JPH0460833B2 - - Google Patents

Info

Publication number
JPH0460833B2
JPH0460833B2 JP14907780A JP14907780A JPH0460833B2 JP H0460833 B2 JPH0460833 B2 JP H0460833B2 JP 14907780 A JP14907780 A JP 14907780A JP 14907780 A JP14907780 A JP 14907780A JP H0460833 B2 JPH0460833 B2 JP H0460833B2
Authority
JP
Japan
Prior art keywords
liquid
electrode
jet recording
transistor
attachment member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14907780A
Other languages
Japanese (ja)
Other versions
JPS5772868A (en
Inventor
Shigeyuki Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14907780A priority Critical patent/JPS5772868A/en
Priority to US06/311,894 priority patent/US4429321A/en
Priority to FR8119836A priority patent/FR2492735B1/en
Priority to GB8132029A priority patent/GB2088286B/en
Priority to DE3142121A priority patent/DE3142121C2/en
Publication of JPS5772868A publication Critical patent/JPS5772868A/en
Publication of JPH0460833B2 publication Critical patent/JPH0460833B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1601Production of bubble jet print heads
    • B41J2/1604Production of bubble jet print heads of the edge shooter type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1623Manufacturing processes bonding and adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1631Manufacturing processes photolithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/164Manufacturing processes thin film formation
    • B41J2/1642Manufacturing processes thin film formation thin film formation by CVD [chemical vapor deposition]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/164Manufacturing processes thin film formation
    • B41J2/1646Manufacturing processes thin film formation thin film formation by sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/13Heads having an integrated circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

