JPH0461507A - Electrode lead structure for ultra thin plate piezoelectric resonator - Google Patents

Electrode lead structure for ultra thin plate piezoelectric resonator

Info

Publication number
JPH0461507A
JPH0461507A JP17211490A JP17211490A JPH0461507A JP H0461507 A JPH0461507 A JP H0461507A JP 17211490 A JP17211490 A JP 17211490A JP 17211490 A JP17211490 A JP 17211490A JP H0461507 A JPH0461507 A JP H0461507A
Authority
JP
Japan
Prior art keywords
electrode
electrode lead
ultra
piezoelectric resonator
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17211490A
Other languages
Japanese (ja)
Other versions
JP3102872B2 (en
Inventor
Takao Morita
孝夫 森田
Osamu Ishii
修 石井
Takefumi Kurosaki
黒崎 武文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP02172114A priority Critical patent/JP3102872B2/en
Priority to US07/809,512 priority patent/US5235240A/en
Priority to EP91908864A priority patent/EP0484545B1/en
Priority to PCT/JP1991/000615 priority patent/WO1991019351A1/en
Priority to DE69124339T priority patent/DE69124339T2/en
Priority to KR1019910700781A priority patent/KR920702898A/en
Publication of JPH0461507A publication Critical patent/JPH0461507A/en
Application granted granted Critical
Publication of JP3102872B2 publication Critical patent/JP3102872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To ensure a variable range of a resonance frequency sufficiently by widening part of an electrode lead pattern prolonged from an electrode of a resonator corresponding to a thick annular surrounding part more than the width of other parts sufficiently. CONSTITUTION:The width of a part 7a of an electrode lead 7 prolonged from an opposite electrode 6 on a face opposite to a full face electrode 5 formed to a side of a recessed part 2 of an ultra thin plate piezoelectric block 1 in an ultra thin piezoelectric resonator corresponding to an annular surrounding part 4 is widened. Thus, the thickness of a vibration part 3 is very thin and forms a capacitor with a large capacitance when a conductor film with a wide area exists on both the front and the rear face of the part 3 opposite to each other, on the other hand, the annular surrounding part 4 is thick and even when a conductor film exists on its front and rear side, a large capacitance is not formed and no detrimental effect is given to the capacitance ratio of the resonator.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は基本波振動によって数10乃至数100 M 
Hzに及ぶ高い共振周波数を得ることのできる超薄板圧
電共振子の電極リード構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention uses fundamental wave vibration to generate waves of several tens to hundreds of M
The present invention relates to an electrode lead structure for an ultra-thin piezoelectric resonator that can obtain a high resonant frequency up to Hz.

(従来の技術) 近年、各種電子機器、通信機器においては、高周波化と
高い周波数安定度の要求が厳しくなっているが、従来よ
り圧電デバイス(振動子、フィルタ)として多用されて
きた一般のATカット水晶振動子は温度−周e、数字9
1性は極めて優れているもののその共振周波数は板厚に
反比例するため、製造技術及び機械的強度の観点より4
0 M II z程度が限界であった。
(Prior art) In recent years, demands for higher frequencies and higher frequency stability have become stricter in various electronic devices and communication devices. Cut crystal oscillator temperature - circumference e, number 9
Although its resonance frequency is inversely proportional to the plate thickness, from the viewpoint of manufacturing technology and mechanical strength,
The limit was approximately 0 M II z.

又、ATカット水晶振動子の高調波成分を抽出して基本
波共振周波数の奇数倍の周波数を得る所謂オーバートー
ン発振手段も広く用いられているが、発振回路にコイル
を含むLC同調回路を必要とするため発振回路を半導体
集積回路化する上で不都合がある上、容量比が大きく、
且つインビダンスレベルが高い為発振が困難になる場合
があるという欠陥があった。
Also, so-called overtone oscillation means that extracts harmonic components of an AT-cut crystal resonator to obtain a frequency that is an odd multiple of the fundamental resonance frequency is also widely used, but this method requires an LC tuning circuit that includes a coil in the oscillation circuit. Therefore, it is inconvenient to integrate the oscillation circuit into a semiconductor integrated circuit, and the capacitance ratio is large.
Another drawback is that oscillation may be difficult due to the high impedance level.

