JPH0461043B2 - - Google Patents

Info

Publication number
JPH0461043B2
JPH0461043B2 JP26367086A JP26367086A JPH0461043B2 JP H0461043 B2 JPH0461043 B2 JP H0461043B2 JP 26367086 A JP26367086 A JP 26367086A JP 26367086 A JP26367086 A JP 26367086A JP H0461043 B2 JPH0461043 B2 JP H0461043B2
Authority
JP
Japan
Prior art keywords
zinc
oxide
steelmaking
stage
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26367086A
Other languages
Japanese (ja)
Other versions
JPS63117911A (en
Inventor
Yasuhiro Inazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61263670A priority Critical patent/JPS63117911A/en
Publication of JPS63117911A publication Critical patent/JPS63117911A/en
Publication of JPH0461043B2 publication Critical patent/JPH0461043B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、製鋼所で発生した製鋼煙塵から亜鉛
華を連続的に製造する方法に関する。 [従来の技術] 高炉、平炉、電気炉を用いて製鋼を行う製鋼所
においては、製鋼時に高炉、平炉、電気炉から多
量の製鋼煙塵が発生する。この製鋼煙塵は、従前
は大気に放散されていたが、近年の大気汚染防止
行政の強化に伴い集塵機の設置が義務づけられ、
現在その殆んど大部分が大気に放散されることな
く回収されている。回収された製鋼煙塵は、その
性状が微粒子で取扱いが困難であること、および
多種に亘る金属が大部分酸化物として含有されそ
れぞれの含有金属が低品位であること、さらに製
鋼所の副産品であるため組成の変動が大きく安定
した品質が得られないこと、等から、従来工業用
原料としては全くかえりみられなかつた。しか
し、近年、製鋼煙塵の上記物性及び含有重金属に
よる二次公害発生の怖れのあることから、之をそ
のまま廃棄するわけにはいかない。一方、製鋼煙
塵中には多量の亜鉛が含まれており、それを亜鉛
資源として再利用可能な点に着目し、製鋼煙塵か
ら、主として亜鉛、鉛、カドミウムの酸化物から
なる粉末状の粗酸化亜鉛を回収することが、本発
明者によつて1966年から企業化され、現今では日
本国内の電気炉から発生する製鋼煙塵の90%が有
効に処理されるに至つている。斯様にして製鋼煙
塵より生産された粗酸化亜鉛を原料として、電気
亜鉛地金、蒸留亜鉛地金、及び亜鉛華を生産する
ことが、数社で行われている。 従来の亜鉛華の製造方法は、亜鉛地金から生産
するフランス法、亜鉛鉱石や亜鉛ドロスから生産
するアメリカ法及び近年電熱炉を用いて製鋼煙塵
から生産する法があり、これらの方法に加えて、
先に本発明者が提案した(特公昭50−33994号)
ところの、三段の回転炉を用いて製鋼煙塵から亜
鉛華を製造する方法がある。しかし、いずれの方
法もその工程の複雑なことや、エネルギー消費が
大であることから、より効果的に製鋼煙塵から亜
鉛華を製造する方法が提供されることが望まれて
いる。 [発明が解決しようとする問題点] 亜鉛精製業界においては、如何に優れた方法で
あつても、それが工業的規模で実施されるか否か
は、採算性(経済性)に大きく左右される。技術
的にみれば、製鋼煙塵から亜鉛華を連続的に生成
するには、通常、いくつかの処理工程と大量の加
熱エネルギが必要となる。そして、如何に簡素な
プロセスにできるかおよび如何に使用エネルギが
少くて済むかが重要な要素となる。この観点から
みれば、従来の亜鉛華製造方法や、上記特公昭50
−33994号公報に示された方法は、3基の回転炉
を用いた3段階の処理工程の後初めて亜鉛華が得
られ、それぞれの回転炉に大きな加熱エネルギが
要求されるから、さらに簡素なプロセスでかつト
ータルの使用エネルギの少ない方法の出現が望ま
れていた。とくに、昨今の亜鉛市況の低迷から、
新規製造法の出現が切に望まれていた。 また、特公昭50−33994号公報に示された方法
では、上述のような観点から、処理の対象を亜鉛
含有率の高い平炉、電気炉からの製鋼煙塵に限つ
ており、含有亜鉛の品位が低くかつ含有率の低い
高炉からの製鋼煙塵はその対象とはしていなかつ
た。しかし、前述したように、製鋼煙塵をそのま
ま廃棄する場合、廃棄場所の確保が相当困難にな
つてきたこと、および廃棄方法によつては2次、
3次公害の発生源になるおそれがあることから、
高炉から発生する製鋼煙塵についても十分に効率
よく亜鉛回収処理することのできる方法の出現が
望まれていた。 本発明の目的は、上記のような要望に応えるべ
く、従来公知の方法よりもはるかに簡素なプロセ
スでかつ少ない使用エネルギでもつて、製鋼煙塵
から極めて効率よく亜鉛華を製造できる方法を提
供することにある。 また本発明のもう一つの目的は、上記の経済的
目的を達成しつつ、従来法よりもさらに高純度の
亜鉛華を得ることにある。 [問題点を解決するための手段] 上記目的を達成する本発明の製鋼煙塵よりの亜
鉛華製造方法は、次の方法から成る。すなわち、
製鋼時に発生した酸化鉄、酸化亜鉛、酸化鉛、酸
化カドミウム、塩化ナトリウムを含む製鋼煙塵
を、還元剤コークスを加えることなく単味で800
℃〜1100℃に加熱して空焼きすることにより、製
鋼煙塵中の酸化鉛、酸化カドミウム、塩化ナトリ
ウムを選択的に揮発させ、酸化亜鉛、酸化鉄が残
存する空焼焼鉱を生成し、 次に該空焼焼鉱を、
還元剤コークスと混合して900℃〜1100℃に加熱
することにより、空焼焼鉱中の酸化亜鉛を一旦還
元し金属亜鉛の蒸気として選択的に揮発させ、該
金属亜鉛の蒸気を炉中を流れる空気により再酸化
させて亜鉛華を生成することを特徴とする製鋼煙
塵よりの亜鉛華製造方法。 [作用] 上記方法における処理の対象となる製鋼煙塵
は、平炉、電気炉から発生するもの、高炉から発
生するものの両方である。平炉、電気炉から発生
する製鋼煙塵は、その原料鉄屑の等級品質や製鋼
法の違いから、若干の差異はあるが、その含有成
分および標準品位は概ね表−1の通りであり、発
生量は生産粗鋼毎屯当り1〜2%程度である。
[Industrial Application Field] The present invention relates to a method for continuously producing zinc white from steelmaking dust generated in a steelworks. [Prior Art] In steelmaking plants that manufacture steel using blast furnaces, open hearths, and electric furnaces, a large amount of steelmaking smoke dust is generated from the blast furnaces, open hearths, and electric furnaces during steelmaking. Previously, this steelmaking dust was released into the atmosphere, but with the recent strengthening of air pollution prevention administration, the installation of dust collectors has become mandatory.
Currently, most of it is collected without being released into the atmosphere. The recovered steelmaking smoke dust is difficult to handle because it is fine particles, contains a wide variety of metals mostly as oxides, and each of the contained metals is of low grade.Furthermore, it is a byproduct of steelmaking plants. Therefore, it has not been considered as an industrial raw material at all because of the large fluctuation in composition and the inability to obtain stable quality. However, in recent years, due to the above-mentioned physical properties of steelmaking dust and the risk of secondary pollution caused by the heavy metals it contains, it is no longer possible to dispose of it as is. On the other hand, steelmaking dust contains a large amount of zinc, and we focused on the fact that it can be reused as a zinc resource. Zinc recovery has been commercialized by the present inventor since 1966, and now 90% of the steelmaking dust generated from electric furnaces in Japan has been effectively treated. Several companies are producing electrolytic zinc ingots, distilled zinc ingots, and zinc white using crude zinc oxide produced from steelmaking dust as a raw material. Conventional methods for producing zinc white include the French method of producing from zinc ingots, the American method of producing from zinc ore or zinc dross, and the recent method of producing zinc white from steelmaking dust using an electric furnace.In addition to these methods, ,
Previously proposed by the present inventor (Special Publication No. 50-33994)
However, there is a method of producing zinc white from steelmaking dust using a three-stage rotary furnace. However, since both methods involve complicated processes and consume a large amount of energy, it is desired to provide a method for producing zinc white from steelmaking dust more effectively. [Problems to be solved by the invention] In the zinc refining industry, no matter how excellent a method is, whether or not it can be implemented on an industrial scale is largely influenced by profitability (economic efficiency). Ru. Technically, the continuous production of zinc white from steelmaking dust typically requires several processing steps and large amounts of heating energy. The important factors are how simple the process can be and how little energy can be used. From this point of view, the conventional zinc white production method and the above-mentioned
The method shown in Publication No. 33994 is simpler because zinc white is obtained only after a three-step treatment process using three rotary furnaces, and each rotary furnace requires a large amount of heating energy. There has been a desire for a process that uses less energy in total. In particular, due to the recent slump in the zinc market,
The emergence of a new manufacturing method was eagerly awaited. In addition, in the method disclosed in Japanese Patent Publication No. 50-33994, from the above-mentioned viewpoint, the target of treatment is limited to steelmaking smoke dust from open hearth furnaces and electric furnaces, which have a high zinc content, and the quality of the zinc contained is Steelmaking dust from blast furnaces, which has a low content, was not targeted. However, as mentioned above, when disposing of steelmaking dust as it is, it has become quite difficult to secure a disposal site, and depending on the disposal method, secondary
Because there is a risk of becoming a source of tertiary pollution,
It has been desired to develop a method that can sufficiently efficiently recover zinc from steelmaking dust generated from blast furnaces. In order to meet the above-mentioned demands, an object of the present invention is to provide a method that can produce zinc white from steelmaking dust extremely efficiently, using a much simpler process and using less energy than conventionally known methods. It is in. Another object of the present invention is to obtain zinc white with higher purity than conventional methods while achieving the above-mentioned economical objectives. [Means for Solving the Problems] The method for producing zinc white from steelmaking smoke dust of the present invention, which achieves the above object, comprises the following method. That is,
Steelmaking smoke dust containing iron oxide, zinc oxide, lead oxide, cadmium oxide, and sodium chloride generated during steelmaking can be reduced to 800% without adding coke as a reducing agent.
By heating to 1100°C and dry firing, lead oxide, cadmium oxide, and sodium chloride in the steelmaking dust are selectively volatilized, producing dry fired ore in which zinc oxide and iron oxide remain. the air-fired ore,
By mixing it with reducing agent coke and heating it to 900℃ to 1100℃, the zinc oxide in the air-fired ore is once reduced and selectively volatilized as metal zinc vapor, and the metal zinc vapor is passed through the furnace. A method for producing zinc white from steelmaking smoke dust, which is characterized by generating zinc white by reoxidizing it with flowing air. [Operation] The steelmaking smoke dust to be treated in the above method includes both those generated from open hearth furnaces, electric furnaces, and blast furnaces. Although there are slight differences in steelmaking smoke dust generated from open hearth furnaces and electric furnaces due to the grade quality of raw iron scrap and differences in steelmaking methods, the contained components and standard grades are generally shown in Table 1, and the amount generated is is about 1 to 2% per ton of crude steel produced.