【発明の詳細な説明】 本発明は、飛翔液滴を形成して記録を行う液体
噴射記録装置、殊に熱的作用を液体に与えて、飛
翔液滴を形成して、記録を行う液体噴射記録装置
に関する。 液体噴射記録装置は、ノンインパクト記録とし
て、サイレントの要求される現代のビジネスオフ
イスやその他の事務処理部門に於いて、強く望ま
れている傍、高密度で、高速記録が可能であると
いう点で又、保守が比較的容易になる、或いはメ
ンテナンスフリーに成り得るという点に於いて、
開発、改良が計られている。 その様な液体噴射記録装置の中で、特開昭54−
59936に開示されてある液体噴射記録装置は、そ
の構造的な特徴から、高密度で高速記録が充分可
能であり、且つ所謂フルライン記録ヘツドの設計
製造が極めて容易である為、その実現が熱望され
ている。 而乍ら、斯かる液体噴射記録装置に於いても、
高密度でフルライン化の記録を実現しようとする
と、その記録ヘツドの構造上の設計的問題や記録
精度、及び記録の確実性と耐久性等に直結する記
録ヘツドの製造上及び生産性や量産性の点に於い
て解決すべき点が未だ残されている。即ち、上記
した液体噴射記録装置は、高密度・高速化を計る
為にその記録ヘツド部が、高度に集積化された構
造が要求されるので、その集積化上の問題、詰り
記録ヘツドの構成要素としての各素子や信号処理
手段の構造的配置と製造上の歩留り、或いはそれ
等を電気的に結線する為の配線上等、設計上、生
産及び量産上に於いて解決される可き点がある。 例えば、飛翔液滴を形成する為に液体に作用さ
せる熱を発生する手段としての電気・熱変換素子
が画像密度に応じて多数配列され、これ等の多数
の電気熱変換素子を独立的に各々所望に従つて駆
動する為の駆動信号分離素子アレー、例えばトラ
ンジスタアレー、或いは信号増幅手段を付加され
たダイオードアレー等が集積されて高密度で精度
良く且つ特性上の一様均一化を以つて効率良く生
産されることが上記の液体噴射記録装置の特徴を
最大限に引出させることが出来るものであるが、
現状に於いては、各素子アレーは歩留り、及び製
造の容易性から個別的にチツプ化されて作製さ
れ、各素子のチツプを共通基板上に配設して、ボ
ンデイング等の手段によつて各対応する素子同志
の電気的結線及び他の電気的手段との連絡用のリ
ード電極の付設を行い、その後、飛翔液滴を形成
する為に液体を噴射する吐出オリフイス、及び該
オリフイスに連通する熱作用室部等の液体で満た
される空間を形成する為のヘツド構成部材と接着
接合して記録ヘツドの作製を行つているので煩雑
さの著しさと量産的効率の低さを避けることは出
来ていない。更に記録ヘツドの高密度高集積化及
び長尺化に連れて上記の点は一層解決が計られる
必要がある。又、設計通りの所望特性が得られる
為の作製上に於ける確実さ、及び再現性の点に於
いても考慮され、改善が計られる必要がある。 本発明は、上記の諸点に鑑み成されたもので、
作製上に於ける確実さと安定的生産性及び特性上
の再現性に於いて著しい優位性を有し、高密度で
高速記録が安定的に行える液体噴射記録装置を提
供することを目的とする。 本発明の液体噴射記録装置は、複数の発熱抵抗
体と該複数の発熱抵抗体に一対一対応して設けら
れる機能素子とが設けられた素子付設部材と、液
体供給用の液体を保持する共通液室を形成するた
めの液室形成部材と、上記複数の発熱抵抗体に対
応した複数の液流路および吐出部と、を有し、上
記複数の発熱抵抗体は上記素子付設部材表面側に
形成された絶縁層上に設けられ、上記機能素子は
上記液室下部以外の上記素子付設部材内部に設け
られ、上記発熱抵抗体と上記機能素子とを結ぶ電
極が薄膜電極であることを特徴とする。 上記の構成とされる本発明の液体噴射記録装置
は、確実性と安定性を以つて高密度で高速記録が
容易に行えると共に、その製造上に於いて、歩留
りの大幅なアツプと製造工程数の低減によるコス
トダウン、又、マスプロダクト向きの構造を有
し、その特性、殊に電気・熱変換素子の放熱効果
が著しくアツプし、電気・熱変換素子に設けられ
る信号分離素子、例えば、ダイオードやトランジ
スターの寿命を大幅に向上させる。以下、図に従
つて本発明を具体的に説明する。 第1図には、本発明の液体噴射記録装置の好適
な実施態様例の構成を説明する為の模式的組立部
分図が示される。 第1図に示す液体噴射記録装置は、複数の電
気・熱変換素子がアレー状に配列されて構成され
る電気・熱変換素子配列部102と電気・熱変換
素子に対応して設けられる機能素子で構成される
駆動回路部103が表面部に設けられてある素子
付設部材101と、液体供給用の共通液室及び流
路を形成する為に、所定の形状と寸法で所定数の
溝が設けてある溝蓋部材104で基本的には構成
される。 溝蓋部材104は、所定の間隔と所定の寸法で
規則的に配列されている電気・熱変換素子105
の各々を、各々の溝106が各々覆う様に、溝1
06は電気・熱変換素子105の配列ピツチと等
ピツチで溝蓋部材104に設けられ、各溝106
は、溝蓋部材104の後方に、各溝106の設け
られる方向と垂直な関係に設けられた共通液室用
溝107と連結され、素子付設部材101の素子
配列部102上に溝蓋部材104が各溝106と
対応する各電気・熱変換素子105とが対向する
様にして接合されて、その一部に熱作用室部を有
する複数の流路とこれ等の流路に液体を満たす為
に、液体を各流路に供給する為の共通液室が形成
される。 共通液室用溝107の後方には、外部に設けら
れる液貯蔵槽(不図示)より共通液室に液体を供
給する為の供給管108が付設されている。 電気・熱変換素子105は、各素子に共通の共
通電極109と、駆動回路部103を構成する機
能素子としてのトランジスタ110のコレクタ部
に接続されている電極111との間に、発生した
熱を液体に作用させる為に設けられる発熱抵抗部
112を有する。電気・熱変換素子配列部102
の表面全域には、図示されてはいないが、液体と
発熱抵抗部112との接触及び共通電極109と
コレクタ電極111との電気的リークを防止する
為に電気絶縁性の保護層が設けられる。 駆動回路部103は、コレクタ電極111の、
ベース電極113、エミツタ電極114の各々の
下部位に、各々、コレクタ領域、ベース領域、及
びエミツタ領域が形成されている。これ等の領域
は、半導体基板115の表面内部に構造的に設け
られる。各ベース電極113は後方に付設されて
あるベース共通電極116とに連続的に形成され
ている。117は、各トランジスタ110を電気
的にアイソレーシヨンする為にコレクタ領域に高
電圧を印加する為の電極であつて、各トランジス
タに共通である。 第1図bには、第1図に示す装置を流路に沿つ
て切断した場合の断面構造が模式的に示される。 素子付設部材101は、その表面内部に構造的
に機能素子としてのトランジスタ110が設けら
れた構造を有し、半導体基板118上に形成され
たエピタキシヤル層119の表面に電気・熱変換
素子105が積層構造的に設けられている。 電気・熱変換素子105は、エピタキシヤル層
119の表面に設けた電気絶縁性の保護層131
の上に発熱抵抗部112と、共通電極109、ト
ランジスタ110のコレクタ領域と接続する為の
電極111とで構成され、発熱抵抗部112は発
熱抵抗体120と、該発熱抵抗体120を保護す
る為の保護層121とで構成されている。 発熱抵抗部112の上部には、該発熱抵抗部1
12より発生する熱の作用を受けて気泡の発生
と、その体積の収縮を含む急激な状態変化を液体
が引起す所としての熱作用室部122が形成され
ている。熱作用室部122は、上記の状態変化に
基いて飛翔液滴が形成される為に液体が噴射され
る吐出オリフイス123と、後方に設けられた共
通液室124に各々連通しており、共通液室12
4には、外部からの液体を共通液室124に供給
する為の供給管108が付設されてある。 電気・熱変換素子105の各々の後方には、対
応したトランジスタ110がエピタキシヤル層1
19の内部に構造的に設けられている。 トランジスタ110は、通常のトランジスタ構
造を有しているもので、底辺部には、コレクタ領
域125の抵抗遁減の為の埋込み層128−1が
設けてある。電極111とコレクタ領域125の
間には、オーミツク接触を形成する為のオーミツ
ク領域128−2が設けてある。 コレクタ領域125、ベース領域126、エミ
ツタ領域127からは、電気的に隔絶されて、各
電極111,113,114,117が各々取り
出されている。エミツタ電極114と、ベース電
極113及びアイソレーシヨン用の電極117と
の間には、重なる部分に於いて、電気的隔絶を形
成する為に、電気的絶縁層129−1,129−
2が介在させてある。電気・熱変換素子105と
トランジスタ110との間には、電気・熱変換素
子105より発生する熱がトランジスタ110に
悪影響を与えない様に熱的アイソレーシヨンを行
う為に拡散領域130が設けてある。 この拡散領域130を設けることで、トランジ
スタ110の寿命が格段に延びる。 同図に示されるように、発熱抵抗体120が、
素子付設部材101上部に形成された薄膜絶縁層
131の上に位置する熱作用室部122領域に形
成され、トランジスタ110が、液体が保持され
ている液室の下部領域以外の素子付設部材101
内部に形成され、液体噴射のために発生した熱に
基づく発熱抵抗体120からトランジスタ110
への熱伝導は、上記液室の位置によつて効果的に
抑制できる。 この抑制効果はすなわち、液室が両者の間に介
在していることによつて生じたものである。ま
た、この液室の位置によつて、トランジスタ自身
の微小発熱による部分昇温も素子付設部材全体へ
分散されるので、温度分布が均一化され、トラン
ジスタの動作が一層安定化するという効果も生じ
る。 なお、拡散領域130は、図示されているよう
に、液室下部領域の素子付設部材101内部に形
成され、該拡散領域130によつて、前記発熱抵
抗体120と前記トランジスタ110とが熱的に
アイソレートされている。 次に、素子付設部材101の形成法に就て、第
2図を参照し乍ら説明する。 第2図には、第1図に示す素子付設部材を作製
する場合の工程図の一例の概略が示される。 先ず、P型半導体基板201を用意し、該基板
201にコレクタ抵抗遁減の為の埋込み層202
を形成し、次いで、その上にエピタキシヤル層2
03を形成する(工程(b)) 埋込み層202は、基板201上に形成された
酸化膜にリソグラフイ技術を用いて構成される窓
より、アンチモン(Sb)、ヒ素(As)等を拡散す
ることによつてパターン状に形成される。 埋込み層202の形成後は、上記の酸化膜は全
面的に除去される。 その後、基板201上にn型のエピタキシヤル
層203を成長させる。この層203は、10μm
前後の層厚さとされるのが望ましい。 エピタキシヤル層119の上部表面に酸化膜2
04を形成し、この酸化膜にリソグラフイ技術を
用いて窓205を形成した後、この窓205より
p型不純物を拡散して、アイソレーシヨン用の拡
散領域206を形成する。 拡散領域206−1,206−2で囲まれた部
分がバイポーラトランジスタのコレクタ領域20
7となる(工程(c)) 工程(d)は、ベース領域208の拡散法による形
成が示される。ベース領域208の形成部分以外
を酸化膜で覆い、ボロン(B)等のp型不純物を高濃
度に拡散してp+にし、ベース領域208を形成
する。 工程(e)は、エミツタ領域209及び、アルミニ
ウム電極とコレクタ領域207とのオーミツク接
触を得る為のオーミツク領域210を設けるの
に、n型不純物を高濃度で拡散させてn+領域を
形成する場合が示される。 この場合、エミツタ領域209とオーミツク接
触領域210は全く同時にn型不純物の高濃度拡
散によつてn+半導体領域として形成される。 工程(f)、(g)に於いて、電気・熱変換素子を構成
