JPH0461337A - Manufacture of tantalum oxide film - Google Patents

Manufacture of tantalum oxide film

Info

Publication number
JPH0461337A
JPH0461337A JP17345990A JP17345990A JPH0461337A JP H0461337 A JPH0461337 A JP H0461337A JP 17345990 A JP17345990 A JP 17345990A JP 17345990 A JP17345990 A JP 17345990A JP H0461337 A JPH0461337 A JP H0461337A
Authority
JP
Japan
Prior art keywords
tantalum oxide
film
oxygen
sputtering
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17345990A
Other languages
Japanese (ja)
Inventor
Takeshi Kamata
健 鎌田
Masatoshi Kitagawa
雅俊 北川
Munehiro Shibuya
宗裕 澁谷
Shigenori Hayashi
重徳 林
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17345990A priority Critical patent/JPH0461337A/en
Publication of JPH0461337A publication Critical patent/JPH0461337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To see that it is excellent in step coverage, minute, high in dielectric constant, low in leak current, and high in dielectric strength, and that the capacitor part is small by forming a tantalum oxide film in the oxygen atmosphere or in the mixed gas atmosphere of oxygen and rare gas at specific pressure in vacuum degree when forming said tantalum oxide film by sputtering method. CONSTITUTION:When forming a tantalum oxide film by sputtering method, this film is formed in the oxygen atmosphere at the pressure of 10Pa or more and 80Pa or less in vacuum degree. A 50-nm Ta2O5 film is deposited on a (100)- oriented single-crystal silicon substrate by high-frequency magnetron sputtering with a 6''phiX5mmt target 2 of 99.99% tantalum in oxygen gas atmosphere. The sputtering conditions are oxygen gas pressure of 20Pa, high frequency power of 300W, sputtering time of 1.5 hours, and substrate temperature of 250 deg.C.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(よ エレクトロニクス用素子に応用される高誘
電率材料である酸化タンタル薄膜の製造方法に関すム 従来の技術 DRAM等のVLSIの集積度の増大にともな(\ 容
量(キャパシタ)部の占有する面積は無視できなくなっ
てきていも その占有面積の低減化のた数 単位面積当
りの静電容量が高く、すなわち比誘電率が高く、しかも
リーク電流が小さく、絶縁耐圧の高い薄膜材料の必要性
が高まっていも酸化タンタル(Ta20s)は約25と
高い比誘電率を有し 比誘電率が約4の酸化シリコン(
SiO2)や同じく約7の窒化シリコン(Si3tJ4
)にかわるキャパシタ絶縁膜材料として最近注目されて
いも酸化タンタルの薄膜形成方法としては スパッタリ
ング法等で形成したタンクル(Ta)膜を高温の酸素雰
囲気下で熱酸化する方法や同様のTa膜を電気化学的に
陽極酸化する方法があり、また直接酸化タンタル薄膜を
形成する方法として、ターゲットに金属TaまたはTa
205の焼結体を用いたスパッタリングL  Ta(O
C2Hs ) s等を原料ガスに用いた減圧CVD法等
があム 発明が解決しようとする課題 このような従来の酸化タンタル薄膜の製造方法で(よ 
スパッタリング法等で形成するTa膜は通常多結晶膜で
これを熱酸化して形成した酸化タンタル膜は凹凸の多い
非晶質膜力\ 粒界の存在する多結晶膜となム このた
敢 絶縁耐圧が低く、リーク電流が大きしも 陽極酸化による方法では 電解液中の負イオンなどの不
純物の膜中への混入が避けられず、 リーク電流が太き
(−また不均一な膜形成となる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing tantalum oxide thin film, which is a high dielectric constant material applied to electronic devices.Conventional technologyIncrease in the degree of integration of VLSI such as DRAM As a result, the area occupied by the capacitor has become impossible to ignore, but the number of ways to reduce the area occupied by the capacitor is that it has a high capacitance per unit area, that is, a high dielectric constant, and a leakage current. Although the need for thin film materials with small dielectric constant and high dielectric strength is increasing, tantalum oxide (Ta20s) has a high dielectric constant of about 25, and silicon oxide (with a dielectric constant of about 4) is growing.
SiO2) and silicon nitride (Si3tJ4
Although tantalum oxide has recently been attracting attention as an alternative capacitor insulating film material, there are two methods for forming tantalum oxide thin films: thermally oxidizing a tantalum (Ta) film formed by sputtering in a high-temperature oxygen atmosphere, and electrically oxidizing a similar Ta film. There is a method of chemical anodic oxidation, and a method of directly forming tantalum oxide thin film using metal Ta or Ta as a target.
Sputtering L Ta(O
The problem that the invention aims to solve is the low-pressure CVD method using C2Hs) s etc. as a raw material gas.
The Ta film formed by sputtering method is usually a polycrystalline film, and the tantalum oxide film formed by thermal oxidation is an amorphous film with many irregularities. Although the withstand voltage is low and the leakage current is large, the method using anodic oxidation cannot avoid the incorporation of impurities such as negative ions in the electrolyte into the film, resulting in a large leakage current (and non-uniform film formation). .