【表】【table】

【表】 現在、運搬上の便宜から、製鋼煙塵は発生工場
で2〜5mm径の粒状ペレツト化されているので、
4〜7%の水分を含有している。 また、高炉から発生する製鋼煙塵は、現状では
亜鉛含有率が低いことから亜鉛華製造のための原
料としては使用されていないが、以下に述べる如
く本発明方法による高効率の亜鉛華製造により、
今後は十分に本発明の処理対象となり得る。高炉
から発生する製鋼煙塵の標準品位は、概ね表−2
に示す通りである。
[Table] Currently, for convenience of transportation, steelmaking dust is turned into granular pellets with a diameter of 2 to 5 mm at the generating factory.
Contains 4-7% water. In addition, steelmaking smoke dust generated from blast furnaces is currently not used as a raw material for producing zinc white due to its low zinc content; however, as described below, with the highly efficient production of zinc white by the method of the present invention,
In the future, it can be fully treated by the present invention. The standard grade of steelmaking dust generated from blast furnaces is approximately Table 2.
As shown.

【表】【table】

【表】 本発明においては、上記のような製鋼煙塵が、
まず添加物に加えることなく、常圧にて800℃〜
1100℃に加熱され、該温度下で空焼きされる、空
焼き時間は約30分〜90分程度が適当である。空焼
きは、第1段加熱炉の一端側から製鋼煙塵が投入
され、該第1段加熱炉内を製鋼煙塵が他端側へと
移送される間に、行われる。この第1段加熱炉お
よび後述の第2段加熱炉としては、回転炉(ロー
タリキルン)が此ましく、とくに少し傾斜させた
回転炉が好ましい。このような回転炉を用いるこ
とにより、一端側から投入された製鋼煙塵は、炉
の回転に伴ない自然に他端側へと移送される。通
常一般にはバツチ式の炉が用いられるが、上記の
ような回転炉により連続的な処理が可能になる。
この空焼きにおいては、製鋼煙塵中の鉛、カドミ
ウム、塩素等が選択的に揮発され、該揮発物は加
熱雰囲気下で大部分が酸化鉛となり、一部が塩化
鉛、酸化カドミウム、塩化カドミウム、食塩
(NaCl)となつて、第1段加熱炉に接続された第
1段回収装置に補集されて回収される。製鋼煙塵
中に含有されていた亜鉛、鉄は、揮発することな
く残存し、空焼鉱として第1段加熱炉の他端側か
ら取り出され、後述の第2段処理の原料とされ
る。 上記空焼き中の揮発において、鉛、カドミウ
ム、塩素が選択的に揮発され、亜鉛、鉄が残存す
るのは次のような理由によるものと考えられる。
製鋼煙塵中の塩素は、その大部分が他の塩化物を
作らずNaClの形で残存していることが本発明者
による調査で判明しており、このNaClの一部と、
製鋼煙塵中に酸化物として含有されているPbO、
CdOとが、塩化物を生成する反応を呈し、該反応
が鉛、カドミウム、塩素の揮発を促進するものと
考えられる。このことは原料の製鋼煙塵を予め温
洗してNaClを除去すると、NaClが失われた試料
からは鉛、カドミウム、塩素が揮発しにくくなる
という実験結果により確かめられた。 上記塩化物を生成する反応を、PbO、CdO、
ZnO、Fe2O3について示せば次の通りである。△
1、△G°3、△G°4は、各反応における標準自由
エネルギ変化を示している。 PbO+2NaCl =PbCl2+Na2O(△G°1) …………(1) CdO+2NaCl =CdCl2+Na2O(△G°2) …………(2) ZnO+2NaCl =ZnCl2+Na2O(△G°3) …………(3) 1/2Fe2O3+3NaCl=FeCl3+3/2Na2O(△G°4
)…………(4) また、各温度における標準自由エネルギ変化
(Cal)は表−3に示す通りである。
[Table] In the present invention, the above-mentioned steelmaking smoke dust is
First, without adding additives, at normal pressure from 800℃
It is heated to 1100°C and baked at this temperature, and the baking time is suitably about 30 minutes to 90 minutes. The dry firing is performed while steelmaking dust is introduced from one end of the first stage heating furnace and is transferred to the other end in the first stage heating furnace. As the first stage heating furnace and the second stage heating furnace described below, a rotary kiln is preferably used, and a slightly inclined rotary kiln is particularly preferred. By using such a rotary furnace, steelmaking dust introduced from one end is naturally transferred to the other end as the furnace rotates. Generally, a batch type furnace is generally used, but a rotary furnace such as the one described above enables continuous processing.
In this dry firing, lead, cadmium, chlorine, etc. in the steelmaking smoke dust are selectively volatilized, and most of the volatile substances become lead oxide in a heated atmosphere, and some lead chloride, cadmium oxide, cadmium chloride, etc. It becomes common salt (NaCl) and is collected and recovered by the first-stage recovery device connected to the first-stage heating furnace. Zinc and iron contained in the steelmaking dust remain without being volatilized, and are taken out from the other end of the first-stage heating furnace as dry burning ore, and used as raw materials for the second-stage treatment described below. The reason why lead, cadmium, and chlorine are selectively volatilized and zinc and iron remain during the volatilization during the above-mentioned dry firing is considered to be as follows.
Investigation by the present inventor has revealed that most of the chlorine in steelmaking dust remains in the form of NaCl without forming other chlorides, and some of this NaCl and
PbO, which is contained as an oxide in steelmaking dust,
It is thought that CdO exhibits a reaction to produce chloride, and this reaction promotes the volatilization of lead, cadmium, and chlorine. This was confirmed by experimental results showing that if the raw material steelmaking dust was hot-washed in advance to remove NaCl, lead, cadmium, and chlorine were less likely to volatilize from the sample in which NaCl had been removed. The reaction that produces the above chloride is performed using PbO, CdO,
Regarding ZnO and Fe 2 O 3 , it is as follows. △
1 , ΔG° 3 , ΔG° 4 indicate standard free energy changes in each reaction. PbO + 2NaCl = PbCl 2 + Na 2 O (△G° 1 ) …………(1) CdO + 2NaCl = CdCl 2 + Na 2 O (△G° 2 ) …………(2) ZnO + 2NaCl = ZnCl 2 + Na 2 O (△G ° 3 ) …………(3) 1/2Fe 2 O 3 +3NaCl=FeCl 3 +3/2Na 2 O (△G° 4
)…………(4) Also, the standard free energy change (Cal) at each temperature is as shown in Table-3.