方、インタディジタル・トランスジューサ電極の電極指
ピッチによって共振周波数が決定される弾性表面波共振
子は、フォトリソグラフィ技術の進歩によってIGHz
程度の出力まで可能となってはきたが、これに使用し得
る圧電基板の温度−周波数特性がATカット水晶に比し
て著しく劣るという問題があった。
On the other hand, surface acoustic wave resonators, whose resonant frequency is determined by the electrode finger pitch of interdigital transducer electrodes, have become
Although it has become possible to achieve a certain level of output, there is a problem in that the temperature-frequency characteristics of the piezoelectric substrate that can be used for this purpose are significantly inferior to that of AT-cut crystal.

上述の如き問題を解決するため、従来より第4図(al
  (bl に示すごとき圧電共振子が研究されている
In order to solve the above-mentioned problems, conventionally, Fig. 4 (al.
(Piezoelectric resonators as shown in bl are being studied.

即ち、この圧電共振子はATカット水晶ブロックlの片
面の中央部に機械加工又はエツチングによって凹陥部2
を形成するとともに、凹陥部2の底面に位置する振動部
3の厚さを、例えば100MHzの基本波共振周波数を
得んとするならば約17μmとする。
That is, this piezoelectric resonator has a concave portion 2 formed by machining or etching in the center of one side of the AT-cut crystal block l.
At the same time, the thickness of the vibrating part 3 located at the bottom surface of the recessed part 2 is set to about 17 μm if a fundamental resonance frequency of 100 MHz is to be obtained, for example.

凹陥部2を形成した結果、凹陥部2側のブロック面には
、超薄板状の振動部3の周縁部に厚肉の環状囲繞部(リ
ブ)4が前記振動部3と一体的に形成され超薄板状の振
動部を機械的に支持する。
As a result of forming the concave part 2, a thick annular surrounding part (rib) 4 is formed integrally with the vibrating part 3 on the peripheral edge of the ultra-thin plate-like vibrating part 3 on the block surface on the side of the concave part 2. mechanically supports the ultra-thin plate-shaped vibrating section.

上述した如き構造を有する圧電素板の凹陥内側壁を含む
全面に導体膜5を付着すると共に、その対向面側の振動
部3の表面に部分電極6及びこれから延びる電極リード
7を真空蒸着等の手法を用いて付着すれば、共振周波数
の極めて高い圧電共振子を得ることができる。
A conductive film 5 is attached to the entire surface of the piezoelectric plate having the above-described structure, including the inner wall of the recess, and a partial electrode 6 and an electrode lead 7 extending therefrom are formed on the surface of the vibrating part 3 on the opposite side by vacuum evaporation or the like. If this method is used for attachment, it is possible to obtain a piezoelectric resonator with an extremely high resonance frequency.

圧電素板の凹陥内壁を含む全面に導体[5を付着する主
な理由は、精密なマスクを用いた特殊な蒸着技法により
部分的に導体膜を形成することが煩雑で生産効率を低下
せしめるからであるが、その反面、凹陥部2部全体が導
体lI!25で覆われているために1ij記部分電極6
から延びる電極リード7との間にコンデンサが形成され
て圧電共振子全体の容量比が増大し、周波数の変動し得
る幅が小さくなるという問題を生ずる。
The main reason for attaching the conductor [5] to the entire surface of the piezoelectric plate, including the inner wall of the recess, is that forming a conductor film partially using a special vapor deposition technique using a precision mask is complicated and reduces production efficiency. However, on the other hand, the entire two portions of the concave portion are conductors lI! 1ij partial electrode 6 because it is covered with 25
A capacitor is formed between the piezoelectric resonator and the electrode lead 7 extending from the piezoelectric resonator, increasing the capacitance ratio of the entire piezoelectric resonator, resulting in a problem that the range in which the frequency can fluctuate becomes smaller.

