JPH04115706A - Electrode lead structure for ultra thin plate piezoelectric resonator - Google Patents

Electrode lead structure for ultra thin plate piezoelectric resonator

Info

Publication number
JPH04115706A
JPH04115706A JP23504190A JP23504190A JPH04115706A JP H04115706 A JPH04115706 A JP H04115706A JP 23504190 A JP23504190 A JP 23504190A JP 23504190 A JP23504190 A JP 23504190A JP H04115706 A JPH04115706 A JP H04115706A
Authority
JP
Japan
Prior art keywords
electrode
electrode lead
ultra
piezoelectric resonator
lead patterns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23504190A
Other languages
Japanese (ja)
Inventor
Takao Morita
孝夫 森田
Osamu Ishii
修 石井
Takefumi Kurosaki
黒崎 武文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP23504190A priority Critical patent/JPH04115706A/en
Priority to US07/809,512 priority patent/US5235240A/en
Priority to EP91908864A priority patent/EP0484545B1/en
Priority to PCT/JP1991/000615 priority patent/WO1991019351A1/en
Priority to DE69124339T priority patent/DE69124339T2/en
Priority to KR1019910700781A priority patent/KR920702898A/en
Publication of JPH04115706A publication Critical patent/JPH04115706A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form an element in an ultra small size and to reduce spurious radiation by forming a part adhered to the surface of a vibration section among electrode lead patterns extended from the electrode formed to one face of the vibration section with plural electrode lead patterns with a narrow width. CONSTITUTION:A part placed on a surface of a ultra thin vibration section 3 in an electrode lead extended from a partial electrode 6 on a face opposite to a full face electrode formed to the surface of a recessed part 2 of an ultra thin plate piezoelectric block 1 is formed by plural narrow electrode lead patterns 7c, 7c... and the sum of the cross sections of each pattern 7c is to be a value sufficiently to prevent the increase in the ohmic loss. Thus, the spurious radiation caused between a full face electrode and the electrode lead patterns divided appear at a point much apart from the resonance point of the resonance by the true electrode, the level is small and no special fault is provided to various characteristics of the resonator.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は基本波振動によって数10乃至数1゜OMHz
に及ぶ高い共振周波数を得ることのできる超薄板圧電共
振子の′:lf極リード構造に間する。
[Detailed Description of the Invention] (Industrial Field of Application) The present invention uses fundamental wave vibrations to
The ultra-thin plate piezoelectric resonator has a ':lf pole lead structure which can obtain a high resonance frequency of up to 1000 nm.

(従来の技術) 近年、各種電子機器、通信機器においては、高周波化と
高い周波数安定度への要求が厳しくなっているが、従来
より圧電デバイス(振動子、フィルタ)として多用され
てきた一般のATカット水晶振動子は温度−周波数特性
は極めて優れているもののその共振周波数は板厚に反比
例するため、製造技術及び機械的強度の観点より40M
Hz程度が限界であった。
(Prior art) In recent years, demands for higher frequencies and higher frequency stability have become stricter in various electronic devices and communication devices. Although the AT-cut crystal resonator has extremely excellent temperature-frequency characteristics, its resonance frequency is inversely proportional to the plate thickness, so from the viewpoint of manufacturing technology and mechanical strength, 40M
The limit was around Hz.

又、ATカット水晶振動子の高調波成分を抽出して基本
波共振周波数の奇数倍の周波数を得る所謂オーバートー
ン発振手段も広(用いられているが、発振回路にコイル
を含むLC同調回路を必要とするため発振回路を半導体
集積回路化する上で不都合がある上、容量比が太き(、
且つインピーダンスレベルが高い為発振が困難になる場
合があるという欠陥があった。
In addition, so-called overtone oscillation means that extracts the harmonic components of an AT-cut crystal oscillator to obtain a frequency that is an odd multiple of the fundamental resonance frequency is also widely used (although it is widely used, it is not possible to use an LC tuned circuit that includes a coil in the oscillation circuit). This is inconvenient when converting the oscillation circuit into a semiconductor integrated circuit, and the capacitance ratio is large (,
Another drawback is that oscillation may be difficult due to the high impedance level.