【表】 上記(1)(2)(3)(4)式においては、表−3における△
G°の値が小さい程反応は右に進み易いので、
CdOが最も塩化され易く、PbOはそれよりも僅か
に塩化されにくく、ZnO、Fe2O3はPbO、CdOに
比べはるかに塩化されにくい。そのため、前述の
温度における空焼きにおいては、上記(1)(2)式の反
応は活発に起こるが、(3)(4)式の反応は殆んど起き
ないことになる。この(1)(2)式の反応が、製鋼煙塵
中のPb、Cd、Cl成分の揮発を促進する役目を果
たすと考えられ、後述の実施例における具体的デ
ータに示される如く、現実に空焼焼鉱中にはPb、
Cd、Clの成分が殆んどなく、Zn、Fe成分が多量
に残存している。 このように第1段処理にて生成された空焼焼鉱
は、鉛、カドミウム、塩素成分が除去されて殆ん
ど含まれず、残存する亜鉛、鉄の含有率が高めら
れたものとして取り出され、第2段処理に送られ
る。 第2段処理においては、上記空焼焼鉱に還元剤
としてコークスが混入される。コークスの混合比
は、約30重量%程度が適当である。混合物は、第
2段加熱炉に投入され、900℃〜1100℃に加熱さ
れ該温度に保持される。保持時間は、約30分〜90
分程度が適当である。 この加熱においては、空焼焼鉱中の酸化亜鉛
は、コークスによつて還元され、鉄との金属蒸気
圧の差により、金属亜鉛蒸気として選択的に揮発
される。そして、酸化雰囲気中で、たとえば同時
に炉内に吹き込まれた適当な空気により、直ちに
再酸化されて純白の亜鉛華が生成される。この際
金属亜鉛蒸気の再酸化される時発生する発熱も有
効に利用される。該亜鉛華は、第2段加熱炉に接
続された第2段回収装置に補集され、目標とする
亜鉛華が得られる。 得られる亜鉛華は、第1段処理において既に
鉛、カドミウム、塩素と分離された空焼焼鉱か
ら、更に第2段処理において金属蒸気圧の差を利
用して鉄と選択分離されたものであるから、純度
は非常に高く、アメリカ法により製造される亜鉛
華規格を凌駕し、フランス法亜鉛華に匹敵するも
のである。 本発明方法における必要エネルギーは、主とし
て製鋼煙塵とコークスを所定温度まで加熱するの
に消費される分と、酸化亜鉛の還元に消費される
分の2つである。しかし、後者においては、生成
する亜鉛蒸気と一酸化炭素は二次空気によつて最
終的に亜鉛華と二酸化炭素に酸化されるために再
び発熱し、結果としてはコークスが燃焼して二酸
化炭素になるときのエネルギーに相当する分が過
剰に発生する。このエネルギーは生成する亜鉛華
1Kg当り1160KCalに達し、これを有効に回収し
て装入物又は重油バーナー用一次空気の加熱に利
用すれば、エネルギー消費を大巾に下げることが
できる。なお、コークスの一部は酸化鉄の還元に
も消費されるが、金属に還元されると直ちに蒸気
となつて反応系外に去つて行く亜鉛の場合と比較
して、酸化鉄の還元は非常に緩やかである。 従来法では第1段の加熱で生成する粗酸化亜鉛
中の不純物を水洗と第2段加熱によつて除去して
から第3段の亜鉛華製造工程に回すため、加熱回
数は3回となり、コークス混入工程も2回必要で
ある。その上、第1段の粗酸化亜鉛回収工程では
塩素分の揮発が著しいために有効な熱回収は困難
で、本法の2倍量のコークスを使用する割にはそ
の燃焼熱を効果的に利用することができない。こ
れに対して、本発明方法では、第1段処理におい
て最初に鉛、カドミウム、塩素成分と亜鉛、鉄が
残存する空焼焼鉱とに分離し、第2段処理におい
て、空焼焼鉱から亜鉛成分を選択分離する方法で
あるから、2段階処理ですみ、全体のプロセスが
簡略化される。また、コークス混入工程も1回だ
けでよい。そして、加熱等が2段でよく、金属亜
鉛蒸気の再酸化および一酸化炭素の燃焼による発
熱も利用出来るので、亜鉛華生成までの使用エネ
ルギーは前述の3段の従来法に比べ約2/3以下に
なり、大幅に節減される。 なお、第2段処理において第2段加熱炉から取
り出される焼鉱滓は、鉄含有率が大幅に高められ
た形であるので、高炉操業における焼結鉱その他
の原料として利用可能である。 [実施例] 以下に、本発明の望ましい実施例を図面を参照
して説明する。 第1図および第2図は、本発明方法を実施する
ための装置の概略機器系統を示している。図にお
いて、第1図の1は第1段処理装置全体、第2図
の2は第2段処理装置全体を示している。第1段
処理装置1は、第1段加熱炉としてのロータリキ
ルン3と、該ロータリキルン3に導管4を介して
接続された第1段回収装置としての洗滌塔5を有
している。ロータリキルン3の加熱源としては重
油又は灯油が用いられ、これとともに空気が吹き
込まれるようになつている。ロータリキルン3の
一端側から吹き込まれた加熱空気はロータリキル
ン3内を通過した後、導管4を経て洗滌塔5を通
過し、排気として排出される。 第2段処理装置2も略同様の装置構成からな
り、第2段加熱炉としてのロータリキルン6、ロ
ータリキルン6に導管7を介して接続された第2
段回収装置8を有している。ロータリキルン6の
加熱源としては重油又は灯油が用いられ、これと
ともに空気が吹き込まれ、加熱空気は第2段回収
装置8を通過した後排気される。ロータリキルン
3,6は、原料導入口側3a,6aが他端側3
b,6bよりも少し高位になるよう傾けて設置さ
れている。ロータリキルン3,6では、回転数の
調整が可能となつており、導入口3a,6aより
投入された原料は、内部を他端側3b,6bに向
けて移送されるが、その速度、つまり炉内滞留時
間は回転数により調整可能となつている。 このような装置を用いて、次のように亜鉛華の
製造を行つた。 まず、原料として用いた製鋼煙塵は、電気炉か
ら発生したものであり、その品位は表−4に示す
通りである。
[Table] In equations (1), (2), (3), and (4) above, △ in Table-3
The smaller the value of G°, the more likely the reaction will proceed to the right, so
CdO is most easily chlorinated, PbO is slightly less chlorinated, and ZnO and Fe 2 O 3 are much less chlorinated than PbO and CdO. Therefore, in dry baking at the above-mentioned temperature, the reactions of formulas (1) and (2) above occur actively, but the reactions of formulas (3) and (4) hardly occur. The reactions of equations (1) and (2) are thought to play a role in promoting the volatilization of Pb, Cd, and Cl components in steelmaking dust, and as shown in the specific data in the examples below, it is actually Pb,
There are almost no Cd and Cl components, and a large amount of Zn and Fe components remain. The air-fired ore produced in the first stage treatment is extracted as having almost no lead, cadmium, and chlorine components as they have been removed, and the remaining zinc and iron contents are high. , sent to second stage processing. In the second stage treatment, coke is mixed as a reducing agent into the air-fired ore. A suitable mixing ratio of coke is about 30% by weight. The mixture is placed in a second stage heating furnace, heated to 900°C to 1100°C and maintained at this temperature. Holding time is approximately 30 minutes to 90 minutes
About a minute is appropriate. During this heating, zinc oxide in the dry ore is reduced by coke and selectively volatilized as metallic zinc vapor due to the difference in metal vapor pressure with iron. Then, in an oxidizing atmosphere, for example, with appropriate air blown into the furnace at the same time, it is immediately reoxidized to produce pure white zinc white. At this time, the heat generated when the metal zinc vapor is reoxidized is also effectively utilized. The zinc white is collected in a second-stage recovery device connected to the second-stage heating furnace, and the target zinc white is obtained. The resulting zinc white is obtained from the air-fired ore, which has already been separated from lead, cadmium, and chlorine in the first stage treatment, and is then selectively separated from iron in the second stage treatment by utilizing the difference in metal vapor pressure. Because of this, its purity is extremely