する発熱抵抗体領域を形成する場合が示される。 工程(e)の終了後、トランジスタ部を保護する為
に電気絶縁性の保護層211を設ける。次にリソ
グラフイ技術を用いて発熱抵抗体層213を保護
層211の上に形成する。この際同時に保護層2
11の一部を溶解して電極用の窓212も設け
る。保護層211としては、スパツタ法或いは
CVD法等で形成されたSiO2、Si3N4等の層、又は
トランジスタ表面の酸化工程による酸化膜等が望
ましく使用される。 発熱抵抗体層213の下部にある保護層211
は、この例の場合には発生した熱の拡散を制御す
る蓄熱層の役目も荷わせることも出来る。 次に、最終工程としてアルニミウム等の電極材
料を真空堆積法等で積層し、フオトリソグラフイ
技術によつてパターニングして電極配線を完了し
(この工程は、第2図には省略されてある)第1
図に示す様な構造の素子付設部材が作製される。 発熱抵抗体層213の形成には、蒸着法、スパ
ツター法等の真空堆積法やCVD法等が採用され
る。 発熱抵抗体層213を構成する材料としては、
NiCr等の金属合金、TiC等の炭化物、ZrB2
HfB2等のホウ化物、BN等の窒化物、SiB4等の
硅化物、GaP、InP等のリン化物、GaAs、
GaPxAs(I−x)等のヒ化物が好適なものとし
て挙げられる。 第3図には、本発明の別の実施態様例の主要部
(素子付設部材)の構造が模式的に示される。 第4図に、その作製法の工程の一部が示され
る。 アルミナ(Al2O3)基板301上にエピタキシ
ヤル成長させたSi層302に従来技術によりSOS
型のPNPラテラルトランジスタ部303を形成
する〔工程(a)〕。このトランジスタ部303以外
のSi層の一部をエツチングして除去し、更に残つ
たSi層を酸化させて、SiO2保護膜304を形成
する〔工程(b)〕。その上に、発熱抵抗体層305
を積層し、パターニングとラテラルトランジスタ
部303上の保護膜の窓あけを同時に行ない次い
で、Al等の金属電極部を積層して、リソグラフ
イ技術によつて各電極307〜310を形成す
る。 発熱抵抗体層305の下部の保護膜306は、
前実施態様例の場合と同様、蓄熱層としての機能
も合わせもつ。なお第3図に示す実施態様例の場
合SOS型NPNラテラルトランジスター構造にし
ても同様の効果があつた。 尚、第1図に示す構造を有する液体噴射装置を
試作し、第1表に示す条件に従つて実際に記録を
実行したところA41万枚の長時間高速記録に於い
ても初期と同様の極めて高品質の画像を得ること
が出来た。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid jet recording device that performs recording by forming flying droplets, and in particular, a liquid jet recording device that performs recording by forming flying droplets by applying a thermal effect to a liquid. It relates to a recording device. Liquid injection recording devices are strongly desired as non-impact recording in modern business offices and other office processing departments where silence is required, and they are also highly desirable in that they are capable of high-density and high-speed recording. In addition, in that maintenance is relatively easy or maintenance-free,
Development and improvement are planned. Among such liquid jet recording devices, Japanese Patent Application Laid-Open No. 1983-
The liquid jet recording device disclosed in No. 59936 is capable of high-density and high-speed recording due to its structural characteristics, and it is extremely easy to design and manufacture a so-called full-line recording head, so there is a desire for its realization. has been done. However, in such a liquid jet recording device,
When trying to realize high-density, full-line recording, there are problems with the structural design of the recording head, recording accuracy, and the manufacturing, productivity, and mass production of the recording head, which are directly linked to recording reliability and durability. There are still issues to be resolved regarding gender. That is, in order to achieve high density and high speed, the liquid jet recording device described above requires a highly integrated structure for its recording head section, so problems related to integration, clogging, and the structure of the recording head may occur. Points to be solved in terms of design, production, and mass production, such as the structural arrangement and manufacturing yield of each element and signal processing means, or the wiring for electrically connecting them. There is. For example, a large number of electrothermal conversion elements are arranged according to the image density as a means of generating heat to be applied to the liquid to form flying droplets, and each of these many electrothermal conversion elements is independently activated. Drive signal separation element arrays for driving as desired, such as transistor arrays or diode arrays with signal amplification means, are integrated to achieve high efficiency with high density, high precision, and uniform characteristics. Well-produced liquid jet recording devices can maximize the characteristics of the liquid jet recording device described above.
Currently, each element array is fabricated as an individual chip for the sake of yield and ease of manufacture, and the chips of each element are placed on a common substrate and each element array is fabricated by bonding or other means. Electrical connections between the corresponding elements and lead electrodes for communication with other electrical means are attached, and then a discharge orifice for ejecting liquid to form flying droplets and a heat communicating with the orifice are installed. Since the recording head is manufactured by adhesively bonding the head component to form a space filled with liquid such as an action chamber, it is not possible to avoid significant complexity and low mass production efficiency. do not have. Furthermore, as recording heads become denser, more integrated, and longer, the above-mentioned problems need to be solved even more. Furthermore, it is necessary to consider and improve the reliability and reproducibility of the manufacturing process in order to obtain the desired characteristics as designed. The present invention has been made in view of the above points, and