減圧CVD法においては 段差被覆性(ステップカバレ
ジ)がよく、高集積化が進むVLSIへの適用には魅力
的な方法である力(原料ガスがC(炭素)を含んだ有機
物であるたム 形成膜中に不純物として混入し それが
原因で一般に絶縁耐圧は低しも 一人 スパッタリング法により直接形成されるTaaO
s膜は緻密で絶縁耐圧が高い等の優れた特性を有するも
のへ 通常IPa以下のガス圧領域で膜形成が行われる
た取 ステップカバレジの良好性に欠けていた 本発明は上記課題を解決するものでステップカバレジが
良好で、緻密で、比誘電率が高く、リーク電流が低く、
絶縁耐圧の高い酸化タンタル薄膜を提供することを目的
としている。
The low-pressure CVD method has good step coverage and is an attractive method for application to VLSI, which is becoming increasingly highly integrated. TaaO is mixed into the film as an impurity, and as a result, the dielectric strength is generally low. TaaO is formed directly by sputtering.
S films have excellent properties such as being dense and having a high dielectric strength.The present invention solves the above problems, where film formation is usually performed in a gas pressure region of IPa or less, which lacks good step coverage. It has good step coverage, is dense, has a high dielectric constant, and has low leakage current.
The aim is to provide a tantalum oxide thin film with high dielectric strength.

課題を解決するための手段 本発明は上記目的を達成するために スパッタリング法
により酸化タンタル薄膜を形成するに際し 真空度が1
0Pa以上80Pa以下の圧力の酸素雰囲気中または酸
素および希ガスの混合ガス雰囲気中にて膜形成するもの
である。
Means for Solving the Problems In order to achieve the above object, the present invention provides a method for forming a tantalum oxide thin film by a sputtering method when the degree of vacuum is 1.
The film is formed in an oxygen atmosphere at a pressure of 0 Pa or more and 80 Pa or less, or in a mixed gas atmosphere of oxygen and a rare gas.

作用 本発明は上記した構成により、スパッタリングガスとし
て酸素または酸素と希ガスの混合ガスを用し\ 真空度
10Pa以上80Pa以下という低真空領域にてスパッ
タリング蒸着を行うので、蒸発分子の平均自由行程が小
さくなり、その結果膜の成長速度は遅くなるものへ ス
テップカバレジと緻密性が向上する。
Effect The present invention uses oxygen or a mixed gas of oxygen and a rare gas as the sputtering gas and performs sputtering deposition in a low vacuum region of 10 Pa or more and 80 Pa or less, so that the mean free path of the evaporated molecules is As a result, the growth rate of the film becomes slower. Step coverage and density are improved.