high, exceeding the standards for zinc white manufactured by the American method and comparable to the zinc white produced by the French method. The energy required in the method of the present invention is mainly comprised of two parts: one for heating the steelmaking dust and coke to a predetermined temperature, and the other for reducing the zinc oxide. However, in the latter case, the generated zinc vapor and carbon monoxide are finally oxidized to zinc white and carbon dioxide by the secondary air, which generates heat again, and as a result, the coke burns and becomes carbon dioxide. An amount of energy corresponding to the amount of energy generated is generated in excess. This energy reaches 1160 KCal per 1 kg of zinc white produced, and if this energy is effectively recovered and used to heat the charge or the primary air for the heavy oil burner, energy consumption can be significantly reduced. Note that some of the coke is also consumed for the reduction of iron oxide, but compared to the case of zinc, which immediately turns into steam and leaves the reaction system after being reduced to metal, the reduction of iron oxide is extremely slow. It is gradual. In the conventional method, impurities in the crude zinc oxide produced during the first stage heating are removed by water washing and second stage heating before being sent to the third stage zinc white production process, so the number of heating times is three. The coke mixing step is also required twice. Furthermore, in the first stage crude zinc oxide recovery process, effective heat recovery is difficult due to significant volatilization of chlorine content, and although this method uses twice the amount of coke, it is difficult to effectively recover the combustion heat. Not available. In contrast, in the method of the present invention, in the first stage treatment, lead, cadmium, and chlorine components are first separated from the dry fired ore in which zinc and iron remain, and in the second stage treatment, the dry fired ore is separated. Since this method selectively separates the zinc component, a two-step process is required, simplifying the entire process. Further, the coke mixing step only needs to be carried out once. In addition, only two stages of heating are required, and the heat generated by the reoxidation of metal zinc vapor and the combustion of carbon monoxide can also be used, so the energy used to produce zinc white is approximately 2/3 compared to the three-stage conventional method described above. This results in significant savings. Incidentally, the sintered slag taken out from the second-stage heating furnace in the second-stage treatment has a significantly increased iron content, so it can be used as sintered ore and other raw materials in blast furnace operation. [Embodiments] Preferred embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show a schematic equipment system of an apparatus for carrying out the method of the invention. In the figures, 1 in FIG. 1 indicates the entire first-stage processing device, and 2 in FIG. 2 indicates the entire second-stage processing device. The first-stage treatment apparatus 1 includes a rotary kiln 3 as a first-stage heating furnace, and a washing tower 5 as a first-stage recovery apparatus connected to the rotary kiln 3 via a conduit 4. Heavy oil or kerosene is used as a heating source for the rotary kiln 3, and air is blown into the rotary kiln 3 together with heavy oil or kerosene. The heated air blown from one end of the rotary kiln 3 passes through the rotary kiln 3, passes through the conduit 4, passes through the washing tower 5, and is discharged as exhaust gas. The second-stage processing device 2 also has a substantially similar device configuration, including a rotary kiln 6 as a second-stage heating furnace, and a second stage processing device connected to the rotary kiln 6 via a conduit 7.
It has a stage recovery device 8. Heavy oil or kerosene is used as a heating source for the rotary kiln 6, and air is blown therewith, and the heated air is exhausted after passing through the second stage recovery device 8. In the rotary kilns 3 and 6, the raw material inlet side 3a and 6a are on the other end side 3.
It is installed at an angle so that it is slightly higher than b and 6b. In the rotary kilns 3 and 6, the number of revolutions can be adjusted, and the raw materials introduced from the inlets 3a and 6a are transferred inside toward the other ends 3b and 6b, but the speed, that is, The residence time in the furnace can be adjusted by changing the rotation speed. Using such an apparatus, zinc white was produced as follows. First, the steelmaking smoke dust used as a raw material was generated from an electric furnace, and its quality is as shown in Table 4.