即ち1部分電極6から延びる電極リード7に充分な導電
性を与えるために電極リード部面積を大きくすると、振
動部板厚が超薄であることに起因して大容量Cを構成す
る。太容阻Cが形成されると、第5図に示す圧電共振子
の等価回路における並列容量C8が増大して、圧電共振
子の容量比γ=C,/C,が増大するために、斯かるタ
イプの共振子は電圧制御水晶発振器(VCXO)の如く
所定の範囲内で発振周波数を変動せしめる必要のある発
振回路への適用が制限を受けるであろうし、又多重モー
ドフィルタ素子に適用せんとしても比較的広いバスバン
ドを要求された場合には対応が困難であるという欠陥が
予測される。
That is, when the area of the electrode lead portion is increased in order to provide sufficient conductivity to the electrode lead 7 extending from the partial electrode 6, a large capacitance C is constructed due to the ultra-thin thickness of the vibrating member plate. When the large capacitance C is formed, the parallel capacitance C8 in the equivalent circuit of the piezoelectric resonator shown in FIG. 5 increases, and the capacitance ratio γ=C, /C of the piezoelectric resonator increases. This type of resonator would have limited application to oscillation circuits that require the oscillation frequency to vary within a predetermined range, such as a voltage controlled crystal oscillator (VCXO), and would not be applicable to multimode filter elements. However, if a relatively wide bus band is required, it is expected that the problem will be difficult to accommodate.

斯かる不具合を解決する為、全面電極のリードに対応す
る部分に導体膜を付着しないようにする手法も考えられ
るが、そのためにはマスクを使用した蒸着が必要となり
、蒸着にマスクを要しないという全面電極構成のメリッ
トを完全に損なう結果を招来する。
In order to solve this problem, a method can be considered in which the conductor film is not attached to the part corresponding to the lead of the full-surface electrode, but this requires vapor deposition using a mask, and it is said that a mask is not required for vapor deposition. This results in a complete loss of the advantages of the full-surface electrode configuration.

(発明の目的) 本発明は超薄板圧電共振子において予測される上述した
如き問題点に鑑みてなされたものであって、水晶等の圧
電ブロック表面に形成した凹陥部底面を超薄板状の圧電
振動部とした圧電共振子において、前記超薄肉の振動部
を介して電極と電極リードパターンとが相対面する結果
、コンデンサを形成し共振子の並列容量を増大させるこ
とに起因して発生する種々の不都合を解消することがで
きる超薄圧電共振子の電極リード構造を提供することを
目的とする。
(Object of the Invention) The present invention has been made in view of the above-mentioned problems predicted in ultra-thin plate piezoelectric resonators, and it is an object of the present invention to convert the bottom surface of a recess formed on the surface of a piezoelectric block such as a crystal into an ultra-thin plate piezoelectric resonator. In a piezoelectric resonator with a piezoelectric vibrating part, the electrode and the electrode lead pattern face each other through the ultra-thin vibrating part, forming a capacitor and increasing the parallel capacitance of the resonator. It is an object of the present invention to provide an electrode lead structure for an ultra-thin piezoelectric resonator that can eliminate various problems that occur.

(発明の概要) 上記の目的を達成するため本発明に係る共振fは、超薄
肉の振動部の一面に形成する電極から伸びる’Fihリ
ートパターンのうちL“ノ肉の環状囲繞部に対応する部
分を他の部分より充分に幅広としたことを特徴とする− (発明の実施例) 以ト、添付図面に示した好適な実施例:ご基づいて本発
明の詳細な説明する。
(Summary of the Invention) In order to achieve the above object, the resonance f according to the present invention corresponds to an annular surrounding portion with a thickness of L in a 'Fih lead pattern extending from an electrode formed on one surface of an ultra-thin vibrating part. (Embodiments of the Invention) Hereinafter, the present invention will be described in detail based on the preferred embodiments shown in the accompanying drawings.

実施例の説明に先立って1本発明の理解を助ける為本発
明の基礎となる超薄板圧電共振子が何故にその凹陥部に
全面電極を、その対向面側に部分電極を設ける如き電極
構成を採用するかについて少しく解説する。
Before explaining the embodiments, first, to help understand the present invention, we will explain why the ultra-thin piezoelectric resonator, which is the basis of the present invention, has an electrode structure in which a full-surface electrode is provided in the recessed part and a partial electrode is provided on the opposite surface. Let me explain a little bit about whether to adopt .