一方、インタディジタル・トランスジューサ電極の電極
指ピッチによって発振周波数が決定される弾性表面波共
振子は、フォトリソグラフィ技術の進歩によって1GH
z程度の出力まで可能となってはきたが、これに使用し
得る圧電基板の温度−周波数特性がATカット水晶に比
して著しく劣るという問題があった。
On the other hand, the surface acoustic wave resonator, whose oscillation frequency is determined by the electrode finger pitch of the interdigital transducer electrodes, has become 1 GH due to advances in photolithography technology.
Although it has become possible to achieve outputs up to about Z, there is a problem in that the temperature-frequency characteristics of the piezoelectric substrate that can be used for this are significantly inferior to that of AT-cut crystal.

上述の如き問題を解決するため、従来より第4図(a)
 (bl に示すごとき圧電共振子が研究されている。
In order to solve the above-mentioned problem, conventionally, the method shown in Fig. 4(a)
(Piezoelectric resonators as shown in bl are being studied.

即ち、この圧電共振子はATカット水晶ブロック1の片
面の中央部に機械加工又はエツチングによって凹陥部2
を形成するとともに、凹陥部2の底面に位置する振動部
3の厚さを、例えば100MHzの基本波共振周波数を
得んとするならば約17μmとする。
That is, this piezoelectric resonator has a concave portion 2 formed in the center of one side of the AT-cut crystal block 1 by machining or etching.
At the same time, the thickness of the vibrating part 3 located at the bottom surface of the recessed part 2 is set to about 17 μm if a fundamental resonance frequency of 100 MHz is to be obtained, for example.

凹陥部2を形成した結果、凹陥部2側のブロック外周部
は超薄板状の振動部3の周縁部を機械的に保持する厚肉
の環状囲繞部4を構成する。上述した如き構造を有する
圧電素板の凹陥側表面にはその内側壁を含む全面に導体
膜5を付着すると共に、その対向面側の振動部3の表面
に部分電極6及びこれから延びる電極リード7を真空蒸
着等の手法を用いて付着すれば、共振周波数の極めて高
い圧電共振子を得ることができる。
As a result of forming the concave portion 2, the outer peripheral portion of the block on the side of the concave portion 2 constitutes a thick annular surrounding portion 4 that mechanically holds the peripheral portion of the ultra-thin plate-like vibrating portion 3. A conductive film 5 is attached to the entire surface of the concave side of the piezoelectric plate having the above-described structure, including the inner wall thereof, and a partial electrode 6 and an electrode lead 7 extending from this are attached to the surface of the vibrating part 3 on the opposite side. If it is deposited using a method such as vacuum evaporation, a piezoelectric resonator with an extremely high resonance frequency can be obtained.

圧電素板の凹陥内壁を含む全面に導体膜5を付着する主
な理由は単に製造の容易性と歩留り向上の為であるが、
圧電基板1の一面を全面電極5としてその対向面に付す
る電極を部分電極6とし、該部分電極から延びる電極リ
ード部7の幅員(断面積)をオーミック・ロス(電極抵
抗)が問題とならない程度に充分大きな値とすると、前
記した真の電極による共振の共振点近傍に前記電極リー
ド部を疑似電極とする共振が発生しこれがレベルの大き
なスプリアスになると云う欠陥があった。
The main reason for attaching the conductor film 5 to the entire surface of the piezoelectric plate, including the inner wall of the recess, is simply to facilitate manufacturing and improve yield.
One surface of the piezoelectric substrate 1 is used as a full-surface electrode 5, and the electrode attached to the opposite surface is a partial electrode 6, and the width (cross-sectional area) of the electrode lead portion 7 extending from the partial electrode is determined so that ohmic loss (electrode resistance) does not become a problem. If the value is set to a sufficiently large value, resonance occurs near the resonance point of the above-mentioned resonance caused by the real electrode, with the electrode lead portion serving as a pseudo electrode, and this has the disadvantage that it becomes a high-level spurious.

(発明の目的) 本発明は超薄板圧電共振子における上述した如き欠陥を
除去すべくなされたものであって、水晶等の圧電ブロッ
ク表面に形成した凹陥部底面を超薄板状の圧電振動部と
し該凹陥側表面に全面1F極を付した圧電共振子におい
て前記全面電極と対向する部分電極から延びる電極リー
ド部の幅員がオーミック・ロスを避けるべく充分広いも
のである場合、該部を疑似電極として発生するスプリア
スを阻止し得る超薄板圧電共振子の電極リード構造を提
供せんとするものである。
(Object of the Invention) The present invention has been made to eliminate the above-mentioned defects in an ultra-thin piezoelectric resonator, and the present invention is aimed at eliminating the above-mentioned defects in an ultra-thin piezoelectric resonator. In a piezoelectric resonator having a 1F pole on the entire surface of the concave side, if the width of the electrode lead extending from the partial electrode facing the entire surface electrode is sufficiently wide to avoid ohmic loss, the portion may be simulated. It is an object of the present invention to provide an electrode lead structure for an ultra-thin piezoelectric resonator that can prevent spurious waves generated as electrodes.

(発明の概要) 上述の目的を達成するため本発明に係る共振子は、超薄
肉の振動部の一面に形成する電極から伸びる電極リード
パターンのうち薄肉の振動部表面に付着する部分を幅の
狭い複数本の電極リードパターンにて構成する。
(Summary of the Invention) In order to achieve the above-mentioned object, the resonator according to the present invention has a width of a portion of the electrode lead pattern extending from the electrode formed on one surface of the ultra-thin vibrating portion, which is attached to the surface of the thin-walled vibrating portion. Consists of multiple narrow electrode lead patterns.

(発明の実施例) 以下、添付図面に示した好適な実施例に基づいて本発明
の詳細な説明する。
(Embodiments of the Invention) Hereinafter, the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.

実施例の説明に先立って、本発明の理解を助ける為本発
明の基礎となる超薄板圧電共振子が何故にその凹陥部に
全面電極を、その対向面側に部分電極を設ける如き電極
構成を採用するかについて少しく解説する。
Before explaining the embodiments, in order to help understand the present invention, we will explain why the ultra-thin plate piezoelectric resonator, which is the basis of the present invention, has an electrode structure in which a full-surface electrode is provided in the recessed part and a partial electrode is provided on the opposite surface. Let me explain a little bit about whether to adopt .

第1に真空蒸着技術の観点から前述した如き圧電基板凹
陥側振動部に部分W極を、又該電極から前記凹陥の内側
壁及び段差を越λて幅の狭い電極リードを延長すること
は、圧電基板を水平面に対し傾けて蒸着を行なう等の面
倒な手法を用いればとも角、極めて困難であって電極り
一″ドの導通確保に不安がある為該面を全面電極とし、
いずれかの部分で必ず導通を確保し得るようにしたもの
である。
First, from the viewpoint of vacuum evaporation technology, it is possible to extend a partial W pole to the vibrating part on the side of the piezoelectric substrate recess as described above, and to extend a narrow electrode lead from the electrode beyond the inner wall and step of the recess. It would be extremely difficult to perform vapor deposition by tilting the piezoelectric substrate with respect to the horizontal plane, but it would be extremely difficult to ensure continuity between the electrodes.
This ensures continuity at any part.

第2に斯かるタイプの共振子は元来デバイスの超小型化
を目的とし、圧電基板の平面サイズは例えば3mmX3
mm以下としたい。然りとすれば一枚の圧電ウェハー上
にバッチ処理で一挙に多数のチップを形成し、最後にこ
れを個々のチップに切断する製法を採用する。この場合
、上述したタイプの電極構成を採用すれば、ウェハーの
一面には単に導体膜の全面蒸着を行なえば足り、フォト
マスク或はフォトリングラフ用マスクの微妙な位1合わ
せを要しないので、生産効率、歩留りを向上し、コスト
を低減することができる。
Second, this type of resonator was originally intended for ultra-miniaturization of devices, and the planar size of the piezoelectric substrate was, for example, 3 mm x 3 mm.
I want it to be less than mm. If this is the case, a manufacturing method will be adopted in which a large number of chips are formed all at once on a single piezoelectric wafer by batch processing, and then the chips are finally cut into individual chips. In this case, if the above-mentioned type of electrode configuration is adopted, it is sufficient to simply deposit a conductor film on the entire surface of the wafer, and delicate alignment of a photomask or photoringraph mask is not required. Production efficiency and yield can be improved and costs can be reduced.

以上の如き理由により、本願発明者によって従来から研
究されていた超薄板圧電共振子は凹陥側表面に全面電極
を付着することを基本とするものであることに留意され
たい。
For the reasons mentioned above, it should be noted that the ultra-thin plate piezoelectric resonators that have been studied by the inventors of the present invention are based on the fact that electrodes are attached all over the surface of the concave side.

しかしながら、上述した如き全面電極と対向する部分電
極の電極リード部に充分大きな断面積を与え腋部のオー
ミック・ロスの増大を防止せんとすれば、前記部分電極
6自体が極めて小サイズであることから第5図に示す如
く超薄肉の振動部3表■上の電極リード部7bの幅員は
部分1f極6のそれと同等程度となり、その結果超薄肉
の振動部3を隔てて対面する全面電極と1i極り−ド部
7bとが疑似1it極として機能し真の電極6による共
振の共振点近傍に前記電極リード部の共振によるレベル
の大きなスプリアスが生ずるという欠陥のあること前述
の通りである。
However, in order to prevent an increase in ohmic loss in the armpit by giving a sufficiently large cross-sectional area to the electrode lead portion of the partial electrode that faces the entire surface electrode as described above, the size of the partial electrode 6 itself must be extremely small. As shown in FIG. 5, the width of the electrode lead part 7b on the ultra-thin vibrating part 3 is about the same as that of the part 1f pole 6, and as a result, the entire surface facing the ultra-thin vibrating part 3 is As mentioned above, there is a defect in that the electrode and the 1i pole part 7b function as a pseudo 1it pole, and a high-level spurious is generated near the resonance point of the real electrode 6 due to the resonance of the electrode lead part. be.

この問題を解決するため、本発明に係る超薄板圧電共振
子は以下の如きt極構造をとる。
In order to solve this problem, the ultra-thin plate piezoelectric resonator according to the present invention has the following t-pole structure.

第1図は本発明の基本的構成を示す平面図であって、超
薄板圧電ブロック1の凹陥2側表面に形成した全面電極
と対向する面上の部分電極6より延びる電極リードの前
記超薄肉の振動部3表面に位置する部分を幅員の小さな
複数の電極リードパターン7c、7c、  ・・・にて
構成し、各’4 Nリードパターン7c断面の合計がオ
ーミック・ロスの増大を防止するに充分な値となるよう
構成したものである。
FIG. 1 is a plan view showing the basic configuration of the present invention, in which the electrode lead extends from the partial electrode 6 on the surface facing the recess 2 side surface of the ultra-thin piezoelectric block 1, and The part located on the surface of the thin vibrating part 3 is composed of a plurality of small-width electrode lead patterns 7c, 7c, ..., and the total cross section of each '4N lead pattern 7c prevents an increase in ohmic loss. The structure is such that it has a sufficient value.

斯(することによって全面電極とこれら細分された電極
リードパターンとの間で発生するスプリアスは真の電極
による共振の共振点から少なからず離隔した点に出現す
ると共にそのレベルも小さく、共振子の緒特性に格別の
障害を与えることがない。
As a result, the spurious generated between the entire surface electrode and these subdivided electrode lead patterns appears at a point quite far away from the resonance point of the real electrode, and its level is small, and the It does not cause any particular damage to the characteristics.

尚、本実施例においては、部分電極6から圧電ブロック
1外周縁のバッド7aに向けて3本の電極リードパター
ン7Cを簾状に延長形成した構成をとっているが、これ
は−例に過ぎず、電極リードパターン7cは2本以上で
あれば良い。また各電極リードパターン同志は互いに平
行である必要はない。
In this embodiment, three electrode lead patterns 7C are extended in a blind shape from the partial electrode 6 toward the pad 7a on the outer periphery of the piezoelectric block 1, but this is merely an example. First, the number of electrode lead patterns 7c may be two or more. Further, the electrode lead patterns do not need to be parallel to each other.

パッド7aは、厚肉の環状囲繞部4上に位置し振動部3
の共振に関与しない(共振したとしても共振周波数が振
動部のそれよりも著しく低い)部分であるため、そのf
積を任意に設定することができる。
The pad 7a is located on the thick annular surrounding portion 4 and is attached to the vibrating portion 3.
Since it is a part that does not participate in resonance (even if it resonates, the resonance frequency is significantly lower than that of the vibrating part), its f
The product can be set arbitrarily.

なお、上述した如き圧電共振子は第2図に示す如くその
凹陥2側を例えばセラミクスを焼結した皿型パッケージ
8中にその内底面に設けた導体膜10に対面する如く収
納し、前記凹陥2側全面電極5を環状囲繞部4−縁表面
において前記導体膜10と導電性接着剤11で接着固定
すると共に前記導体g10を介してパッケージの外部リ
ード端子12と接続する。一方、部分電極6から延びる
電極リード7の幅広NI 7 aは、これをパッケージ
外壁のリード端子13と接続しているパッケージ8内壁
段差部に設けた導体パッド14とボンディングワイヤ1
5にて接続するのに好都合である。
As shown in FIG. 2, the piezoelectric resonator as described above is housed in a dish-shaped package 8 made of sintered ceramics, for example, with its concave 2 side facing the conductor film 10 provided on its inner bottom surface. The second side full surface electrode 5 is adhesively fixed to the conductive film 10 on the edge surface of the annular surrounding portion 4 with a conductive adhesive 11, and is connected to the external lead terminal 12 of the package via the conductor g10. On the other hand, the wide NI 7 a of the electrode lead 7 extending from the partial electrode 6 connects it to the lead terminal 13 on the outer wall of the package and the conductor pad 14 provided on the stepped part of the inner wall of the package 8 and the bonding wire 1 .
It is convenient to connect at 5.

以上、本発明を圧電振動子に適用した場合について説明
したが、本発明は超薄板多重モードフィルタにも同様に
適用可能である。多重モードフィルタのうち最も多用さ
れている2重モード圧電フィルタは周知の如く圧電基板
の一主面(この場合は凹陥2側)の全面電極をアース電
極とし、その対向面に分割近接電極を設け、これら画電
極に交番電界を印加して、両電極間に音響結合を生ぜし
め、その結果励起する共振周波数の相異なる2つの振動
モードを利用してバンドパスフィルタを構成するもので
ある。
Although the present invention has been described above in the case where it is applied to a piezoelectric vibrator, the present invention can be similarly applied to an ultra-thin multi-mode filter. As is well known, the dual-mode piezoelectric filter, which is the most widely used of the multi-mode filters, has a ground electrode on the entire surface of one main surface of the piezoelectric substrate (in this case, the recess 2 side), and a divided adjacent electrode on the opposite surface. , an alternating electric field is applied to these picture electrodes to create acoustic coupling between the two electrodes, and as a result, two vibration modes with different resonance frequencies are excited to form a bandpass filter.

このようなフィルタ素子に於いても前記両分側電極から
夫々延びる電極リードのオーミック・ロスが大であれば
フィルタの挿入損失の増大を招くことは自明ではあるが
、反対に電極リードの幅員を大ならしめれば腋部の共振
に起因するスプリアスがフィルタ通過域近傍に発生し所
望の阻止域減衰量が得られないという問題を生ずる。従
って、第3図に示す如く分割電極16.16から引出す
リードの内前記振動部3表面に付する部分17.17を
複数の細い電極リードパターン17cにて構成すればよ
い。
It is obvious that in such a filter element, if the ohmic loss of the electrode leads extending from the electrodes on both sides is large, the insertion loss of the filter will increase. If it is made too large, a problem arises in that spurious noise due to armpit resonance occurs near the filter passband, making it impossible to obtain the desired stopband attenuation. Therefore, as shown in FIG. 3, the portion 17.17 of the lead drawn out from the divided electrode 16.16, which is attached to the surface of the vibrating section 3, may be composed of a plurality of thin electrode lead patterns 17c.

斯くすることによって数10乃至100MHzの共振周
波数を基本波振動によって得る振動子或はこの周波数を
ほぼ中心周波数とするフィルタ素子を超小型に形成し、
しかもスプリアスの低減を図ることができる。
In this way, a vibrator that obtains a resonant frequency of several tens to 100 MHz through fundamental wave vibration or a filter element having approximately this frequency as its center frequency is formed into an ultra-compact size.
Furthermore, spurious components can be reduced.

(発明の効果) 本発明は以上説明した如く構成するものであるから、部
分電極を形成する為の蒸着マスク或はフォトマスクの形
状をわずかに変更するのみでスプリアスの極めて少ない
或はスプリアスが存在するとしても振動子の共振点又は
フィルタの通過域から少なからずはずれた位置に出現せ
しめることが可能となるので製造の容易な片面全面電極
を有する超薄板圧電共振子の等価抵抗を増大することな
(そのスプリアス特性を維持する上で著しい効果がある
(Effects of the Invention) Since the present invention is constructed as described above, by only slightly changing the shape of the vapor deposition mask or photomask for forming the partial electrode, spurious signals can be minimized or even present. Even if the ultra-thin plate piezoelectric resonator has an electrode on one side, which is easy to manufacture, the equivalent resistance can be increased because it can be made to appear at a position quite far from the resonance point of the vibrator or the passband of the filter. (It has a remarkable effect on maintaining its spurious characteristics.)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る超薄板圧電共振子の電極リードの
構造の一例を示す平面図、第2図は本発明に係る圧電共
振子のパッケージ手法の一例を示す断面図、第3図は本
発明を適用した超薄板多重モードフィルタ素子の実施例
を示す平面図、第4図(a)及び(b)は夫々従来から
研究されていた超薄板圧電共振子の構造を示す斜視図及
びそのX−X断面図、第5図は1f極と同じ幅を有した
電極リードを示す平面図である。 1・・・超薄板圧電ブロック 2・・・凹陥3・・・振
動部 4・・・環状囲繞部 5・・・全面電極 6・・
・部分電極 7・・・電極り−ド 7a・・・幅広部 
7b・・・狭幅部7C・・・細幅の電極リードパターン 特許出願人 東洋通信機株式会社
FIG. 1 is a plan view showing an example of the structure of the electrode lead of the ultra-thin piezoelectric resonator according to the present invention, FIG. 2 is a cross-sectional view showing an example of the piezoelectric resonator packaging method according to the present invention, and FIG. 4(a) and 4(b) are perspective views showing the structure of ultra-thin piezoelectric resonators that have been studied in the past, respectively. The figure, its XX sectional view, and FIG. 5 are plan views showing electrode leads having the same width as the 1f pole. 1...Ultra-thin piezoelectric block 2...Concavity 3...Vibrating part 4...Annular surrounding part 5...Full surface electrode 6...
・Partial electrode 7... Electrode electrode 7a... Wide part
7b...Narrow width part 7C...Narrow electrode lead pattern patent applicant Toyo Tsushinki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)超薄肉の振動部と、該振動部周縁を支持する厚肉
の環状囲繞部とを一体成形した圧電共振子素板の一主面
には全面電極を、その対向面には部分電極及びこれから
素板端縁に延びる電極リードを設け、該電極リードを2
本以上の細幅リードパターンにて構成したことを特徴と
する超薄板圧電共振子の電極リード構造。
(1) A piezoelectric resonator element that is integrally formed with an ultra-thin vibrating part and a thick-walled annular surrounding part that supports the periphery of the vibrating part has a full-surface electrode on one main surface, and a partial electrode on the opposite surface. An electrode and an electrode lead extending from it to the edge of the blank are provided, and the electrode lead is
An electrode lead structure for an ultra-thin piezoelectric resonator characterized by being composed of a lead pattern as narrow as a book or more.
JP23504190A 1990-05-25 1990-09-05 Electrode lead structure for ultra thin plate piezoelectric resonator Pending JPH04115706A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP23504190A JPH04115706A (en) 1990-09-05 1990-09-05 Electrode lead structure for ultra thin plate piezoelectric resonator
US07/809,512 US5235240A (en) 1990-05-25 1991-05-09 Electrodes and their lead structures of an ultrathin piezoelectric resonator
EP91908864A EP0484545B1 (en) 1990-05-25 1991-05-09 Structure of electrode and lead thereof of ultra thin plate piezoelectric resonator
PCT/JP1991/000615 WO1991019351A1 (en) 1990-05-25 1991-05-09 Structure of electrode and lead thereof of ultra thin plate piezoelectric resonator
DE69124339T DE69124339T2 (en) 1990-05-25 1991-05-09 ELECTRODE AND ELECTRODE LINE STRUCTURE OF A PIEZOELECTRIC RESONATOR MADE OF AN ULTRA-THIN LAYER
KR1019910700781A KR920702898A (en) 1990-05-25 1991-07-25 Electrode and electrode lead structure of ultra-thin piezoelectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23504190A JPH04115706A (en) 1990-09-05 1990-09-05 Electrode lead structure for ultra thin plate piezoelectric resonator