実施例 以下、本発明の第1の実施例について第1図、第2図お
よび第3図を用いて説明すも 第1図は本発明の酸化タンタル薄膜の製造に用いたスパ
ッタリング装置の概略断面図であ4Si単結晶(100
)面を基体(1)として用(\ 高周波マグネトロンス
パッタリング法により、ターゲット (2)として、6
″φX 5mmt純度99.99%の金属Taを用し\
 酸素ガス雰囲気でスパッタリング蒸着して、上記基体
(1)上に膜厚50nmのTa206被膜を付着させ九
 ここで(3)はシャツ久(4)はスパッタリングガス
導入n  (5)は真空F  (6)は基体電機 (7
)はターゲット電機 (8)は絶縁体であム この場合、酸素ガス圧力は20Pa、  高周波電力3
00W、スパッタリング時間1.5時肌 基体温度25
0℃であっ九 この時へ 酸化タンタル被膜の電気特性
(よ 比誘電率が21で、電界強度IM v/crn”
印加時のリーク電流は2.2 X 10−’A/Cm”
 と実用に供するものであった 第2図に酸素ガス圧力を変化させた場合の酸化タンタル
膜の成長速度の変化の様子を示す。酸素ガス圧力が大き
くなるほど膜の成長速度は遅くなも 第3図に酸素ガス圧20Pa、  高周波電力300W
の時の基体(1)の温度を変化させた場合の膜厚50n
mのTa2’s Mの比誘電率の変化の様子を示す。
EXAMPLE Hereinafter, a first example of the present invention will be explained using FIG. 1, FIG. 2, and FIG. The figure shows 4Si single crystal (100
) surface as the base (1) (\ By high frequency magnetron sputtering method, 6 as the target (2)
″φX 5mmt using Ta metal with purity of 99.99%\
A Ta206 film with a thickness of 50 nm is deposited on the substrate (1) by sputtering deposition in an oxygen gas atmosphere.9 Here, (3) is a vacuum (4) is a sputtering gas introduced (5) is a vacuum F (6 ) is the base electric machine (7
) is the target electric machine (8) is the insulator. In this case, the oxygen gas pressure is 20 Pa, and the high frequency power is 3
00W, sputtering time 1.5 hours Skin substrate temperature 25
At 0°C, the electrical properties of tantalum oxide film (relative permittivity is 21, electric field strength IM v/crn)
Leakage current when applied is 2.2 x 10-'A/Cm"
FIG. 2, which was used for practical purposes, shows how the growth rate of the tantalum oxide film changes when the oxygen gas pressure is changed. The growth rate of the film slows down as the oxygen gas pressure increases.
Film thickness 50n when changing the temperature of the substrate (1) at
Figure 3 shows the change in relative dielectric constant of Ta2's M.

次に 第2の実施例について同じく第1図と第4図およ
び第5図を用いて説明する。
Next, a second embodiment will be explained using FIGS. 1, 4, and 5.

Si単結晶(10’0)面を基体(1)として用し\ 
高周波マグネトロンスパッタリング法により、ターゲッ
ト (2)として、 6”φX 5mmt純度99.9
9%の金属Taを用しく 酸素およびアルゴン等の希ガ
スの混合ガス例えば02:Ar=1:  6の混合ガス
雰囲気中でスパッタリング蒸着して、上記基体(1)上
に膜厚50nmのTa206被膜を付着させ九この場合
、混合ガス圧力は20Pa、  高周波電力300 W
、  スパッタリング時間40分、基体(1)の温度2
00℃であっ九 この時へ 酸化タンタル被膜の比誘電
率は20で、電界強度I M V /crn2印加時の
リーク電流は3 、5 X 10−”A/cm”と実用
に供するものであっに 第84図に02:Ar=1:  6の場合の混合ガス圧
力を変化させた場合の酸化タンタル膜の成長速度の変化
の様子を示す。第2図と同様の変化の傾向を示す力(酸
素ガスのみの場合と違℃\ ガス圧領域全般にわたり、
膜成長速度の上昇がみられる。
Using the Si single crystal (10'0) plane as the substrate (1)\
By high frequency magnetron sputtering method, the target (2) is 6”φX 5mmt purity 99.9
A Ta206 film with a thickness of 50 nm is formed on the substrate (1) by sputtering and depositing 9% metallic Ta in a mixed gas atmosphere of oxygen and a rare gas such as argon, for example, 02:Ar=1:6. In this case, the mixed gas pressure is 20 Pa, and the high frequency power is 300 W.
, sputtering time 40 minutes, temperature of substrate (1) 2
At 00°C, the dielectric constant of the tantalum oxide film is 20, and the leakage current when applying an electric field strength of I M V /crn2 is 3.5 x 10-"A/cm", which is suitable for practical use. FIG. 84 shows how the growth rate of the tantalum oxide film changes when the mixed gas pressure is changed in the case of 02:Ar=1:6. The force shows the same tendency of change as shown in Figure 2 (different from the case of oxygen gas only)
An increase in film growth rate is observed.