第1に真空蒸着技術の観点から前述した如き圧電基板凹
陥側振動部に部分電極を、又該電極から+i’l 記凹
陥の内側壁及び段差を越えて幅の狭い電極リードを延長
することは、圧電基板を水平面に対し傾けて蒸着を行な
う等の面倒な手法を用いればとも角、極めて困難であっ
て電極リードの導通確保に不安がある為、該面を全面電
極としいずれかの部分で必ず導通を確保し117るよう
にしたものである。
First, from the viewpoint of vacuum evaporation technology, it is not possible to place a partial electrode on the vibrating part of the recess of the piezoelectric substrate as described above, and to extend a narrow electrode lead from the electrode beyond the inner wall and step of the recess. However, it would be extremely difficult to perform vapor deposition by tilting the piezoelectric substrate with respect to the horizontal plane, and there would be concerns about ensuring continuity of the electrode leads. This ensures continuity.

第2に斯かるタイプの共振rは元来デバイスの超小型化
を[1的とし、圧電基板のサイズは例えば3mmX3m
m以十としたい。然りとすれば、−枚の11電ウ工ハー
士にバッチ処理で一挙に多数のチップを形成し、EL後
にこれを個々のチップに切断する製法を採用する。この
場合、1・述したタイプの電極構成を採用すれば、ウェ
ハーの−・面には単に導体膜の全面蒸着を行なえば足り
、フォトマスク或はフォトリソグラフ用マスクの微妙な
位置合わせな要しないので、生産効率、歩留りを向上し
、コストを低減することができる。
Second, this type of resonance r originally aimed at ultra-miniaturization of devices, and the size of the piezoelectric substrate was, for example, 3 mm x 3 m.
I want it to be 10 m or more. If this is the case, a manufacturing method will be adopted in which a large number of chips are formed all at once on 11 sheets of electrical engineering hardware by batch processing, and then cut into individual chips after EL. In this case, if the electrode configuration of the type described in 1. is adopted, it is sufficient to simply deposit a conductive film on the entire surface of the wafer, and there is no need for delicate alignment of a photomask or photolithography mask. Therefore, production efficiency, yield can be improved, and costs can be reduced.

以Eの如き理由により、従来から研究されていた超薄板
圧電共振子は凹陥側表面に全面電極を付着することを基
本とするものであることに留意されたい。
It should be noted that for the reasons mentioned above, the ultra-thin plate piezoelectric resonators that have been studied in the past are based on the fact that electrodes are attached all over the surface of the concave side.

しかしながら、上述した如き電極構成を用いれば、前記
振動部の板厚が極めて小さいこともあって該部表裏の全
面電極と、電極リード部との間に大容量のキャパシタが
構成され、その結果共振器の容量比が大きくなり1g!
々の不都合を生ずること前述の通りである。
However, if the above-mentioned electrode configuration is used, a large capacitance capacitor is formed between the electrode lead portion and the electrode lead portion on the front and back surfaces of the vibrating portion, partly because the plate thickness of the vibrating portion is extremely small, and as a result, resonance occurs. The capacity ratio of the container is increased to 1g!
As mentioned above, this causes various inconveniences.

この聞届を解決するため1本発明に係る超薄板1電共振
T−は以上の如き電極構造をとる。
In order to solve this problem, the ultra-thin plate monoelectric resonance T- according to the present invention has the electrode structure as described above.

第1図は本発明の基本的構成を示す平面図であって、超
薄板圧電ブロックlの凹陥2側に形成した全面電極と対
向する面、Eの対向電極6より延びる電極リード7の環
状囲繞部4に対応する部分7aの幅員を幅広にしたもの
である。
FIG. 1 is a plan view showing the basic configuration of the present invention, showing the surface facing the entire surface electrode formed on the recess 2 side of the ultra-thin piezoelectric block L, and the annular shape of the electrode lead 7 extending from the counter electrode 6 of E. The width of the portion 7a corresponding to the surrounding portion 4 is made wider.