【表】 この製鋼煙塵を、添加物を加えることなくロー
タリキルン3の導入口3aから連続的に投入し、
炉内を排出口3b側に向けて移送させつつ炉内で
800℃〜1100℃に加熱し、その温度で約60分の空
焼き時間になるようロータリキルン3の回転数を
調整した。製鋼煙塵が炉内を通過する間に、鉛、
カドミウム、塩素が揮発し、揮発物は洗滌塔5に
て、酸化鉛、塩化鉛、酸化カドミウム、塩化カド
ミウム、食塩スライムとして回収された。そし
て、不揮発物として、亜鉛、鉄成分が残存する空
焼焼鉱が排出口3bから得られた。得られた空焼
焼鉱の各成分含有率は表−5に示す通りであり、
鉛、カドミウム、塩素が殆んど除去されていた。
[Table] This steelmaking dust is continuously introduced from the inlet 3a of the rotary kiln 3 without adding any additives.
In the furnace while moving the inside of the furnace toward the discharge port 3b side.
The rotary kiln 3 was heated to 800°C to 1100°C, and the rotation speed of the rotary kiln 3 was adjusted so that the baking time would be about 60 minutes at that temperature. While steelmaking dust passes through the furnace, lead,
Cadmium and chlorine were volatilized, and the volatile substances were recovered in the washing tower 5 as lead oxide, lead chloride, cadmium oxide, cadmium chloride, and salt slime. Air-fired ore in which zinc and iron components remained as non-volatile substances was obtained from the discharge port 3b. The content of each component in the obtained air-fired ore is as shown in Table-5.
Most of lead, cadmium, and chlorine were removed.

