気圧近傍まで外気中に放出、引続いて
真空ポンプを用い、150Torr以下まで減圧する
ことによつて再生操作を行い、以降、吸着槽A
及びBは交互に吸着と再生の両操作を繰返す
が、当該再生操作並びに製品窒素ガス逆流工程
を含む吸着操作に要する時間がそれぞれ90秒〜
180秒の範囲内、 であることを特徴とする窒素純度が99.99容量%
以上の製品を得るための窒素ガス分離方法。 2 原料混合ガスを吸着分離する際の最高到達圧
力が5Kg/cm2G以上である特許請求範囲第1項記
載の窒素ガス分離方法。 3 空間速度が0.6min-1以上である特許請求範囲
第1項又は第2項記載の窒素ガス分離方法。
[Scope of Claims] 1. Pressure fluctuation consisting of two adsorption tanks filled with molecular sieve charcoal and using a pressurized mixed gas as a raw material consisting of 78% by volume or more of nitrogen and residual components mainly consisting of oxygen. In an adsorption type nitrogen gas separation device, a. The raw material gas inlets and product nitrogen outlets of both adsorption tank A, which has completed adsorption operation, and adsorption tank B, which has completed vacuum regeneration operation, are connected to each other, a step of moving gas in the tank from adsorption tank A under pressure to adsorption tank B under reduced pressure in a short time, and stopping the gas movement before both tanks reach equal pressure; The product nitrogen outlet of tank B and the product storage tank inlet are communicated to cause the product nitrogen to flow back into adsorption tank B, and when the gauge pressure in adsorption tank B reaches 50% or more of the maximum gauge pressure during adsorption operation. The process of introducing the raw material mixed gas into the adsorption tank B to start the adsorption operation; c. However, in the step b) above, the product storage tank The gauge pressure in the tank is always maintained at 70% or more of the maximum gauge pressure in the adsorption tank during adsorption operation. The residual gas is discharged into the outside air to near atmospheric pressure, and then a vacuum pump is used to reduce the pressure to below 150 Torr to perform a regeneration operation.
and B repeat both adsorption and regeneration operations alternately, but the time required for the regeneration operation and adsorption operation including the product nitrogen gas backflow step is 90 seconds or more, respectively.
Within 180 seconds, the nitrogen purity is 99.99% by volume
Nitrogen gas separation method to obtain the above products. 2. The nitrogen gas separation method according to claim 1, wherein the maximum pressure achieved when adsorbing and separating the raw material mixed gas is 5 kg/cm 2 G or more. 3. The nitrogen gas separation method according to claim 1 or 2, wherein the space velocity is 0.6 min -1 or more.
JP62195018A 1987-08-04 1987-08-04 Separation of gaseous nitrogen having high purity Granted JPS6438124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62195018A JPS6438124A (en) 1987-08-04 1987-08-04 Separation of gaseous nitrogen having high purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62195018A JPS6438124A (en) 1987-08-04 1987-08-04 Separation of gaseous nitrogen having high purity

Publications (2)

Publication Number Publication Date
JPS6438124A JPS6438124A (en) 1989-02-08
JPH0461684B2 true JPH0461684B2 (en) 1992-10-01

Family

ID=16334164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62195018A Granted JPS6438124A (en) 1987-08-04 1987-08-04 Separation of gaseous nitrogen having high purity

Country Status (1)

Country Link
JP (1) JPS6438124A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2619839B2 (en) * 1990-01-31 1997-06-11 鐘紡株式会社 Nitrogen gas separation method
JPH03232515A (en) * 1990-02-06 1991-10-16 Kanebo Ltd Separation of gaseous nitrogen
JP2623487B2 (en) * 1990-02-10 1997-06-25 鐘紡株式会社 Nitrogen gas separation method
CN101913581B (en) * 2010-07-15 2012-05-30 首钢总公司 Method for preparing ultra-high purity gas by combining liquid pump with raw material gas cylinder

Also Published As

Publication number Publication date
JPS6438124A (en) 1989-02-08

Similar Documents

Publication Publication Date Title
US4925461A (en) Process for separating nitrogen gas by pressure swing adsorption system
EP0008619B1 (en) Rapid adiabatic pressure swing adsorption process
JP3172646B2 (en) Improved vacuum swing adsorption method
EP0302658B1 (en) Process for producing high purity oxygen gas from air
US6245127B1 (en) Pressure swing adsorption process and apparatus
CA2141254C (en) Vsa adsorption process with continuous operation
US3719025A (en) Resolving gas mixtures
CA2160046C (en) Improved pressure swing adsorption process
US4756723A (en) Preparation of high purity oxygen
JP3557323B2 (en) Improved vacuum pressure swing adsorption process
EP0876994B1 (en) Ozone recovery by zeolite adsorbents
US5980857A (en) Production of carbon monoxide from syngas
US5540758A (en) VSA adsorption process with feed/vacuum advance and provide purge
US5906674A (en) Process and apparatus for separating gas mixtures
US5441558A (en) High purity nitrogen PSA utilizing controlled internal flows
JPH10323527A (en) Gas purity device and method
JPH04330913A (en) Absorption process for separating gaseous mixture
JPH05261233A (en) Gaseous nitrogen separation method
JP2000153124A (en) Pressure swing adsorption for producing oxygen-enriched gas
JPH05301703A (en) Method for supplying nitrogen from on-site plant
JPH0788316A (en) Separation of nitrogen-enriched gas and device therefor
CN104066493A (en) Nitrogen-enriched gas manufacturing method, gas separation method and nitrogen-enriched gas manufacturing apparatus
JPH11239711A (en) Psa method using simultaneous evacuation of top and bottom of adsorbent bed
JP3169647B2 (en) Pressure swing type suction method and suction device
GB2109266A (en) Pressure swing process for the separation of gas mixtures by adsorption

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees