JPH0460879A - Detecting method for feature point position and straight line direction on boundary line - Google Patents

Detecting method for feature point position and straight line direction on boundary line

Info

Publication number
JPH0460879A
JPH0460879A JP2171868A JP17186890A JPH0460879A JP H0460879 A JPH0460879 A JP H0460879A JP 2171868 A JP2171868 A JP 2171868A JP 17186890 A JP17186890 A JP 17186890A JP H0460879 A JPH0460879 A JP H0460879A
Authority
JP
Japan
Prior art keywords
window
feature point
straight line
projection
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2171868A
Other languages
Japanese (ja)
Inventor
Noriaki Nakayama
中山 典明
Kazuhiko Fukuda
和彦 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fuji Facom Corp
Original Assignee
Fuji Electric Co Ltd
Fuji Facom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Facom Corp filed Critical Fuji Electric Co Ltd
Priority to JP2171868A priority Critical patent/JPH0460879A/en
Publication of JPH0460879A publication Critical patent/JPH0460879A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inspect the uniformity of a pattern in respect of the picture of a metallographic structure cross section, etc., by detecting the position of a feature point and the directional relation of each straight line at the time when two areas different in their brightness are adjacent to each other as considering each straight line extending in two different direction from the feature point to be a boundary by picture processing. CONSTITUTION:A window W is generated in a fixed picture including the feature point P in a field of view so that one of the straight lines penetrates it in parallel with its one side, and at every place at the time when this generated window is moved in parallel with one of the straight line, a projection upon a first side perpendicular to the moving direction of the window is taken. Then, the coordinate of the changing point of the maximum value or the minimum value of this projection in relation to the first side of the window is determined for every place, and the position of the feature point is detected based on two pieces, at least, of this coordinate. Besides, the projection upon the second side of the window perpendicular to the first side is taken for every place, and the directional relation of each straight line is detected based on the increasing or decreasing tendency of this projection value. Thus, this method can be utilized for the automatic inspection of the uniformity of the pattern in respect of the picture of textiles or the metallographic structure cross section, etc.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、例えば織物や金属組織断面なとの画像に関
するパターン(模様)の−様性の検査に利用できる方法
であって、明るさの異なる二つの領域が特徴点としての
一点から異なる2方向にそれぞれ伸びる各直線を境界と
して隣接するときの、その特徴点の位置と、各直線の方
向関係とを撮像に基づく画像処理によって検出する境界
線上の特徴点位置・直線方向の検出方法に関する。
The present invention is a method that can be used to inspect the pattern (pattern) of an image of, for example, a cross section of a fabric or a metallographic structure, in which two areas of different brightness are located in two different directions from a single point as a feature point. The present invention relates to a method for detecting the position of a feature point on a boundary line and the direction of a straight line, in which the position of the feature point and the directional relationship of each straight line are detected by image processing based on imaging when adjacent feature points are adjacent to each other with each line extending as a boundary.

【従来の技術】[Conventional technology]

色ないし明るさの異なる二つの領域が直線を境界として
隣接するのが正しいパターンであるとき、三領域が一点
から異なる2方向に伸びる直線を境界とするようになっ
たとする。そのときの−点を特徴点と呼ぶことにし、こ
の特徴点の位置と、2方向の各直線の方向関係を検出す
る従来方法は、特徴点を含む範囲を撮像し、それをCR
Tデイスプレィに画像表示し、この画像の目視によって
検出してきた。
When the correct pattern is for two areas of different colors or brightness to be adjacent to each other with a straight line as their boundary, suppose that three areas now have a straight line extending from one point in two different directions as their boundaries. The - point at that time is called a feature point, and the conventional method of detecting the position of this feature point and the directional relationship between each straight line in two directions is to image the range that includes the feature point and use it as a CR.
An image was displayed on a T-display, and detection was performed by visually observing this image.

【発明が解決しようとする課題】[Problem to be solved by the invention]

以上説明したように、従来の技術では、CRTデイスプ
レィ上の画像を目視することによって、特徴点の位置と
、2方向の各直線の方向関係を検出したから、検出の正
確度や能率の面で安定性に欠けるだけでなく、疲労面や
要員確保の面など作業管理上の問題がある。 この発明の課題は、従来の技術がもつ以上の問題点を解
消し、織物や金属組織断面などの画像に関するパターン
(模様)の−様性を自動的に検査するのに利用できる境
界線上の特徴点位置・直線方向の検出方法を提供するこ
とにある。
As explained above, in the conventional technology, the position of the feature point and the directional relationship of each straight line in two directions are detected by visually observing the image on the CRT display. Not only does it lack stability, but it also poses problems in terms of work management, such as fatigue and securing personnel. The object of this invention is to solve the problems of the conventional techniques, and to make it possible to automatically inspect the characteristics of patterns on images of textiles, metal structure cross sections, etc. The object of the present invention is to provide a method for detecting point positions and linear directions.

【課題を解決するための手段】[Means to solve the problem]

この課題を解決するために、本発明に係る特徴点位置・
直線方向の検出方法は、 明るさの異なる二つの領域が特徴点としての一点から異
なる2方向にそれぞれ伸びる各直線を境界として隣接す
るときの、前記特徴点の位置と、前記各直線の方向関係
とを撮像に基づく画像処理によって検出する方法におい
て、 前記特徴点を視野内に含む固定両像内に方形のウィンド
ウを、その一辺と平行に前記各直線のうちの一方が貫通
するように生成すること;前記ウィンドウを前記一方の
直線と平行に移動させたときの各箇所で、前記ウィンド
ウの移動方向と直角な第1の辺への投影をとり、この投
影の最大値または最小値の変化起点の、前記ウィンドウ
の第1辺に係る座標を、前記各箇所ごとに求めること; この各箇所ごとの前記座標に基づいて前記特徴点の位置
を検出すること; 前記ウィンドウの第1辺と直角な第2の辺への投影を前
記各箇所ごとにとり、その投影値を求めること; この各箇所ごとの前記投影値の増減傾向に基づいて前記
各直線の方向関係を検出すること:の各ステップを備え
る。
In order to solve this problem, the feature point position and
The linear direction detection method is based on the following: When two areas with different brightness are adjacent to each other with straight lines extending in two different directions from one point as a feature point as boundaries, the position of the feature point and the directional relationship of each straight line are determined. In a method of detecting by image processing based on imaging, a rectangular window is generated in both fixed images including the feature point in the field of view, such that one of the straight lines passes through it parallel to one side of the rectangular window. At each point when the window is moved parallel to the one straight line, take a projection onto the first side perpendicular to the direction of movement of the window, and determine the starting point of change of the maximum or minimum value of this projection. determining the coordinates of the first side of the window for each of the locations; detecting the position of the feature point based on the coordinates of each location; Steps of: taking a projection onto the second side for each location and determining its projection value; detecting the directional relationship of each straight line based on the tendency of increase/decrease in the projection value for each location; Be prepared.

【作用】[Effect]

特徴点を視野内に含む固定両像内に方形のウィンドウを
、その一辺と平行に各直線のうちの一方が貫通ずるよう
に生成し、この生成されたウィンドウを一方の直線と平
行に移動させるときの各箇所で、ウィンドウの移動方向
と直角な第1の辺への投影をとる。そして、この投影の
最大値または最小値の変化起点の、ウィンドウの第1辺
に係る座標を各箇所ごとに求めて、この座標の少なくと
も2個に基づいて特徴点の位置を検出する。また、ウィ
ンドウの第1辺と直角な第2の辺への投影を前記各箇所
ごとにとり、この投影値の増M(lJi向すこ基づいて
各直線の方向関係を検出する。
A rectangular window is generated in both fixed images that include the feature point in the field of view, with one of the straight lines passing through it parallel to one side of the window, and this generated window is moved parallel to one of the straight lines. At each point in time, a projection is taken onto the first side perpendicular to the moving direction of the window. Then, the coordinates of the starting point of the change in the maximum or minimum value of this projection, relative to the first side of the window, are determined for each location, and the position of the feature point is detected based on at least two of these coordinates. Further, the projection onto the second side perpendicular to the first side of the window is taken for each of the above locations, and the directional relationship of each straight line is detected based on the increase M (lJi direction) of this projection value.

【実施例] 本発明に係る境界線−Fの特徴点位置・直線方向検出方
法の適用例について、以下に断面を参照しながら説明す
る。 第1図は固定画像とウィンドウとの関係を示す模式図で
ある。第1図において、対象のパターンを撮像して得ら
れた固定画像視野F内に、特徴点Pから上方向と斜め右
下方向とに、それぞれ伸びる各直線Ll、L2によって
区画される二つの各領域DLD2がある。いま、領域D
1は暗く、領域D2は明るいとする。 一辺と平行に直1.! L 1が貫通する方形のウィン
ドウWを生成し、これを直線L1の方向に移動させたと
き、次に述べる各箇所でのX、Yの各軸への投影を求め
る。なお、このウィンドウWの大きさは、例えば固定画
像視野F内にそのウィンドウWが複数個収容でき、かつ
直線L2のX方向成分。 X方向成分の各値の2倍以下にする。 第2図は移動ウィンドウの4箇所での各位置を示す模式
図である。同図において、4箇所の各位置におけるウィ
ンドウを、Wl、W2.W3.W4とする。特徴点Pは
各ウィンドウWl、W4には含まれず、各ウィンドウW
2.W3には含まれる。 固定画像視野Fの上辺、左辺にそれぞれ平行にX軸、Y
軸をとる。特徴点Pの座標をXo、Yo、各ウィンドウ
W2.W3の下辺と直線L2との交点を点A、Bとした
ときの、各点A;Bの座標をそれぞれXLYI  ;X
2.Y2とする。 第3図は移動ウィンドウの4箇所での、X軸方向に係る
投影値のX座標に対する特性図で、同図(a)は第2図
におけるウィンドウW1に対応する特性図、同図(b)
はウィンドウW2に対応する特性図、同図(C)はウィ
ンドウW3に対応する特性図、同図(d)はウィンドウ
W4に対応する特性図である。 第3図(a)〜(d)において共通に、横軸にX座標、
縦軸にX軸への投影値3×をそれぞれとる。同図(a)
では、座標Xoにおいて投影値Sxが低位から高位まで
象、峻に立ち上がる。同様に同図(b)では、座標χ0
において投影値Sxが低位から増大し始め座標X1から
高位で平坦になる。同図(C)では、座標Xoにおいて
投影値S×が低位から増大し始め座標X2で高位から平
坦になる。同図(d)では、投影値Sxは低位で平坦で
ある。ここて、投影値Sxの低位、高位はそれぞれ各領
域DI、D2の暗さ2明るさに対応する。ところで、留
意すべきこととして、各座標軸への投影値は、画像特有
の性質や照明の当て方のわずかな差によって相当激しく
変動する。したがって、要因の有無に応じて投影値が極
端に大きく変化する形にして検出する必要がある。 第3図(a)、 (b)、 (C)から得られた各座標
Xo、XlX2、および第2図の各座標Yl、Y2から
、解析幾何の2点を結ぶ直線の公式に基づいて座標Y。 が求められる。 Yo  =Y1+(Y2−Yl)(Xo−X’l)/(
X2 −XI)以上で、各座標Xo、Yoが得られたこ
とによって、特徴点Pの位置が検出されたわけである。 なお、第2図において、ウィンドウWの移動を小刻みに
おこない、特徴点Pを含むウィンドウの個数を3個以上
とれば、前記よりさらに正確な特徴点Pの位置を検出す
ることができる。 次に、特徴点Pから2方向に伸びる各直線LLL2の方
向関係の検出方法について第4図を参照しながら説明す
る。 第4図は移動ウィンドウの4箇所での、X軸方向に係る
投影値のY座標に対する特性図で、同図(a)は第2図
におけるウィンドウW1に対応する特性図、同図(b)
はウィンドウW2に対応する特性図、同II (C)は
ウィンドウW3に対応する特性図、同図((j)はウィ
ンドウW4に対応する特性図である。 第4図(a)〜(d)において共通に、縦軸にY座標、
横軸にY軸への投影値Syをそれぞれとる。同図(a)
では、投影値Syはやや高位のほぼ一定値をとる。同図
(b)では、投影値SyはY座標の初期段階を過ぎてか
らY座標の増大とともに低下傾向を示す。同図(C)で
は、投影値SyはY座標の同図(b)より遅れた初期段
階を過ぎてからY座標の増大とともに低下傾向を示す。 同図(cl)では、投影値Syは低位のほぼ一定値をと
る。 第4図(b)、 (C)において、投影値Syの座標Y
に対する低下傾向から、第2図における直線L2の方向
が判る。第2図において、もし逆に直線L2の方向が破
線表示のようであれば、第4図(b)、 (C)におい
て、投影値Syは、破線表示のように座標Yの増大とと
もに上昇傾向を示し、また第4図(d)において、投影
値Syは、破線表示のように高位のほぼ一定値をとる。 このように、投影値syの座標Yに対する昇降傾向から
、第2図における破線表示の直線L2の方向が判る。 ここで再び第1図に戻り、検査対象の布地に織りミスが
ある状態では、前記のように特徴点Pの各座標Xo、Y
oと、各直線Ll、L2の方向関係とを検出することが
できる。またパターンが−様な状態では、各直線Ll、
L2が同一線になって、特徴点Pが存在しない。 【発明の効果】 以上説明したように、この発明によれば、明るさの異な
る二つの領域が特徴点としての一点から異なる2方向に
それぞれ伸びる各直線を境界として隣接するときの、そ
の特徴点の位置と、各直線の方向関係とを撮像に基づく
画像処理によって検出することができ、この検出方法は
例えば織物や金属組織断面などの画像に関するパターン
(模様)の−様性を自動的に検査するのに利用でき、検
査の正確度の向上や能率化、省力化を図ることができる
[Example] An application example of the method for detecting the feature point position and linear direction of the boundary line F according to the present invention will be described below with reference to a cross section. FIG. 1 is a schematic diagram showing the relationship between a fixed image and a window. In FIG. 1, within a fixed image field F obtained by imaging the target pattern, two lines are defined by straight lines Ll and L2 extending upward and diagonally downward to the right from the feature point P, respectively. There is an area DLD2. Now, area D
1 is dark and area D2 is bright. 1. Straight parallel to one side. ! When a rectangular window W through which L1 passes is generated and it is moved in the direction of the straight line L1, the projection onto the X and Y axes at each location described below is determined. The size of this window W is, for example, such that a plurality of windows W can be accommodated within the fixed image field of view F, and the X-direction component of the straight line L2. Make it twice or less of each value of the X direction component. FIG. 2 is a schematic diagram showing four positions of the moving window. In the figure, the windows at each of the four positions are shown as Wl, W2, . W3. Let's call it W4. The feature point P is not included in each window Wl, W4, but is included in each window W
2. Included in W3. The X-axis and Y-axis are parallel to the upper and left sides of the fixed image field of view F, respectively.
Take the axis. The coordinates of the feature point P are Xo, Yo, each window W2. When the intersections of the lower side of W3 and straight line L2 are points A and B, the coordinates of each point A;B are XLYI;
2. Let it be Y2. Figure 3 is a characteristic diagram of the projection value in the X-axis direction with respect to the
is a characteristic diagram corresponding to the window W2, (C) is a characteristic diagram corresponding to the window W3, and (d) is a characteristic diagram corresponding to the window W4. In FIG. 3(a) to (d), the horizontal axis is the X coordinate,
The projection value 3× onto the X axis is plotted on the vertical axis. Figure (a)
Then, at the coordinate Xo, the projection value Sx rises steeply from a low position to a high position. Similarly, in the same figure (b), the coordinate χ0
The projection value Sx begins to increase from a low position and becomes flat at a high position from the coordinate X1. In the same figure (C), the projection value Sx starts to increase from a low position at the coordinate Xo and becomes flat from a high position at the coordinate X2. In the figure (d), the projection value Sx is low and flat. Here, the low and high values of the projection value Sx correspond to darkness and brightness of each area DI and D2, respectively. By the way, it should be noted that the projection values on each coordinate axis vary considerably depending on the unique characteristics of the image and slight differences in the way the illumination is applied. Therefore, it is necessary to detect the projection value in such a way that it changes extremely depending on the presence or absence of the factor. Based on the coordinates Xo, XlX2 obtained from Figure 3 (a), (b), and (C), and the coordinates Yl, Y2 in Figure 2, the coordinates are calculated based on the formula for a straight line connecting two points in analytical geometry. Y. is required. Yo =Y1+(Y2-Yl)(Xo-X'l)/(
X2 - XI) In the above manner, the position of the feature point P has been detected by obtaining the respective coordinates Xo and Yo. In addition, in FIG. 2, if the window W is moved in small increments and the number of windows containing the feature point P is three or more, the position of the feature point P can be detected more accurately than described above. Next, a method for detecting the directional relationship between the straight lines LLL2 extending in two directions from the feature point P will be described with reference to FIG. Figure 4 is a characteristic diagram of the projection value in the X-axis direction versus the Y-coordinate at four locations of the moving window, where (a) is a characteristic diagram corresponding to window W1 in Figure 2, and (b) is the characteristic diagram corresponding to window W1 in Figure 2.
is a characteristic diagram corresponding to window W2, II (C) is a characteristic diagram corresponding to window W3, and FIG. 4 (j) is a characteristic diagram corresponding to window W4. In common, the vertical axis is the Y coordinate,
The horizontal axis represents the projection value Sy onto the Y axis. Figure (a)
In this case, the projection value Sy takes a slightly high, almost constant value. In FIG. 4B, the projection value Sy shows a decreasing tendency as the Y coordinate increases after passing the initial stage of the Y coordinate. In the figure (C), the projection value Sy shows a decreasing tendency as the Y coordinate increases after passing an initial stage that is later than in the figure (b) of the Y coordinate. In the same figure (cl), the projection value Sy takes a low, almost constant value. In Fig. 4(b) and (C), the coordinate Y of the projection value Sy
The direction of the straight line L2 in FIG. 2 can be determined from the decreasing tendency for the curve. In Fig. 2, if the direction of the straight line L2 is indicated by a broken line, then in Figs. In FIG. 4(d), the projection value Sy takes on a high, almost constant value as indicated by the broken line. In this manner, the direction of the straight line L2 indicated by the broken line in FIG. 2 can be determined from the upward and downward tendency of the projection value sy with respect to the coordinate Y. Returning to FIG. 1 again, when there is a weaving error in the fabric to be inspected, each coordinate Xo, Y
o and the directional relationship between the straight lines Ll and L2. In addition, when the pattern is −-like, each straight line Ll,
L2 becomes the same line, and the feature point P does not exist. Effects of the Invention As explained above, according to the present invention, when two areas with different brightness are adjacent to each other with straight lines extending from one point as a feature point in two different directions as boundaries, the feature point The position of the line and the directional relationship of each straight line can be detected by image processing based on imaging, and this detection method can automatically inspect the pattern of images of textiles, metal structure cross sections, etc. It can be used to improve inspection accuracy, efficiency, and labor savings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は固定画像とウィンドウとの関係を示す模式図、 第2図は移動ウィンドウの4箇所での各位置を示す模式
図、 第3図は移動ウィンドウの4箇所での、X軸方向に係る
投影値のX座標に対する特性図で、同図(a)は第2図
におけるウィンドウWlに対応する特性図、同図(b)
はウィンドウW2に対応する特性図、同図(C)はウィ
ンドウW3に対応する特性図、同図(d)はウィンドウ
W4に対応する特性図、第4図は移動ウィンドウの4箇
所での、Y軸方向に係る投影値のY座標に対する特性図
で、同図(a)は第2図におけるウィンドウW1に対応
する特性図、同図(b)はウィンドウW2に対応する特
性図、同図(C)はウィンドウW3に対応する特性図、
同図(d)はウィンドウW4に対応する特性図である。 符号説明 DLD2  :領域、F:固定画像視野、LLL2  
:直線、P:特徴点、 W、WLW2.W3.W4  :ウィンドウ。 ■ ×○ Xz 慕ヨ5民
Figure 1 is a schematic diagram showing the relationship between the fixed image and the window, Figure 2 is a schematic diagram showing the four positions of the moving window, and Figure 3 is a schematic diagram showing the four positions of the moving window in the X-axis direction. These are characteristic diagrams for the X coordinate of the projection value, where (a) is a characteristic diagram corresponding to the window Wl in Figure 2, and (b) is a characteristic diagram corresponding to the window Wl in Figure 2.
is a characteristic diagram corresponding to window W2, (C) is a characteristic diagram corresponding to window W3, (d) is a characteristic diagram corresponding to window W4, and FIG. 4 is a characteristic diagram corresponding to window W4. These are characteristic diagrams for the Y coordinate of the projection value in the axial direction, where (a) is a characteristic diagram corresponding to window W1 in Figure 2, (b) is a characteristic diagram corresponding to window W2, and (C) is a characteristic diagram corresponding to window W2 in Figure 2. ) is the characteristic diagram corresponding to window W3,
FIG. 4(d) is a characteristic diagram corresponding to window W4. Code explanation DLD2: area, F: fixed image field of view, LLL2
: Straight line, P: Feature point, W, WLW2. W3. W4: Window. ■ ×○ Xz Muyo 5 people

Claims (1)

【特許請求の範囲】 1)明るさの異なる二つの領域が特徴点としての一点か
ら異なる2方向にそれぞれ伸びる各直線を境界として隣
接するときの、前記特徴点の位置と、前記各直線の方向
関係とを撮像に基づく画像処理によって検出する方法に
おいて、 前記特徴点を視野内に含む固定両像内に方形のウィンド
ウを、その一辺と平行に前記各直線のうちの一方が貫通
するように生成すること; 前記ウィンドウを前記一方の直線と平行に移動させたと
きの各箇所で、前記ウィンドウの移動方向と直角な第1
の辺への投影をとり、この投影の最大値または最小値の
変化起点の、前記ウィンドウの第1辺に係る座標を、前
記各箇所ごとに求めること; この各箇所ごとの前記座標に基づいて前記特徴点の位置
を検出すること; 前記ウィンドウの第1辺と直角な第2の辺への投影を前
記各箇所ごとにとり、その投影値を求めること; この各箇所ごとの前記投影値の増減傾向に基づいて前記
各直線の方向関係を検出すること; の各ステップを備えることを特徴とする境界線上の特徴
点位置・直線方向の検出方法。
[Claims] 1) When two areas with different brightness are adjacent to each other with straight lines extending in two different directions from one point as a feature point as boundaries, the position of the feature point and the direction of each straight line. In the method of detecting a relationship between fixed images by image processing based on imaging, a rectangular window is generated in both fixed images including the feature point in the field of view, so that one of the straight lines passes through the window parallel to one side of the rectangular window. at each point when the window is moved parallel to the one straight line, a first line perpendicular to the direction of movement of the window;
taking a projection onto the side of and determining the coordinates of the starting point of change of the maximum value or minimum value of this projection relative to the first side of the window for each of the locations; based on the coordinates of each location; Detecting the position of the feature point; Taking a projection onto a second side perpendicular to the first side of the window for each of the locations, and determining its projection value; Increasing or decreasing the projection value for each location. A method for detecting feature point positions and straight line directions on a boundary line, comprising the following steps: detecting the directional relationship of each of the straight lines based on a tendency.
JP2171868A 1990-06-29 1990-06-29 Detecting method for feature point position and straight line direction on boundary line Pending JPH0460879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2171868A JPH0460879A (en) 1990-06-29 1990-06-29 Detecting method for feature point position and straight line direction on boundary line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2171868A JPH0460879A (en) 1990-06-29 1990-06-29 Detecting method for feature point position and straight line direction on boundary line

Publications (1)

Publication Number Publication Date
JPH0460879A true JPH0460879A (en) 1992-02-26

Family

ID=15931281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2171868A Pending JPH0460879A (en) 1990-06-29 1990-06-29 Detecting method for feature point position and straight line direction on boundary line

Country Status (1)

Country Link
JP (1) JPH0460879A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022251A (en) * 1995-09-06 2000-02-08 Sanshin Kogyo Kabushiki Kaisha Water inlet for marine drive
CN103544715A (en) * 2013-09-29 2014-01-29 广东工业大学 Segmentation method for color images of printed circuit board microsection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022251A (en) * 1995-09-06 2000-02-08 Sanshin Kogyo Kabushiki Kaisha Water inlet for marine drive
CN103544715A (en) * 2013-09-29 2014-01-29 广东工业大学 Segmentation method for color images of printed circuit board microsection
CN103544715B (en) * 2013-09-29 2017-04-19 广东工业大学 Segmentation method for color images of printed circuit board microsection

Similar Documents

Publication Publication Date Title
US6356300B1 (en) Automatic visual inspection apparatus automatic visual inspection method and recording medium having recorded an automatic visual inspection program
US5093867A (en) Candidate article recognition with assignation of reference points and respective relative weights
US6621928B1 (en) Image edge detection method, inspection system, and recording medium
KR890002786A (en) Deep Buffer Priority Processing Method of Real-time Computer Image Generation System
EP1467176B1 (en) Inspection system and method
JP2900425B2 (en) Image quality inspection equipment
JPH0460879A (en) Detecting method for feature point position and straight line direction on boundary line
JPH1031730A (en) Calibration method
JP3264020B2 (en) Inspection data creation method and mounted component inspection device
JPH0933233A (en) Measuring apparatus for bending of long work
JP3091039U (en) Defect detection device based on 8-neighboring point adjacent comparison method in imaging inspection device
JPH05180618A (en) Position-recognizing method for object
JPS62204378A (en) Method for detecting center of circle
JP3138056B2 (en) 2D measuring machine
US20080049011A1 (en) Surface Mapping Arrangement and Method
JP2004070743A (en) Image processor
JP2527233Y2 (en) Work position detector
JP3099402B2 (en) Land position detection method and land position detection device
JPS63128215A (en) Detecting method for inclination of camera optical axis
JPH03115907A (en) Hole position detecting method
JPH02103674A (en) Checking device
JPH02171604A (en) Method for inspecting size of plate material
JPH01131403A (en) Outward appearance inspecting method
JPH01265102A (en) Gravity center detecting method for electrode part of electronic parts
JPS63128203A (en) Optical position measuring method for object