【表】 次に上記空焼焼鉱をロータリキルン6の導入口
6aより、約30重量%のコークスを混入した状態
で投入し、炉内で900℃〜1100℃に加熱するとと
もに、炉内滞留時間が約60分になるようロータリ
キルン6の回転数を調整した。この加熱中に金属
蒸気圧の差により亜鉛が選択的に揮発し、他端側
から吹き込まれた加熱空気により揮発した金属亜
鉛蒸気が再酸化されて亜鉛華が生成され、生成さ
れた亜鉛華は空気とともに第2段回収装置に送ら
れ、純白の純度の高い亜鉛華として回収された。
この際の金属亜鉛蒸気の再酸化時の発熱はエネル
ギー節約に充分貢献した。 亜鉛成分の揮発した空焼焼鉱は、焼鉱滓として
排出口6bより排出された。得られた亜鉛華の含
有成分は表−6に示す通りであり、フランス法に
より製造される亜鉛華の規格に匹敵するだけの高
純度のものが得られた。
[Table] Next, the above-mentioned air-burning ore is introduced into the rotary kiln 6 through the inlet 6a with about 30% by weight of coke mixed in, and heated to 900℃ to 1100℃ in the furnace, and the coal remains in the furnace. The rotation speed of rotary kiln 6 was adjusted so that the time was approximately 60 minutes. During this heating, zinc is selectively volatilized due to the difference in metal vapor pressure, and the volatilized metal zinc vapor is reoxidized by heated air blown from the other end to produce zinc white, and the generated zinc white is It was sent along with air to the second-stage recovery equipment, where it was recovered as pure white zinc white with high purity.
At this time, the heat generated during reoxidation of the metal zinc vapor sufficiently contributed to energy savings. The air-fired ore in which the zinc component had been volatilized was discharged from the discharge port 6b as sintered ore slag. The components contained in the obtained zinc white are as shown in Table 6, and the zinc white had a high purity comparable to the specifications of zinc white manufactured by the French method.