Publications (1)

Publication Number Publication Date
JPH04115706A true JPH04115706A (en) 1992-04-16

Family

ID=16980208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23504190A Pending JPH04115706A (en) 1990-05-25 1990-09-05 Electrode lead structure for ultra thin plate piezoelectric resonator

Country Status (1)

Country Link
JP (1) JPH04115706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898348A (en) * 1997-05-19 1999-04-27 Murata Manufacturing Co., Ltd. Piezoelectric resonator having specific lead line arrangements and method of manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898348A (en) * 1997-05-19 1999-04-27 Murata Manufacturing Co., Ltd. Piezoelectric resonator having specific lead line arrangements and method of manufacturing same

Similar Documents

Publication Publication Date Title
US6914368B2 (en) Piezoelectric resonator, and piezoelectric filter, duplexer, and communication apparatus, all including same
US5235240A (en) Electrodes and their lead structures of an ultrathin piezoelectric resonator
JP3229336B2 (en) Acoustic piezoelectric crystals with micromachined surfaces
EP0483358B1 (en) Ultra thin quartz crystal filter element of multiple mode
JP2011160094A (en) Piezoelectric vibration chip
US20050146242A1 (en) Electronic component and filter including the same
JP2022072241A (en) Acoustic wave device and communication module
JP3102869B2 (en) Structure of ultra-thin piezoelectric resonator
JP4196641B2 (en) Ultra-thin piezoelectric device and manufacturing method thereof
KR100301716B1 (en) Piezoelectric resonator, method for adjusting frequency of piezoelectric resonator and communication apparatus including piezoelectric resonator
JP3068140B2 (en) Piezoelectric thin film resonator
JPS61218215A (en) Piezoelectric thin film resonator
JPH04115706A (en) Electrode lead structure for ultra thin plate piezoelectric resonator
JP2001257560A (en) Electrode structure for ultra-thin board piezoelectric vibration element
JP3102872B2 (en) Ultra-thin piezoelectric vibrator
US20030141945A1 (en) Three-terminal filter using area flexural vibration mode
JP2002368571A (en) Piezoelectric vibrator and filter using the same
JPH04115707A (en) Electrode lead structure for ultra thin plate piezoelectric resonator
JPH0435105A (en) Electrode structure for ultra thin plate piezoelectric resonator
JP2023042421A (en) Crystal oscillating plate and crystal oscillating device
JP2022151106A (en) Piezoelectric diaphragm and piezoelectric vibration device
JP2023042422A (en) Crystal oscillating plate and crystal oscillating device
JP2003060480A (en) Ultra-thin plate type at-cut quartz resonance element
CN114826192A (en) Three-dimensional integrated MEMS oscillator
JP2022183454A (en) Acoustic wave device