第5図(よ 02:Ar=1+  6の混合ガス圧20
Pa、  高周波電力300Wの時の基体(1)の温度
を変化させた場合の膜厚50nmのTa205膜の比誘
電率の変化の様子を示したものである。酸素ガスのみの
場合の第3図と同様の傾向がみられ九第1、第2の実施
例ともにスパッタリングガス圧力の上昇にともなし\ 
ステップカバレジは良くなるものへ 膜成長速度が低下
し さらには100Pa以上の真空領域においては放電
しにくい状況となるた敢 10〜80Paの真空領域で
の膜形成が有効であることを本発明者らは確認し通発明
の効果 以上の実施例から明らかなように本発明によれば 真空
度が10Pa以上80Pa以下の圧力の酸素雰囲気中ま
たは酸素および希ガスの混合ガス雰囲気中で膜形成する
のて ステップカバレジが良好で、緻密で、比誘電率が
高く、リーク電流が低く、絶縁耐圧が高くて、キャパシ
タ部の小型化が可能で、VLSI等の集積度の向上に寄
与する酸化タンタル薄膜を提供できる。
Figure 5 (Y02: Ar=1+6 mixed gas pressure 20
This figure shows how the dielectric constant of a Ta205 film with a thickness of 50 nm changes when the temperature of the substrate (1) is changed when the high-frequency power is 300 W. A similar trend to that shown in Fig. 3 in the case of oxygen gas only was observed, and in both the first and second examples, as the sputtering gas pressure increased\
The step coverage will be improved.The film growth rate will decrease and furthermore, in the vacuum region of 100 Pa or more, it will be difficult to discharge. As is clear from the above examples, according to the present invention, it is possible to form a film in an oxygen atmosphere with a degree of vacuum of 10 Pa or more and 80 Pa or less, or in a mixed gas atmosphere of oxygen and a rare gas. Provides a tantalum oxide thin film that has good step coverage, is dense, has a high dielectric constant, low leakage current, high dielectric strength, allows for miniaturization of the capacitor part, and contributes to improving the degree of integration of VLSI etc. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の酸化タンタル薄膜の製造方
法を実施するために使用するスパッタリング装置の概略
断面医 第2図は本発明の酸化タンタル薄膜の製造方法
における酸素ガス圧と膜成長速度の関係を示す@ 第3
図は同酸化タンタル薄膜の製造方法において酸素ガスを
用いた場合の基体温度と比誘電率の関係を示す医 第4
図は本発明の他の酸化タンタル薄膜の製造方法における
酸素とアルゴンの混合ガス圧と膜成長速度の関係を示す
皿 第5図は同酸化タンタル薄膜の製造方法において酸
素とアルゴンの混合ガスを用いた場合の基体温度々比誘
電率の関係を示す図である。 1・・・基体 2・・・ターゲット、 4・・・スパッ
タリングガス導入は 5・・・真空権 6・・・基体電
機7・・・ターゲット電極 第 図 1艮 415、 ターゲット スハーノタリン7tス樽入口 l  γ摺 基 イネ t vL ターゲット電極 第2図 第 3 図 #       do       gOi!2隼力゛
ス圧[A] 基 体 を攬 [tコ
FIG. 1 is a schematic cross-sectional diagram of a sputtering apparatus used to carry out the method for producing a tantalum oxide thin film according to an embodiment of the present invention. FIG. 2 is a diagram showing oxygen gas pressure and film growth in the method for producing a tantalum oxide thin film according to the present invention. Showing the relationship of speed @ 3rd
The figure shows the relationship between the substrate temperature and relative dielectric constant when oxygen gas is used in the method for manufacturing the tantalum oxide thin film.
Figure 5 shows the relationship between the pressure of a mixed gas of oxygen and argon and the film growth rate in another method of manufacturing a tantalum oxide thin film according to the present invention. FIG. 3 is a diagram showing the relationship between substrate temperature and relative permittivity when the substrate temperature is high. 1...Substrate 2...Target 4...Sputtering gas introduction 5...Vacuum power 6...Base electric machine 7...Target electrode Figure 1 415, Target Suhanotarin 7t barrel Inlet l γ slide base Rice t vL Target electrode Figure 2 Figure 3 # do gOi! 2. Force pressure [A] Pick up the base [t

Claims (2)