【表】 また、残留焼鉱滓の含有成分は表−7に示す通
りであり、亜鉛、鉛、カドミウムが高効率で揮発
されたことがわかる。
[Table] In addition, the components contained in the residual sintered slag are shown in Table 7, and it can be seen that zinc, lead, and cadmium were volatilized with high efficiency.

【表】 この焼鉱滓は、前述の如く鉄の含有量が大幅に
高められたものであるから、焼結鉱等の原料とし
て使用可能である。 [発明の効果] 本発明の製鋼煙塵よりの亜鉛華製造方法によれ
ば、製鋼煙塵中に共存するNaClの作用を積極的
に利用し鉛、カドミウム、塩素を揮発させる、
FeO、ZnOから成る空焼焼鋼を得る第1段処理
と、空焼焼鋼とコークスとを混合して加熱し金属
蒸気圧の差を利用して選択的に酸化亜鉛を還元し
て金属亜鉛として揮発させ再酸化させて亜鉛華を
得る第2段処理との2段階処理により亜鉛華を得
るようにしたので、従来法に比べプロセス、装置
を大幅に簡素化することができ、必要使用エネル
ギーを大幅に節減するとともに、設備費を大幅に
削減することができ、経済的な亜鉛華の製造を行
うことができるという効果が得られる。したがつ
て、平炉、電気炉から発生する製鋼煙塵はもとよ
り従来全く未利用資源であつた高炉からの製鋼煙
塵の有効活用も可能となる。 また、ZnOとFeOの揮発温度が大きく異なるの
で、高精度にZnOを抽出でき、得られる亜鉛華は
フランス法亜鉛華の規格に匹敵するものであり、
製品品位を大幅に高めることができるという効果
も得られる。
[Table] Since this sinter slag has a significantly increased iron content as described above, it can be used as a raw material for sintered ore and the like. [Effects of the Invention] According to the method for producing zinc white from steelmaking dust of the present invention, lead, cadmium, and chlorine are volatilized by actively utilizing the action of NaCl coexisting in steelmaking dust.
The first step is to obtain air-fired steel consisting of FeO and ZnO, and then mix and heat air-fired steel and coke to selectively reduce zinc oxide using the difference in metal vapor pressure to produce metallic zinc. Zinc white is obtained through a two-step process including volatilization and re-oxidation to obtain zinc white, which greatly simplifies the process and equipment compared to conventional methods, and reduces the amount of energy required. It is possible to achieve the effect that it is possible to significantly reduce the cost of production, equipment costs, and economically produce zinc white. Therefore, it becomes possible to effectively utilize not only the steelmaking dust generated from open hearth furnaces and electric furnaces, but also the steelmaking dust from blast furnaces, which has hitherto been a completely unused resource. In addition, since the volatilization temperatures of ZnO and FeO are significantly different, ZnO can be extracted with high precision, and the zinc white obtained is comparable to the standards for French method zinc white.
Another effect is that the product quality can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するための装置の
うち第1段処理装置の概略機器系統図、第2図は
第2段処理装置の概略機器系統図、である。 1……第1段処理装置、2……第2段処理装
置、3……第1段加熱炉としてのロータリキル
ン、4,7……導管、5……第1段回収装置とし
ての洗滌塔、6……第2段加熱炉としてのロータ
リキルン、8……第2段回収装置。
FIG. 1 is a schematic equipment system diagram of a first-stage processing apparatus among apparatuses for carrying out the method of the present invention, and FIG. 2 is a schematic equipment system diagram of a second-stage processing apparatus. 1... First stage processing device, 2... Second stage processing device, 3... Rotary kiln as first stage heating furnace, 4, 7... Conduit, 5... Washing tower as first stage recovery device , 6... rotary kiln as a second stage heating furnace, 8... second stage recovery device.

