JPH0460950B2 - - Google Patents

Info

Publication number
JPH0460950B2
JPH0460950B2 JP59036561A JP3656184A JPH0460950B2 JP H0460950 B2 JPH0460950 B2 JP H0460950B2 JP 59036561 A JP59036561 A JP 59036561A JP 3656184 A JP3656184 A JP 3656184A JP H0460950 B2 JPH0460950 B2 JP H0460950B2
Authority
JP
Japan
Prior art keywords
vacuum
calcium silicate
board
core material
pulp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59036561A
Other languages
Japanese (ja)
Other versions
JPS60180973A (en
Inventor
Tamotsu Kawasaki
Tadayoshi Iwasaki
Minoru Morita
Takeshi Kuwana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP3656184A priority Critical patent/JPS60180973A/en
Publication of JPS60180973A publication Critical patent/JPS60180973A/en
Publication of JPH0460950B2 publication Critical patent/JPH0460950B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • C04B28/186Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step
    • C04B28/188Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step the Ca-silicates being present in the starting mixture

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】 この発明は真空断熱板の芯材として使用される
ケイ酸カルシウム板の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a calcium silicate board used as a core material of a vacuum heat insulating board.

従来、ケイ酸カルシウム板を芯材として真空断
熱板を作る方法は、既に実用化されており、この
真空断熱板は機械的強度、排気特性が高く、ガス
放出が少ない等の優れた性能を持つため、これま
でにない有用断熱材として知られている。
The conventional method of making a vacuum insulation board using a calcium silicate board as a core material has already been put into practical use, and this vacuum insulation board has excellent performance such as high mechanical strength, high exhaust characteristics, and low gas emissions. Therefore, it is known as an unprecedentedly useful heat insulating material.

上記ケイ酸カルシウム板は、石灰質とケイ酸質
および水の3成分よりなるケイ酸カルシウム水和
物を主成分として作られるもので、まずオートク
レーブ中で強熱されて生成したケイ酸カルシウム
にグラスフアイバー、セメント等の結合剤やパル
プ、有機系粘結剤等の有機物賦形剤を添加してプ
レス成形される。これら賦形剤は製造工程中ある
いは製品としての機械的強度を維持する役割を果
すものであり、それぞれ5〜2重量%程度添加さ
れる。そして、上記プレス成形品は200℃程度の
炉にて脱水乾燥されて製品となる。
The above-mentioned calcium silicate board is made mainly from calcium silicate hydrate, which is composed of three components: calcareous, silicic acid, and water. First, the calcium silicate plate is ignited in an autoclave, and the resulting calcium silicate is mixed with glass fibers. , press molding is performed by adding a binder such as cement, organic excipients such as pulp, and organic binder. These excipients play a role in maintaining mechanical strength during the manufacturing process or as a product, and are each added in an amount of about 5 to 2% by weight. The press-formed product is then dehydrated and dried in a furnace at about 200°C to become a product.

このようにして作られた製品は、大気中におい
て5重量%程度の水分を吸着しているため、真空
断熱板用の芯材として用いるにあたつては加熱真
空排気処理を行なうことが必須となる。この時の
加熱は高温である程、排気時間を短かくすること
ができるが、真空断熱板を構成する他の部材や加
熱炉および排気系など全体的な見地から200〜250
℃が適当とされており、水分についてはこの加熱
温度で充分気化排出される。
Since the product made in this way absorbs about 5% by weight of moisture in the air, it is essential to heat and vacuum evacuation treatment when using it as a core material for vacuum insulation boards. Become. The higher the heating temperature at this time, the shorter the evacuation time can be, but from the overall perspective of the other components that make up the vacuum insulation board, the heating furnace, and the exhaust system,
℃ is considered appropriate, and moisture is sufficiently vaporized and discharged at this heating temperature.

ところで、周知のように、熱伝導率に及ぼす真
空度の影響は、第1図に示すように、10-1Torr
以下の圧力においては熱伝導率はほぼ一定である
が、それ以上の圧力では上昇する。従つて、真空
断熱板の断熱性能の有意性を維持するためには内
部真空度を10-1Torr以下に保持することが必要
である。
By the way, as is well known, the effect of the degree of vacuum on thermal conductivity is 10 -1 Torr, as shown in Figure 1.
Thermal conductivity is approximately constant at pressures below, but increases at pressures above that. Therefore, in order to maintain the effectiveness of the insulation performance of the vacuum insulation board, it is necessary to maintain the degree of internal vacuum at 10 -1 Torr or less.

ところが、上記従来の真空断熱板においては、
ガス透過性のない被覆材、例えば、金属薄板等を
用い、完全密閉構造体とし、リークが発生してい
ないにもかかわらず、経時的にしばしば内部真空
度が低下し、断熱性能が劣化した製品が発生して
しまう。
However, in the conventional vacuum insulation board mentioned above,
Products that use a covering material that is not gas permeable, such as a thin metal plate, and have a completely sealed structure, and even though there is no leakage, the internal vacuum often decreases over time and the insulation performance deteriorates. will occur.

これに対し、本発明者らは、経時的に真空度の
低下することがなく、断熱性能のよい真空断熱板
を得ることを目的に鋭意研究を重ねたところ下記
のような知見を得るに至つた。
In response, the present inventors conducted extensive research with the aim of obtaining a vacuum insulation board with good heat insulation performance that does not reduce the degree of vacuum over time, and came to the following knowledge. Ivy.

まず、上記真空度の経時劣化を明らかにするた
めに次のような実験を行なつた。上記従来の製造
方法に基づき製造されたケイ酸カルシウム板を被
覆材中に入れ、200℃で加熱真空排気を12時間行
なつた後、常温にて油拡散ポンプにより18時間排
気を行ない、封止して従来品のサンプルを得た。
この封止時の到達真空度を測定したところ、第2
図に示すように1.5×10-2Torrであり、その後、
経時的に真空度が低下し、封止後14日目では10-1
Torr以上になつていまい実用に供し得ないこと
が判明した。このサンプルをヘリウム・リーク・
デイテクターにかけて漏れの有無を調べたが漏れ
は検出されなかつた。従つて、真空度劣化の原因
はなんらかの理由でサンプル内にガスが発生した
ということになる。そこで、分圧計によつてサン
プル内の含有ガスを調べたところ、第3図のチヤ
ートに示すように、サンプル内の圧力支配要因は
28amu(原子質量単位)であつた。この28amuに
相当するガスとしては窒素(N2)と一酸化炭素
(CO)とが挙げられる。しかし、上記したように
既にヘリウム・リーク・デイテクターにより被覆
材には漏れがないことが確認されており、しかも
上記分圧計の測定によれば、空気成分である酸素
(O2;32amu)が検出されていないことから、こ
こでの28amuのピークは一酸化炭素であることに
なる。
First, the following experiment was conducted to clarify the deterioration of the degree of vacuum over time. The calcium silicate plate manufactured based on the above conventional manufacturing method was placed in the coating material, heated at 200℃ and evacuated for 12 hours, then evacuated for 18 hours using an oil diffusion pump at room temperature, and then sealed. A sample of the conventional product was obtained.
When we measured the ultimate degree of vacuum during this sealing, we found that the second
As shown in the figure, it is 1.5×10 -2 Torr, and then
The degree of vacuum decreases over time, reaching 10 -1 on the 14th day after sealing.
It was found that the value exceeded Torr and could not be put to practical use. This sample can be used as a helium leak.
A detector was used to check for leaks, but no leaks were detected. Therefore, the cause of the deterioration of the vacuum level is that gas is generated within the sample for some reason. Therefore, when we investigated the gas content in the sample using a partial pressure meter, we found that the factors governing the pressure in the sample were as shown in the chart in Figure 3.
It was 28 amu (atomic mass unit). Gases corresponding to this 28 amu include nitrogen (N 2 ) and carbon monoxide (CO). However, as mentioned above, it has already been confirmed by the helium leak detector that there is no leakage in the coating material, and according to the measurement by the partial pressure meter mentioned above, oxygen (O 2 ; 32 amu), an air component, has been detected. Since this is not the case, the 28 amu peak here is carbon monoxide.