斯くの如く振動部3上に位置する電極リード部分7bの
幅員を必要最小限に極限しながらも、環状囲繞部4の裏
面上、に位置する電極リード部分7aの幅員を幅広とす
る理由は、振動部3はその肉厚が極めて小さく、該部表
裏両面に夫々広面積の導体膜が対向して存在すれば大な
る容量のキャパシタを構成するのに対して、環状囲繞部
4はその肉厚が大であって仮にその表裏に導体膜が存在
してもさほど大なる容量を有することがな(、共振子の
容量比には■大な影響を与えないと考えられるからであ
る。また、細い電極リード部分7bの長さを極限するこ
とによってオーミックなロスを低減できるからである。
The reason for increasing the width of the electrode lead portion 7a located on the back surface of the annular surrounding portion 4 while minimizing the width of the electrode lead portion 7b located on the vibrating portion 3 to the necessary minimum is as follows. The vibrating part 3 has an extremely small wall thickness, and if large-area conductor films exist facing each other on both the front and back sides of the part, it forms a capacitor with a large capacity, whereas the annular surrounding part 4 has a very small wall thickness. is large, and even if there is a conductive film on the front and back sides, it will not have a very large capacitance (this is because it is thought that it will not have a large effect on the capacitance ratio of the resonator. Also, This is because ohmic loss can be reduced by limiting the length of the thin electrode lead portion 7b.

なお、1−述した如き圧電共振子は第2図に示す如くそ
の凹陥2側を例えばセラミクスを焼結した皿型パッケー
ジ8の内底面に設けて導体膜10に対面する如く収納し
、前記凹陥2側全面電極5を環状囲繞部4−・縁表面に
おいて前記導体膜10と導電性接着剤11で接着固定す
ると共に前記導体膜10を介してパッケージの外部リー
ド端T−12と接続する。一方、部分電極6から延びる
電極リード7の幅広部7aについてはこれをパッケージ
外壁のリード端子13と接続しているバクケージ8内壁
段差部に設けた導体バッド14とボンディングワイヤ1
5にて接続するのに利用するに好都合である。
As shown in FIG. 2, the piezoelectric resonator as described in 1. The second side full surface electrode 5 is adhesively fixed to the conductor film 10 on the edge surface of the annular surrounding portion 4- with a conductive adhesive 11, and is connected to the external lead end T-12 of the package via the conductor film 10. On the other hand, the wide part 7a of the electrode lead 7 extending from the partial electrode 6 is connected to the conductor pad 14 provided on the stepped part of the inner wall of the back cage 8, which connects it to the lead terminal 13 on the outer wall of the package.
It is convenient to use for connecting at 5.

以上、本発明を圧電振動子に適用した場合について説明
したが1本発明は超薄板多重モードフィルタにも同様に
適用可能である。多重モードフィルタのうち最も多用さ
れている2重モードJE@フィルタは周知の如く圧電基
板の一主面(この場合は凹陥2側)の全面電極5をアー
ス電極とし、その吋白面に分割近接電極16を設け、こ
れら両電極に交番電界を印加して1両電極間に音響結合
を′Lぜしめ、その結果励起する共振周波数の相異なる
2つの振動モートを利用してパンドパスフfルタを構成
するものである。
Although the present invention has been described above in the case where it is applied to a piezoelectric vibrator, the present invention can be similarly applied to an ultra-thin multi-mode filter. As is well known, in the dual mode JE@ filter, which is the most commonly used multimode filter, the entire surface electrode 5 on one main surface of the piezoelectric substrate (in this case, the recess 2 side) is used as a ground electrode, and the white surface thereof is provided with divided adjacent electrodes. 16 is provided, and an alternating electric field is applied to both electrodes to create acoustic coupling between the two electrodes, and as a result, two vibration modes with different resonant frequencies are excited to form a panned pass filter. It is something.