The object of the present invention is to provide a liquid jet recording device that has remarkable advantages in manufacturing reliability, stable productivity, and reproducibility of characteristics, and can stably perform high-density and high-speed recording. The liquid jet recording device of the present invention includes an element attachment member provided with a plurality of heat generating resistors and a functional element provided in one-to-one correspondence with the plurality of heat generating resistors, and a common element attachment member that holds a liquid for liquid supply. It has a liquid chamber forming member for forming a liquid chamber, and a plurality of liquid flow paths and discharge parts corresponding to the plurality of heat generating resistors, and the plurality of heat generating resistors are arranged on the surface side of the element attachment member. The functional element is provided on the formed insulating layer, the functional element is provided inside the element attachment member other than the lower part of the liquid chamber, and the electrode connecting the heating resistor and the functional element is a thin film electrode. do. The liquid jet recording device of the present invention configured as described above can easily perform high-density, high-speed recording with reliability and stability, and can significantly increase the yield and reduce the number of manufacturing steps. In addition, it has a structure suitable for mass products, and its properties, especially the heat dissipation effect of the electric/thermal conversion element, are significantly improved. and significantly improve the lifespan of transistors. The present invention will be specifically described below with reference to the drawings. FIG. 1 is a schematic partial assembly diagram for explaining the configuration of a preferred embodiment of the liquid jet recording apparatus of the present invention. The liquid jet recording device shown in FIG. 1 includes an electrical/thermal transducer arrangement section 102 that is constructed by arranging a plurality of electrical/thermal transducers in an array, and functional elements provided corresponding to the electrical/thermal transducers. A predetermined number of grooves with a predetermined shape and size are provided in order to form a common liquid chamber and flow path for liquid supply. It basically consists of a groove cover member 104. The groove cover member 104 has electrical/thermal conversion elements 105 regularly arranged at predetermined intervals and with predetermined dimensions.
The grooves 106 cover each of the grooves 106 respectively.
06 are provided in the groove cover member 104 at the same pitch as the arrangement pitch of the electric/thermal conversion elements 105, and each groove 106
is connected to a common liquid chamber groove 107 provided at the rear of the groove cover member 104 in a relationship perpendicular to the direction in which each groove 106 is provided, and the groove cover member 104 is connected to the common liquid chamber groove 107 provided at the rear of the groove cover member 104 in a relationship perpendicular to the direction in which each groove 106 is provided. are joined so that each groove 106 and each corresponding electric/thermal conversion element 105 face each other, and a plurality of flow channels each having a heat action chamber part are formed, and these flow channels are filled with liquid. A common liquid chamber is formed for supplying liquid to each channel. A supply pipe 108 is provided behind the common liquid chamber groove 107 for supplying liquid to the common liquid chamber from a liquid storage tank (not shown) provided outside. The electric/thermal conversion element 105 transfers generated heat between a common electrode 109 common to each element and an electrode 111 connected to the collector part of a transistor 110 as a functional element constituting the drive circuit part 103. It has a heat generating resistor 112 provided to act on the liquid. Electricity/thermal conversion element array section 102
Although not shown, an electrically insulating protective layer is provided over the entire surface of the electrode to prevent contact between the liquid and the heating resistor 112 and to prevent electrical leakage between the common electrode 109 and the collector electrode 111. The drive circuit section 103 includes the collector electrode 111.
A collector region, a base region, and an emitter region are formed below each of the base electrode 113 and the emitter electrode 114, respectively. These regions are structurally provided within the surface of semiconductor substrate 115. Each base electrode 113 is formed continuously with a base common electrode 116 attached at the rear. Reference numeral 117 is an electrode for applying a high voltage to the collector region in order to electrically isolate each transistor 110, and is common to each transistor. FIG. 1b schematically shows a cross-sectional structure when the device shown in FIG. 1 is cut along the flow path. The element attachment member 101 has a structure in which a transistor 110 as a functional element is structurally provided inside its surface, and an electric/thermal conversion element 105 is provided on the surface of an epitaxial layer 119 formed on a semiconductor substrate 118. It is provided in a laminated structure. The electrical/thermal conversion element 105 includes an electrically insulating protective layer 131 provided on the surface of the epitaxial layer 119.
The heating resistor section 112 includes a heating resistor section 112 on top, a common electrode 109, and an electrode 111 for connecting to the collector region of the transistor 110. It is composed of a protective layer 121. On the upper part of the heat generating resistor section 112, the heat generating resistor section 1
A heat action chamber 122 is formed in which the liquid undergoes rapid state changes including the generation of bubbles and contraction of its volume under the action of heat generated by the heat chamber 122 . The heat action chamber 122 communicates with a discharge orifice 123 through which liquid is ejected to form flying droplets based on the above state change, and a common liquid chamber 124 provided at the rear. Liquid chamber 12
4 is attached with a supply pipe 108 for supplying liquid from the outside to the common liquid chamber 124. Behind each of the electric/thermal conversion elements 105, a corresponding transistor 110 is connected to the epitaxial layer 1.
It is structurally provided inside 19. The transistor 110 has a normal transistor structure, and a buried layer 128-1 for reducing the resistance of the collector region 125 is provided at the bottom. An ohmic region 128-2 is provided between the electrode 111 and the collector region 125 for forming an ohmic contact. Each electrode 111, 113, 114, 117 is taken out from the collector region 125, base region 126, and emitter region 127 in an electrically isolated manner. Between the emitter electrode 114, the base electrode 113, and the isolation electrode 117, electrically insulating layers 129-1, 129-
2 is interposed. A diffusion region 130 is provided between the electric/thermal conversion element 105 and the transistor 110 in order to provide thermal isolation so that the heat generated by the electric/thermal conversion element 105 does not adversely affect the transistor 110. be. By providing this diffusion region 130, the life of the transistor 110 is significantly extended. As shown in the figure, the heating resistor 120 is
The element attachment member 101 is formed in the heat action chamber 122 area located on the thin film insulating layer 131 formed on the upper part of the element attachment member 101, and the transistor 110 is located in the area other than the lower area of the liquid chamber where the liquid is held.
From the heating resistor 120 formed inside and based on heat generated due to liquid injection to the transistor 110
Heat conduction to the liquid chamber can be effectively suppressed by the position of the liquid chamber. This suppressing effect is caused by the presence of the liquid chamber between the two. Additionally, depending on the position of this liquid chamber, the partial temperature rise caused by the small amount of heat generated by the transistor itself is dispersed to the entire element attachment member, resulting in a uniform temperature distribution and further stabilizing the operation of the transistor. . As shown, the diffusion region 130 is formed inside the element attachment member 101 in the lower region of the liquid chamber, and the diffusion region 130 thermally connects the heating resistor 120 and the transistor 110. Isolated. Next, a method for forming the element attachment member 101 will be explained with reference to FIG. 2. FIG. 2 schematically shows an example of a process diagram for producing the element attachment member shown in FIG. 1. First, a P-type semiconductor substrate 201 is prepared, and a buried layer 202 is formed on the substrate 201 to reduce collector resistance.
is formed, and then an epitaxial layer 2 is formed thereon.
03 (Step (b)) The buried layer 202 is formed by diffusing antimony (Sb), arsenic (As), etc. through a window formed using lithography technology in the oxide film formed on the substrate 201. In some cases, it is formed in a pattern. After forming the buried layer 202, the above oxide film is completely removed. Thereafter, an n-type epitaxial layer 203 is grown on the substrate 201. This layer 203 has a thickness of 10 μm.
It is desirable that the thickness of the front and rear layers be the same. An oxide film 2 is formed on the upper surface of the epitaxial layer 119.
After forming a window 205 in this oxide film using lithography technology, a p-type impurity is diffused through this window 205 to form a diffusion region 206 for isolation. The portion surrounded by the diffusion regions 206-1 and 206-2 is the collector region 20 of the bipolar transistor.
7 (Step (c)) Step (d) shows the formation of the base region 208 by a diffusion method. The area other than the part where the base region 208 is to be formed is covered with an oxide film, and a p-type impurity such as boron (B) is diffused at a high concentration to make it p + , thereby forming the base region 208. In step (e), in order to provide an emitter region 209 and an ohmic region 210 for obtaining ohmic contact between the aluminum electrode and the collector region 207, an n + region is formed by diffusing n-type impurities at a high concentration. is shown. In this case, emitter region 209 and ohmic contact region 210 are formed as n + semiconductor regions by high concentration diffusion of n-type impurities at the same time. In steps (f) and (g), a case is shown in which a heating resistor region constituting an electric/thermal conversion element is formed. After step (e) is completed, an electrically insulating protective layer 211 is provided to protect the transistor section. Next, a heating resistor layer 213 is formed on the protective layer 211 using lithography technology. At this time, protective layer 2
A window 212 for the electrode is also provided by dissolving a part of the electrode. The protective layer 211 can be formed by sputtering method or
A layer of SiO 2 , Si 3 N 4 or the like formed by a CVD method or the like, or an oxide film formed by an oxidation process on the surface of the transistor is preferably used. Protective layer 211 below heating resistor layer 213
In this example, it can also serve as a heat storage layer for controlling the diffusion of generated heat. Next, as a final step, electrode materials such as aluminum are laminated using a vacuum deposition method, etc., and patterned using photolithography technology to complete electrode wiring (this step is omitted in Figure 2). 1st
An element attachment member having a structure as shown in the figure is manufactured. To form the heating resistor layer 213, a vacuum deposition method such as a vapor deposition method or a sputtering method, a CVD method, or the like is employed. The materials constituting the heating resistor layer 213 include:
Metal alloys such as NiCr, carbides such as TiC, ZrB 2 ,
Borides such as HfB 2 , nitrides such as BN, silicides such as SiB 4 , phosphides such as GaP and InP, GaAs,
Suitable examples include arsenides such as GaPxAs (I-x). FIG. 3 schematically shows the structure of the main part (element attachment member) of another embodiment of the present invention. FIG. 4 shows some of the steps of the manufacturing method. SOS is applied to a Si layer 302 epitaxially grown on an alumina (Al 2 O 3 ) substrate 301 using conventional technology.
A type PNP lateral transistor section 303 is formed [step (a)]. A portion of the Si layer other than the transistor portion 303 is etched and removed, and the remaining Si layer is further oxidized to form a SiO 2 protective film 304 [step (b)]. On top of that, a heating resistor layer 305
are laminated, patterning and opening of the protective film on the lateral transistor portion 303 are performed at the same time, and then a metal electrode portion such as Al is laminated to form each electrode 307 to 310 by lithography technology. The protective film 306 below the heating resistor layer 305 is
As in the case of the previous embodiment, it also functions as a heat storage layer. In the case of the embodiment shown in FIG. 3, a similar effect was obtained even when an SOS type NPN lateral transistor structure was used. In addition, when we prototyped a liquid ejecting device with the structure shown in Figure 1 and actually performed recording according to the conditions shown in Table 1, even in long-term high-speed recording of 410,000 A4 sheets, it showed the same excellent results as in the initial stage. We were able to obtain high quality images. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは、本発明の液体噴射記録装置の好適
な実施態様例の構成を示す模式的組立図、第1図
bは、その模式的構成断面図、第2図は、第1図
に示す装置の主要部を作製する例を示す模式的工
程図、第3図は、他の実施態様例の主要部の構成
を示す模式的断面図、第4図は、製造工程図であ
る。 101……素子付設部材、102……素子配列
部、103……駆動回路部、104……溝蓋部
材、105……電気・熱変換素子、106……
溝、107……共通液室溝、108……供給管、
109……共通電極、110……トランジスタ、
111……コレクタ電極、112……発熱抵抗
部、113……ベース電極、114……エミツタ
電極、115……基板、116……ベース共通電
極、117……電極、118……p型半導体基
板、119……エピタキシヤル層、120……発
熱抵抗体、121……保護層、122……熱作用
室部、123……オリフイス、124……共通液
室、125……コレクタ領域、126……ベース
領域、127……エミツタ領域、128−2……
オーミツク接触領域、129……電気的絶縁層、
130……拡散領域、131……保護層。
FIG. 1a is a schematic assembly diagram showing the configuration of a preferred embodiment of the liquid jet recording apparatus of the present invention, FIG. 1b is a schematic cross-sectional view of the configuration, and FIG. 2 is similar to FIG. FIG. 3 is a schematic cross-sectional view showing the configuration of the main portion of another embodiment, and FIG. 4 is a manufacturing process drawing. 101... Element attachment member, 102... Element array section, 103... Drive circuit section, 104... Groove cover member, 105... Electric/thermal conversion element, 106...
Groove, 107... Common liquid chamber groove, 108... Supply pipe,
109... common electrode, 110... transistor,
111...Collector electrode, 112...Heating resistor section, 113...Base electrode, 114...Emitter electrode, 115...Substrate, 116...Base common electrode, 117...Electrode, 118...P-type semiconductor substrate, 119...Epitaxial layer, 120...Heating resistor, 121...Protective layer, 122...Heat action chamber, 123...Orifice, 124...Common liquid chamber, 125...Collector region, 126...Base Area, 127...Emitsuta area, 128-2...
Ohmic contact area, 129...electrical insulating layer,
130... Diffusion region, 131... Protective layer.

Claims (1)

【特許請求の範囲】 1 表面に設けた絶縁層と、該絶縁層の上に設け
た複数の発熱抵抗体と該複数の発熱抵抗体に一対
一に対応して設けた機能素子と、前記発熱抵抗体
と前記機能素子とを電気的に結ぶための薄膜電極
と、を備えた素子付設部材と、 前記素子付設部材の表面の上にそれぞれ設けら
れた、前記複数の発熱抵抗体に対応した複数の液
流路と該液流路に供給する液体が導入される共通
液室と、 を有し、 前記共通液室の前方側の方に前記発熱抵抗体が
後方側の方に前記機能素子が夫々配されているこ
とを特徴とする液体噴射記録装置。 2 前記素子付設部材は、半導体基板と該半導体
基板上のエピタキシヤル層からなる特許請求の範
囲第1項に記載の液体噴射記録装置。 3 前記機能素子はトランジスタである特許請求
の範囲第1項に記載の液体噴射記録装置。
[Scope of Claims] 1. An insulating layer provided on a surface, a plurality of heat generating resistors provided on the insulating layer, a functional element provided in one-to-one correspondence with the plurality of heat generating resistors, and an element attachment member comprising a thin film electrode for electrically connecting the resistor and the functional element; and a plurality of element attachment members each corresponding to the plurality of heating resistors provided on the surface of the element attachment member. a liquid flow path and a common liquid chamber into which the liquid to be supplied to the liquid flow path is introduced, wherein the heating resistor is on the front side of the common liquid chamber and the functional element is on the rear side of the common liquid chamber. A liquid jet recording device characterized in that each of the liquid jet recording devices are arranged in the same manner as shown in FIG. 2. The liquid jet recording apparatus according to claim 1, wherein the element attachment member comprises a semiconductor substrate and an epitaxial layer on the semiconductor substrate. 3. The liquid jet recording apparatus according to claim 1, wherein the functional element is a transistor.
JP14907780A 1980-10-23 1980-10-23 Liquid injecting recording apparatus Granted JPS5772868A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14907780A JPS5772868A (en) 1980-10-23 1980-10-23 Liquid injecting recording apparatus
US06/311,894 US4429321A (en) 1980-10-23 1981-10-15 Liquid jet recording device
FR8119836A FR2492735B1 (en) 1980-10-23 1981-10-22 LIQUID JET RECORDING APPARATUS
GB8132029A GB2088286B (en) 1980-10-23 1981-10-23 Liquid jet recording device
DE3142121A DE3142121C2 (en) 1980-10-23 1981-10-23 Liquid jet recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14907780A JPS5772868A (en) 1980-10-23 1980-10-23 Liquid injecting recording apparatus