【特許請求の範囲】[Claims] (1)スパッタリング法により酸化タンタル薄膜を形成
するに際し、真空度が10Pa以上80Pa以下の圧力
の酸素雰囲気中にて膜形成することを特徴とする酸化タ
ンタル薄膜の製造方法。
(1) A method for producing a tantalum oxide thin film, which comprises forming the tantalum oxide thin film by sputtering in an oxygen atmosphere with a degree of vacuum of 10 Pa or more and 80 Pa or less.
(2)スパッタリング法により酸化タンタル薄膜を形成
するに際し、真空度が10Pa以上80Pa以下の圧力
の酸素および希ガスの混合ガス雰囲気中にて膜形成する
ことを特徴とする酸化タンタル薄膜の製造方法。
(2) A method for producing a tantalum oxide thin film, which comprises forming the tantalum oxide thin film by a sputtering method in an atmosphere of a mixed gas of oxygen and rare gas at a vacuum degree of 10 Pa or more and 80 Pa or less.
JP17345990A 1990-06-29 1990-06-29 Manufacture of tantalum oxide film Pending JPH0461337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17345990A JPH0461337A (en) 1990-06-29 1990-06-29 Manufacture of tantalum oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17345990A JPH0461337A (en) 1990-06-29 1990-06-29 Manufacture of tantalum oxide film

Publications (1)

Publication Number Publication Date
JPH0461337A true JPH0461337A (en) 1992-02-27

Family

ID=15960868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17345990A Pending JPH0461337A (en) 1990-06-29 1990-06-29 Manufacture of tantalum oxide film

Country Status (1)

Country Link
JP (1) JPH0461337A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144057A (en) * 1990-07-24 2000-11-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device including a field effect transistor
US7335570B1 (en) 1990-07-24 2008-02-26 Semiconductor Energy Laboratory Co., Ltd. Method of forming insulating films, capacitances, and semiconductor devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144057A (en) * 1990-07-24 2000-11-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device including a field effect transistor
US7335570B1 (en) 1990-07-24 2008-02-26 Semiconductor Energy Laboratory Co., Ltd. Method of forming insulating films, capacitances, and semiconductor devices

Similar Documents

Publication Publication Date Title
US6309895B1 (en) Method for fabricating capacitor containing amorphous and polycrystalline ferroelectric films and method for forming amorphous ferroelectric film
US4364099A (en) Tantalum thin film capacitor
JPH05267567A (en) Formation of semiconductor film
JP2001077111A (en) Transistor structure of zirconium dielectric film doped with aluminum and its deposition method
JPH0673367B2 (en) Method for manufacturing semiconductor integrated circuit capacitor
US6855971B2 (en) Haze-free BST films
WO2010050292A1 (en) Processes for producing dielectric film and semiconductor device, dielectric film, and recording medium
US7008801B2 (en) Method of forming ferroelectric thin films on a high-k layer
Das et al. Evolution of microstructural and electrical properties of sputtered HfO2 ceramic thin films with RF power and substrate temperature
CN1755848A (en) Dielectric thin film, thin film capacitor element, and method for manufacturing thin film capacitor element
CN111525024A (en) Bismuth ferrite film material, method for integrally preparing bismuth ferrite film on silicon substrate at low temperature and application
KR20020002596A (en) Method for manufactruing capacitor in semiconductor memory device
JP2005340721A (en) Method of depositing dielectric film having high dielectric constant
KR100296156B1 (en) Method for making thin film tantalum oxide layers with enhanced dielectric properties and capacitors employing such layers
CN111321383B (en) Barium titanate film material with specific amorphous structure and preparation method thereof
JPH0461337A (en) Manufacture of tantalum oxide film
JP2001217240A (en) SUBSTANCE EQUIPPED WITH Zr-Ge-Ti-O OR Hf-Ge-Ti-O DIELECTRIC MATERIAL, AND ITS MANUFACTURING METHOD
JPH0218320B2 (en)
JPH0290568A (en) Manufacture of thin film transistor
KR100459018B1 (en) Single c-axis pgo thin film electrodes having good surface smoothness and uniformity and methods for making the same
JPH0243334B2 (en)
JPH09153598A (en) Dielectric thin film element and fabrication thereof
JP2003224123A (en) Method for fabricating manufacturing device
KR0150982B1 (en) Manufacture of semiconductor device
US20040209485A1 (en) Fabrication of pure and modified Ta2O5 thin film with enhanced properties for microwave communication, dynamic random access memory and integrated electronic applications