Claims (1)

【特許請求の範囲】 1 製鋼時に発生した酸化鉄、酸化亜鉛、酸化
鉛、酸化カドミウム、塩化ナトリウムを含む製鋼
煙塵を、還元剤コークスを加えることなく単味で
800℃〜1100℃に加熱して空焼きすることにより、
製鋼煙塵中の酸化鉛、酸化カドミウム、塩化ナト
リウムを選択的に揮発させ、酸化亜鉛、酸化鉄が
残存する空焼焼鉱を生成し、 次に該空焼焼鉱を、還元剤コークスと混合して
900℃〜1100℃に加熱することにより、空焼焼鉱
中の酸化亜鉛を一旦還元し金属亜鉛の蒸気として
選択的に揮発させ、該金属亜鉛の蒸気を炉中を流
れる空気により再酸化させて亜鉛華を生成するこ
とを特徴とする製鋼煙塵よりの亜鉛華製造方法。
[Claims] 1. Steelmaking dust containing iron oxide, zinc oxide, lead oxide, cadmium oxide, and sodium chloride generated during steelmaking can be treated in a simple manner without adding coke as a reducing agent.
By heating to 800℃~1100℃ and dry baking,
Lead oxide, cadmium oxide, and sodium chloride in steelmaking dust are selectively volatilized to produce air-fired ore in which zinc oxide and iron oxide remain, and then the air-fired ore is mixed with reducing agent coke. hand
By heating to 900°C to 1100°C, the zinc oxide in the air-fired ore is reduced and selectively volatilized as metallic zinc vapor, and the metallic zinc vapor is reoxidized by the air flowing in the furnace. A method for producing zinc white from steelmaking dust, characterized by producing zinc white.
JP61263670A 1986-11-07 1986-11-07 Method and device for producing zinc white from steel making flue dust Granted JPS63117911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61263670A JPS63117911A (en) 1986-11-07 1986-11-07 Method and device for producing zinc white from steel making flue dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61263670A JPS63117911A (en) 1986-11-07 1986-11-07 Method and device for producing zinc white from steel making flue dust

Publications (2)

Publication Number Publication Date
JPS63117911A JPS63117911A (en) 1988-05-21
JPH0461043B2 true JPH0461043B2 (en) 1992-09-29

Family

ID=17392710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61263670A Granted JPS63117911A (en) 1986-11-07 1986-11-07 Method and device for producing zinc white from steel making flue dust

Country Status (1)

Country Link
JP (1) JPS63117911A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121419A1 (en) 2011-03-10 2012-09-13 Genefrontier Corporation Composition for synthesizing protein with reduced lipopolysaccharide contamination, method for producing protein using said composition
EP2657334A1 (en) 2012-04-26 2013-10-30 GeneFrontier Corporation Efficient method for displaying protein multimer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9523229D0 (en) * 1995-11-14 1996-01-17 Allied Dust Processing Ltd Method of processing finely divided material incorporating metal based constituents
US6464753B2 (en) * 2000-06-19 2002-10-15 Maumee Research & Engineering, Incorporated Furnace flue dust processing method
JP4715022B2 (en) * 2001-05-07 2011-07-06 住友金属鉱山株式会社 Method for producing zinc oxide sinter or zinc oxide briquette
JP5708380B2 (en) * 2011-08-31 2015-04-30 住友金属鉱山株式会社 Gas seal structure and gas seal method for rotary kiln
CN107502756A (en) * 2017-08-15 2017-12-22 重庆科技学院 A kind of refining treatment method for crude zinc oxide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033994A (en) * 1973-07-30 1975-04-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033994A (en) * 1973-07-30 1975-04-02

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121419A1 (en) 2011-03-10 2012-09-13 Genefrontier Corporation Composition for synthesizing protein with reduced lipopolysaccharide contamination, method for producing protein using said composition
EP2657334A1 (en) 2012-04-26 2013-10-30 GeneFrontier Corporation Efficient method for displaying protein multimer

Also Published As

Publication number Publication date
JPS63117911A (en) 1988-05-21

Similar Documents

Publication Publication Date Title
KR100411832B1 (en) Process of recovering elemental iron from an iron-bearing material
JP5336472B2 (en) Recycling method for high zinc and sulfate content residues
AU2003261814B2 (en) Method for producing titanium oxide containing slag
JPH11310832A (en) Treatement of metal oxide of steel making waste
CA1092832A (en) Method of producing blister copper
US4006010A (en) Production of blister copper directly from dead roasted-copper-iron concentrates using a shallow bed reactor
US5547490A (en) Method and installation for removing lead and zinc from foundry dust
US4384886A (en) Process for zinc removal from oxide-containing iron sources
US5728193A (en) Process for recovering metals from iron oxide bearing masses
CN101341265A (en) Separation of metal values in zinc leaching residues
WO2013070121A1 (en) Pyrometallurgical red mud processing method
US4017308A (en) Smelting and reduction of oxidic and sulphated lead material
JPH11172312A (en) Operation of movable hearth type furnace and movable hearth type furnace
KR100291250B1 (en) Process for reducing the electric steelworksdusts and facility for implementing it
US2290843A (en) Method of recovering manganese
WO2022194285A1 (en) Comprehensive utilization method for columbite
JPH0461043B2 (en)
JP5348647B2 (en) How to operate the rotary kiln
US4255185A (en) Processes and apparatus for reducing and subsequently pelletizing moist fine-grained ore
JPH07216464A (en) Weltz reprocessing of material containing zinc, lead and iron oxide
JP2000045008A (en) Production of reduced metal
JP2003147450A (en) Method of producing rude zinc oxide powder
CN206986256U (en) A kind of system for handling utilising zinc containing waste residue
US2684296A (en) Reduction of iron ores
KR960002914B1 (en) Making method and apparatus of zinc-powder forom iron & steel casting dust

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term