このようなフィルタ素子も又等価並列容量C0が大きく
なると、即ち容量比γが大きくなると実現可能なバンド
幅が減少することは周知である。
It is well known that the achievable bandwidth of such a filter element also decreases as the equivalent parallel capacitance C0 increases, that is, as the capacitance ratio γ increases.

従って、第3図に丞す如く分割電極16.16から引出
すリードの内前記振動部3表面に付する部分17.17
は細く、環状囲綾部4表面五における部分17a、17
aは幅広にすればよい。
Therefore, as shown in FIG. 3, the portion 17.17 of the lead drawn out from the split electrode 16.16 is attached to the surface of the vibrating portion 3.
is thin, and the portions 17a, 17 on the surface 5 of the annular surrounding portion 4
A should be made wider.

斯くすることによって数lO乃至100 M HZの共
振周波数を基本波振動によって得る振動子或はこの周波
数をほぼ中心周波数とするフィルタ素子を超小型に形成
し、しかもこれらの特性、殊に共振周波数の可変幅、フ
ィルタのバンド幅を部分大きな値に確保することができ
る。
In this way, a vibrator that obtains a resonant frequency of several lO to 100 MHz by fundamental wave vibration or a filter element that has approximately this frequency as its center frequency can be formed into an ultra-small size, and these characteristics, especially the resonant frequency Variable width allows the filter bandwidth to be partially secured to a large value.

(発明の効果) 本発明は以り説明した如く構成するものであるから、超
薄板圧電振動子或はフィルタ素子の容:d比を低い11
′(に押え、振動子にあっては共振周波数の可変幅を充
分に確保し、又フィルタ素r−にあっては、広いバスバ
ンドを5えるLで苫しい効果がある。更に、共振子振動
部表面のリート面積が電極のそれに比して小なることか
ら、不要波の発生も少ないと云う効果を併せ持つもので
ある。
(Effects of the Invention) Since the present invention is constructed as described above, the capacity:d ratio of the ultra-thin piezoelectric vibrator or filter element can be reduced to 11.
(In addition, in the case of a resonator, a sufficient variable width of the resonant frequency is ensured, and in the case of a filter element, L, which has a wide bass band of 5, has an unpleasant effect.Furthermore, the resonator Since the leet area on the surface of the vibrating part is smaller than that of the electrode, it also has the effect of generating fewer unnecessary waves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図本発明に係る超薄板圧電共振子の電極リード構造
の一例を示す平面図、第2図は本発明に係る圧電共振子
のパッケージ手法の一例を示す断面図、第3図は本発明
を適用した超薄板多重モードフィルタ素rの実施例を示
す平面図、第4図(a)及びfb)は夫々従来から研究
されていた超薄板圧電共振子の構造を示す斜視図及びそ
のx−X断面図、第5図は共振子の等価回路図である。 3・・・振動部 4・・・環状囲繞部 5−0゜ 全面電極 ・・部分電極 7・・・°4陽り一
FIG. 1 is a plan view showing an example of the electrode lead structure of the ultra-thin piezoelectric resonator according to the present invention, FIG. 2 is a cross-sectional view showing an example of the piezoelectric resonator packaging method according to the present invention, and FIG. FIGS. 4(a) and 4(fb) are a plan view showing an embodiment of an ultra-thin multi-mode filter element to which the invention is applied, a perspective view and a perspective view showing the structure of an ultra-thin piezoelectric resonator that has been conventionally studied, respectively. Its XX cross-sectional view, FIG. 5, is an equivalent circuit diagram of the resonator. 3... Vibrating part 4... Annular surrounding part 5-0゜Full surface electrode...Partial electrode 7...°4 positive part

Claims (1)