Publications (2)

Publication Number Publication Date
JPS5772868A JPS5772868A (en) 1982-05-07
JPH0460833B2 true JPH0460833B2 (en) 1992-09-29

Family

ID=15467182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14907780A Granted JPS5772868A (en) 1980-10-23 1980-10-23 Liquid injecting recording apparatus

Country Status (1)

Country Link
JP (1) JPS5772868A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124869A (en) * 1983-01-06 1984-07-19 Canon Inc Liquid jet recorder
JPS62108060A (en) * 1985-11-05 1987-05-19 Seiko Instr & Electronics Ltd Ink jet printer
US5745136A (en) * 1993-04-16 1998-04-28 Canon Kabushiki Kaishi Liquid jet head, and liquid jet apparatus therefor
JPH09286108A (en) 1996-04-22 1997-11-04 Canon Inc Substrate of ink jet printing head, ink jet printing head, and ink jet printer
JPH10774A (en) 1996-06-14 1998-01-06 Canon Inc Substrate for ink jet recording head and ink jet recording head equipped therewith
US6142606A (en) 1997-12-22 2000-11-07 Canon Kabushiki Kaisha Ink jet recording head, substrate for use of such head, ink jet cartridge, and ink jet recording apparatus

Also Published As

Publication number Publication date
JPS5772868A (en) 1982-05-07

Similar Documents

Publication Publication Date Title
US4429321A (en) Liquid jet recording device
JP2662446B2 (en) Printhead and printhead element substrate
JPH0460832B2 (en)
US6113220A (en) Ink jet recording head having substrate arrangement in which functional elements are obliquely disposed
JPH0741720B2 (en) Bubble type ink jet printer
JPH0785931B2 (en) Inkjet print head
JP3798034B2 (en) Method for manufacturing integrated inkjet printhead
JP3851814B2 (en) Ink jet print head having hemispherical ink chamber and method of manufacturing the same
EP0378439B1 (en) Recording head
JPH0460833B2 (en)
US4534814A (en) Large-scale printhead for non-impact printer and method of manufacture
JP2708596B2 (en) Recording head and ink jet recording apparatus
US6070968A (en) Ink jet cartridge and apparatus having a substrate with grooves which contain heat generating elements
US5774147A (en) Substrate having a common collector region and being usable in a liquid jet recording head
JPH026138A (en) Silicon integrated circuit chip of bubble-ink jet printing mechanism
JPH08118635A (en) Substrate for recording head, recording head and recording apparatus
JP2792706B2 (en) Printhead, printhead substrate, and inkjet printing apparatus
JP3079003B2 (en) INK JET PRINT HEAD, ITS MANUFACTURING METHOD, AND DRIVE CIRCUIT
JP3270740B2 (en) Recording head, substrate for recording head, and ink jet recording apparatus
JPH0848038A (en) Substrate for liquid jet recording head, production thereof and liquid jet recording apparatus
JPH0414457A (en) Recording head
JPH03246046A (en) Recording head, recording head substrate, and ink jet recorder
JP3046641B2 (en) Method of manufacturing substrate for ink jet recording head and method of manufacturing ink jet recording head
JP3005010B2 (en) Recording head and recording device
JP2761080B2 (en) Printhead, printhead substrate, and inkjet printing apparatus