本発明者らは上記一酸化炭素の発生原因が芯材
であるケイ酸カルシウム板中に添加されているパ
ルプ等の有機系物質が徐々に分解することにある
と推論し、被覆材により封止する前のケイ酸カル
シウムを加熱して含有有機系添加物を全て燃焼さ
せ、その後被覆材中に封入したところ、従来品の
ように経時的に真空度劣化が生じず、実用上充分
な性能を維持することが判明した。
The present inventors deduced that the cause of the above carbon monoxide generation was due to the gradual decomposition of organic substances such as pulp added to the calcium silicate plate, which is the core material, and sealed it with a coating material. When the calcium silicate was heated to burn out all the organic additives it contained, and then encapsulated in the coating material, the vacuum level did not deteriorate over time unlike conventional products, and it achieved sufficient performance for practical use. It turned out to be maintained.

この発明は上記知見に基づいてなされたもの
で、経時的真空度劣化の少ない真空断熱板を構成
することのできるケイ酸カルシウム芯材の製造方
法を提供することを目的とするものである。
The present invention has been made based on the above findings, and an object of the present invention is to provide a method for producing a calcium silicate core material that can constitute a vacuum heat insulating board with little deterioration of the degree of vacuum over time.

以下、この発明を詳しく説明する。 This invention will be explained in detail below.

この発明の特徴は、プレス成形した上、乾燥し
て水分を除去したケイ酸カルシウム成形体を加熱
して、この成形体中の有機物賦形剤を燃焼せしめ
て無機質化することにある。
The feature of this invention is that a calcium silicate molded body that has been press-molded and dried to remove moisture is heated to burn off the organic excipients in this molded body and turn it into mineral.

上記のように、真空断熱板の製造工程に入る前
に予め芯材に用いるケイ酸カルシウム板を加熱炉
中で例えば400〜600℃程度に加熱すると、ケイ酸
カルシウム板は自己発熱を起こし、その内部温度
は650〜800℃に達する。この発熱はケイ酸カルシ
ウム板中に含まれる有機物賦形剤の燃焼によるも
のである。従つて、上記加熱処理を施こすことに
より、ケイ酸カルシウム板は、パルプ等の有機物
賦形剤を全て燃焼分解してしまい、完全無機質の
真空支持体(芯材)となりうる。すなわち、この
ケイ酸カルシウム板を用いて真空断熱板を作製す
ると、封止後も脱ガス量の極めて少なく、真空度
維持性が優れた真空構造体が得られる。また、上
記のように、添加されたパルプ等の有機物賦形剤
は全て焼失されるため、その添加量に見合つた分
だけ芯材が軽くなる。従つて、予めケイ酸カルシ
ウム板成形時に有機物賦形剤(特にパルプ)を増
やした軽量板にしておき、その後このケイ酸カル
シウム板中のパルプ等の含有有機物賦形剤を燃焼
させれば、さらに軽量化の進んだ芯材を得ること
ができる。そして、このように軽量化された芯材
は、構造上固体熱伝導がより小さくなるため真空
断熱板の芯材としてさらに優れたものとなる。
As mentioned above, if the calcium silicate board used as the core material is heated to about 400 to 600°C in a heating furnace before entering the manufacturing process of the vacuum insulation board, the calcium silicate board will generate self-heating. Internal temperature reaches 650-800℃. This heat generation is due to the combustion of organic excipients contained in the calcium silicate plate. Therefore, by applying the above heat treatment, the calcium silicate plate burns and decomposes all organic excipients such as pulp, and can become a completely inorganic vacuum support (core material). That is, when a vacuum heat insulating board is produced using this calcium silicate board, a vacuum structure with an extremely small amount of outgassing even after sealing and excellent vacuum maintainability can be obtained. Further, as mentioned above, since all of the added organic excipients such as pulp are burned out, the core material becomes lighter by an amount commensurate with the amount of the added organic excipients. Therefore, if the calcium silicate board is formed into a lightweight board with an increased amount of organic excipients (particularly pulp), and then the organic excipients such as pulp contained in the calcium silicate board are combusted, even more A core material with advanced weight reduction can be obtained. Since the core material reduced in weight in this manner has a structure with lower solid heat conduction, it becomes even more excellent as a core material of a vacuum heat insulating board.

次に実施例によつて本発明をさらに詳しく説明
する。
Next, the present invention will be explained in more detail with reference to Examples.

〔実施例〕〔Example〕

ケイ酸カルシウム水和物に各種賦形剤を添加し
てプレス成形して乾燥したケイ酸カルシウム板に
ついて500℃の炉内で1時間加熱処理したもの
(製品1)、同2時間処理したもの(製品2)を用
意した。その後夫々について被覆材(0.1mm厚の
ステンレス鋼板)にて被覆し、200℃の加熱炉内
で21時間20Torrの真空排気を行なつた。炉出後
更に常温下で18時間、1×10-4Torrの高真空排
気を行い封止して真空断熱板を製作し比較した。
Calcium silicate plates made by adding various excipients to calcium silicate hydrate, press-molding and drying were heat-treated in a 500°C oven for 1 hour (Product 1), and those treated for 2 hours (Product 1). Product 2) was prepared. Thereafter, each was covered with a coating material (0.1 mm thick stainless steel plate), and evacuated at 20 Torr for 21 hours in a heating furnace at 200°C. After exiting the furnace, the material was further evacuated to a high vacuum of 1×10 -4 Torr for 18 hours at room temperature, sealed, and a vacuum insulation board was manufactured and compared.

上記製品1、2の排気特性は、第2図に示すよ
うになつた。また、製品1の封止時の分圧チヤー
トを第4図に示す。これらに示されるように、到
達真空度、その後の経時的真空度の劣化割合すな
わちビルド・アツプ量ともに実用に充分供し得る
良好な値が得られている。さらに、第4図の分圧
チヤートからも一酸化炭素(CO)、二酸化炭素
(CO2)等の脱ガスもほとんどないことがわかる。
これにのデータにより上記芯材の加熱処理により
CO、CO2の供給源であるパルプ等の有機物賦形
剤が全て焼失され、ケイ酸カルシウム板が目的と
する完全無機質材となつていることが確認され
た。
The exhaust characteristics of the above products 1 and 2 were as shown in FIG. Further, a partial pressure chart when the product 1 is sealed is shown in FIG. As shown in these figures, both the ultimate degree of vacuum and the rate of deterioration of the degree of vacuum over time, that is, the amount of build-up, are both good enough for practical use. Furthermore, it can be seen from the partial pressure chart in FIG. 4 that there is almost no degassing of carbon monoxide (CO), carbon dioxide (CO 2 ), etc.
Based on this data, by heat treatment of the core material mentioned above,
It was confirmed that all organic excipients such as pulp, which is a source of CO and CO 2 , had been burned out, and the calcium silicate board had become the intended completely inorganic material.

以上説明したように、この発明によれば、下記
のような優れた利点が得られる。
As explained above, according to the present invention, the following excellent advantages can be obtained.

() ケイ酸カルシウム板中のパルプ等の有機物
賦形剤を燃焼せしめることで、このケイ酸カル
シウム板を芯材とする真空断熱板中への放出ガ
スを極めて少なく抑えることができ、この真空
断熱板の真空度の劣化が少なくなり、経時(経
年)変化による断熱性能の低下が抑えられる。
() By burning the organic excipients such as pulp in the calcium silicate board, the amount of gas released into the vacuum insulation board with the calcium silicate board as the core material can be kept to an extremely low level. Deterioration of the vacuum level of the board is reduced, and deterioration of insulation performance due to changes over time (age) is suppressed.

() パルプ等の有機物賦形剤を焼失させること
の付随効果として芯材であるケイ酸カルシウム
板の軽量化が図れる。
() An incidental effect of burning out organic excipients such as pulp is that the weight of the calcium silicate plate, which is the core material, can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は真空度と熱伝導率の関係図、第2図
は、従来法および本発明の方法によりそれぞれ作
成した真空断熱板の真空度の経時測定値を示す
表、第3図は従来品の封止時分圧チヤート、第4
図は本発明の方法により作成した製品の分圧チヤ
ートである。
Figure 1 is a diagram showing the relationship between the degree of vacuum and thermal conductivity, Figure 2 is a table showing the measured values over time of the degree of vacuum of vacuum insulation boards prepared by the conventional method and the method of the present invention, and Figure 3 is a diagram of the conventional product. Partial pressure chart when sealed, 4th
The figure is a partial pressure chart of a product produced by the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 ケイ酸カルシウム水和物に、グラスフアイバ
ー、セメント等の結合剤と、パルプ等の有機物賦
形剤を添加してプレス成形した上、乾燥して水分
を除去して成形体とし、ついでこの成形体を加熱
して成形体中の上記有機物賦形剤を燃焼せしめて
成形体を無機質化することを特徴とする真空断熱
板芯材用ケイ酸カルシウム板の製造方法。
1 Calcium silicate hydrate is press-molded by adding a binder such as glass fiber or cement, and an organic excipient such as pulp, and then dried to remove water to form a molded product. 1. A method for producing a calcium silicate plate for a core material of a vacuum insulation board, which comprises heating the body to burn off the organic excipients in the molded body to mineralize the molded body.
JP3656184A 1984-02-28 1984-02-28 Manufacture of calcium silicate for vacuum heat insulative board core material Granted JPS60180973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3656184A JPS60180973A (en) 1984-02-28 1984-02-28 Manufacture of calcium silicate for vacuum heat insulative board core material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3656184A JPS60180973A (en) 1984-02-28 1984-02-28 Manufacture of calcium silicate for vacuum heat insulative board core material

Publications (2)

Publication Number Publication Date
JPS60180973A JPS60180973A (en) 1985-09-14
JPH0460950B2 true JPH0460950B2 (en) 1992-09-29

Family

ID=12473167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3656184A Granted JPS60180973A (en) 1984-02-28 1984-02-28 Manufacture of calcium silicate for vacuum heat insulative board core material

Country Status (1)

Country Link
JP (1) JPS60180973A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146305A (en) * 1974-10-18 1976-04-20 Kogyo Gijutsuin Keiryotaikazaino seizoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146305A (en) * 1974-10-18 1976-04-20 Kogyo Gijutsuin Keiryotaikazaino seizoho

Also Published As

Publication number Publication date
JPS60180973A (en) 1985-09-14

Similar Documents

Publication Publication Date Title
ES430987A1 (en) Removal of heat of compression
GB2098452A (en) Process for treating tobacco to improve its filling capacity
CN115044212A (en) Porcelainized controllable porous porcelainized silicone rubber and preparation method thereof
CN111452450B (en) Long-acting flame-retardant anti-piercing anti-radiation composite fabric and processing technology thereof
JPH0460950B2 (en)
CN113860312A (en) Preparation method of anisotropic high-temperature-resistant silicon carbide aerogel heat insulation material
CN109179373A (en) A kind of anti-oxidation carbon aerogel material and preparation method thereof
JP3061572B2 (en) Baking method of insulated container
CN110155941A (en) A kind of microwave heating device for producing hydrogen and hydrogen production process and application based on thermochemical cycles
KR102473841B1 (en) a method for manufacturing active carbon
CN112551506B (en) Antioxidant carbon aerogel composite material and preparation method and application thereof
ES8202423A1 (en) Process and installation for the ignition of a sinter mixture.
CN115110311A (en) Preparation method of high-temperature-resistant alumina aerogel felt and alumina aerogel felt
JP3164291B2 (en) Manufacturing method of core material for vacuum insulation structure
JPH02157127A (en) Manufacture of monolithic silica aerogel, and flat quartz glass plate
CN108862286B (en) Flame-retardant and heat-insulating elastic silicon dioxide aerogel sheet and sheet for thermal management system of automobile lithium ion power battery
SU1765169A1 (en) Method of producing brown coal briquettes
CN114604869B (en) Antioxidant expanded graphite and preparation method and application thereof
JPS6237671A (en) Vacuum heat-insulating material
JP3663581B2 (en) Wood tar metamorphosis
JP3282238B2 (en) Method for producing chemical activated carbon
JPH0532408A (en) Production of activated carbon structure
CN115212846A (en) Carbon dioxide capture material and preparation method thereof
JPS593215B2 (en) kerosene burning wick
JPH06279776A (en) Process and apparatus for making charcoal and method of using the same apparatus