【特許請求の範囲】[Claims] (1)超薄肉の振動部と、該振動部周縁を支持する厚肉
の環状囲繞部とを一体成形した圧電共振子素板の一主面
には全面電極を、その対向面には部分電極及びこれから
素板端縁に延びる電極リードを設け、該電極リードの内
前記環状囲繞部表面に付着する部分を他の部分より幅広
としたことを特徴とする超薄圧電共振子の電極リード構
造。
(1) A piezoelectric resonator element that is integrally formed with an ultra-thin vibrating part and a thick-walled annular surrounding part that supports the periphery of the vibrating part has a full-surface electrode on one main surface, and a partial electrode on the opposite surface. An electrode lead structure for an ultra-thin piezoelectric resonator, characterized in that an electrode and an electrode lead extending from the electrode lead to the edge of the blank plate are provided, and a part of the electrode lead that attaches to the surface of the annular surrounding part is wider than the other part. .
JP02172114A 1990-05-25 1990-06-29 Ultra-thin piezoelectric vibrator Expired - Fee Related JP3102872B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP02172114A JP3102872B2 (en) 1990-06-29 1990-06-29 Ultra-thin piezoelectric vibrator
US07/809,512 US5235240A (en) 1990-05-25 1991-05-09 Electrodes and their lead structures of an ultrathin piezoelectric resonator
EP91908864A EP0484545B1 (en) 1990-05-25 1991-05-09 Structure of electrode and lead thereof of ultra thin plate piezoelectric resonator
PCT/JP1991/000615 WO1991019351A1 (en) 1990-05-25 1991-05-09 Structure of electrode and lead thereof of ultra thin plate piezoelectric resonator
DE69124339T DE69124339T2 (en) 1990-05-25 1991-05-09 ELECTRODE AND ELECTRODE LINE STRUCTURE OF A PIEZOELECTRIC RESONATOR MADE OF AN ULTRA-THIN LAYER
KR1019910700781A KR920702898A (en) 1990-05-25 1991-07-25 Electrode and electrode lead structure of ultra-thin piezoelectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02172114A JP3102872B2 (en) 1990-06-29 1990-06-29 Ultra-thin piezoelectric vibrator

Publications (2)

Publication Number Publication Date
JPH0461507A true JPH0461507A (en) 1992-02-27
JP3102872B2 JP3102872B2 (en) 2000-10-23

Family

ID=15935816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02172114A Expired - Fee Related JP3102872B2 (en) 1990-05-25 1990-06-29 Ultra-thin piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JP3102872B2 (en)

Also Published As

Publication number Publication date
JP3102872B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
US5925968A (en) Piezoelectric vibrator, piezoelectric vibrator device having the same and circuit device having the piezoelectric vibrator device
EP0484545B1 (en) Structure of electrode and lead thereof of ultra thin plate piezoelectric resonator
JP4665282B2 (en) AT cut crystal unit
US4176030A (en) Method for forming a quartz crystal vibrator
EP0483358A1 (en) Ultra thin quartz crystal filter element of multiple mode
JP3102869B2 (en) Structure of ultra-thin piezoelectric resonator
JP4196641B2 (en) Ultra-thin piezoelectric device and manufacturing method thereof
KR100496405B1 (en) Piezoelectric vibrator and filter using the same
JPH0461507A (en) Electrode lead structure for ultra thin plate piezoelectric resonator
JP2001257558A (en) Piezoelectric vibrator
JP2003273703A (en) Quartz vibrator and its manufacturing method
JP2001257560A (en) Electrode structure for ultra-thin board piezoelectric vibration element
JPH04115707A (en) Electrode lead structure for ultra thin plate piezoelectric resonator
JPH0435105A (en) Electrode structure for ultra thin plate piezoelectric resonator
JP2001326554A (en) Piezoelectric vibrator
JPH07254839A (en) Crystal vibrator
JP3279054B2 (en) Manufacturing method of thickness-sliding quartz crystal unit
JPH04115706A (en) Electrode lead structure for ultra thin plate piezoelectric resonator
JP2005094733A (en) Resonator, resonator unit, oscillator, electronic apparatus and manufacturing method thereof
JP2001060844A (en) Composite piezoelectric vibrator
KR940009397B1 (en) Ultra thin quartz crystal filter element of multiple mode
JP2003115741A (en) Piezoelectric resonator and overtone frequency adjusting method
JP2003060480A (en) Ultra-thin plate type at-cut quartz resonance element
JPH05343944A (en) Piezoelectric resonator
JPH07170147A (en) Electrode structure for piezoelectric vibrator

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070825

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080825

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080825

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees