JPH0460757B2 - - Google Patents

Info

Publication number
JPH0460757B2
JPH0460757B2 JP60067981A JP6798185A JPH0460757B2 JP H0460757 B2 JPH0460757 B2 JP H0460757B2 JP 60067981 A JP60067981 A JP 60067981A JP 6798185 A JP6798185 A JP 6798185A JP H0460757 B2 JPH0460757 B2 JP H0460757B2
Authority
JP
Japan
Prior art keywords
wire
value
steel
deformation
plastic strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60067981A
Other languages
Japanese (ja)
Other versions
JPS61226199A (en
Inventor
Masanosuke Tejima
Toshio Ikeda
Yoshihisa Kawaguchi
Tsugio Ooe
Kenji Yamazaki
Koichi Oonishi
Masayoshi Michihashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6798185A priority Critical patent/JPS61226199A/en
Publication of JPS61226199A publication Critical patent/JPS61226199A/en
Publication of JPH0460757B2 publication Critical patent/JPH0460757B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は複合ワイヤの製造方法に関し、特に伸
び線加工前における鋼製外皮の物性を特定するこ
とによつて、成形・伸線加工時における断線事故
をなくし、品質の安定した複合ワイヤを生産性良
く製造する方法に関するものである。 [従来の技術] 複合ワイヤとは、周知の通り金属外皮の内部に
粉粒状フラツクスを充填した後伸線加工すること
によつて得られものであり、セルフシールド効果
を有し自動溶接に適したものであるところから、
その需要は急速に増大しつつある。 複合ワイヤの製造法は色々提案されているが、
現在最も汎用されているのは次の様な方法であ
る。 (1) 広幅の冷延コイルをスリツトし造管用のフー
プとする。この時点で造管及び伸線加工時の減
面率を考慮してフープの幅及び厚さが決められ
る。 (2) フープを長手方向に接続(溶接)する。 (3) フープを幅方向に湾曲して管状に構成しなが
ら内部へ粉粒状フラツクスを充填していく。こ
の場合フープの両側縁突合せ部をシーム溶接
し、継目部を封鎖することもある。 (4) 伸線装置により製品の断面寸法(5.0〜1.2mm
〓)まで伸線加工する。この場合のトータル減
面率は殆んどの場合90%以上となる。 ところで複合ワイヤの製造に使用される外皮素
材としては、冷延コイルの中でもプレス加工性の
優れた軟質絞り用鋼板が使用されている。 鋼製冷延コイルの加工特性としては引張り強
さ、降伏値、伸び率、曲げ強さ、エリクセン値、
コニカルカツプ値、硬さ等があり、これらの値を
総合的に判断することによつて加工性の良否を知
ることができる。この様なところから複合ワイヤ
の外被用鋼材を選定する場合にも、上記の様な加
工特性値を適正判断を基準としている。 [発明が解決しようとする問題点] ところが上記の様な加工特性値を基準にして選
択された外皮用鋼材を使用した場合であつても、
複合ワイヤの成形・伸線加工時に断線事故がしば
しば発生する。本発明はこの様な断線事故の発生
を防止し、品質の安定した複合ワイヤを生産性良
く製造することのできる技術を提供しようとする
ものである。 [問題点を解決する為の手段] 本発明に係る複合ワイヤの製造方法とは、構成
外皮内に粉粒状フラツクスを充填し、更にこれを
伸線加工して複合ワイヤを製造するに当たり、伸
線前の鋼製外皮が少なくとも引張り強さが29Kg/
mm2以上であり、且つJIS G 0552で規定されるフ
エライト結晶粒度が7〜9であり、しかも下記
[]式によつて求められる塑性ひずみ比(値)
が1.2以上の各条件を満足するものであるところ
に要旨を有するものである。 =(rL+r90+2r45)/4 …(1) 但し rL:圧延方向に一様伸び限界以下のひずみを与え
たときの塑性ひずみ比 r90:圧延方向と直交する方向に一様伸び限界以
下のひずみを与えたときの塑性ひずみ比 r45:圧延方向に対して45度の角度で交差する方
向に一様伸び限界以下のひずみを与えたときの
塑性ひずみ比 であつて、夫々下記計算式によつて求められる
値。 =(W/W0)/(t/t0) W0:変形前の板幅 W:変形後の板幅 t0:変形前の板厚 t:変形後の板厚 [作用] 以下本発明で使用される外皮鋼材の物性を規定
した理由を明らかにすることにより、本発明の作
用を説明する。 まず前述の様な従来法で複合ワイヤを製造する
場合に生じる断線事故の発生原因は次の様に考え
ることができる。即ち外皮鋼材を選択するに当た
つてその基準とされる前記加工特性値は、先に説
明したようにプレス加工性の一般的判断基準とし
ては十分な適正は有していると認められるが、特
に圧延方向(長さ方向)の展伸性が重視されるべ
き伸線加工材に前記加工特性値の基準をそのまま
当てはめて適正を判断しようとすところに無理が
あるものと考えられる。言い換えると圧延方向の
展伸性が最も重視される外皮用鋼材の特性を把握
する為には、展伸性の優劣をより正確に判断する
ことのできる材料試験法を確立する必要がある。 こうした考えのもとで、外皮用鋼材としての適
正をより正確に反映する材料試験法を求めて色々
研究を行なつた結果、前記[]式で表わされる
塑性ひずみ比(値)が展伸性を正確に反映する
ことをつきとめた。値とは次の様にして求めら
れるものである。 即ち例えば第1図に示す如く、(a)外皮用帯鋼1
の圧延方向、(b)圧延方向に対し直交する方向、及
び(c)圧延方向に対し45度の角度で交差する方向に
沿つて、夫々JIS規格の引張り試験片5号又は13
号を切り出し、各試験片に一様伸び限界以下のひ
ずみを与えたときの板幅及び板厚の変化の比か
ら、次式によりrL、r90及びr45を求め、 =(W/W0)/(t/t0) (但しW0、W、t0、tは前述の通り) 得られた各値を[]式に代入することによつて
得られる塑性ひずみ比を値と称している。この
値は伸線加工時における断線事故の発生頻度と密
接な相関々係を有していることが明らかとなつ
た。そしてこの値が1.2以上である帯鋼を外皮
として使用することにより、断線事故を可及的に
防止し得ることが確認された。但し値が1.2以
上である外皮用鋼材を使用した場合であつても、
当該鋼材の引張り強さが伸線加工時にかかる引抜
力を下回わる様なことがあると、当然に断線事故
が発生する。従つて鋼材の引張り強さについても
下限を設定する必要があるが、こうした観点から
実験を行なつた結果、引張り強さの下限を29Kg/
mm2に規定すべきであることが明らかになつた。ち
なみに前述の様な方法で複合ワイヤを製造する場
合において、管状に湾曲成形し粉粒状フラツクス
の充填後連続して伸線加工するときの充填フラツ
クスの洩れを無くす為には加工率をかなり高くし
なければならず、それに伴つて引抜力を大きくし
なければならないが、こうした引抜力のもとで断
線事故の発生を回避する為には最低限29Kg/mm2
引張り強さがなければならず、この値未満の引張
り強さの外皮鋼材では、たとえ値が適正なもの
であつても断線事故の頻発を阻止することができ
ない。 また鋼材の展伸性に影響を及ぼす性状とし、
JIS G0552で規定されるフエライト結晶粒度があ
るが、実験の結果では、該結晶粒度が7未満の粗
粒子構造のものは概して強度が乏しく、しかも伸
線時における外皮鋼材の肌荒れが著しい為にダイ
ス通過時の摩擦係数が急増し、断線事故が発生し
易くなることが分かつた。但しフエライト結晶粒
度が9を超える微細構造のものを使用すると、伸
線時における外皮表面が鏡面化して平坦度が上が
りすぎ、伸線潤滑剤の持込み量が激減する為に焼
付きが起こり易くなり、ダイス荒れが著しくなつ
てやはり断線が生じ易くなる。この様なところか
らフエライト結晶粒度は7〜9の範囲に限定し
た。 この様に本発明では、外皮鋼材の塑性ひずみ比
(値)、引張り強さ及びフエライト結晶粒度が
夫々厳密に規定されるが、これらの物性は、伸線
加工時における展伸性を考慮し伸線加工前の物性
として特定されるものであり、この様な物性を満
足する外皮鋼材を使用する限り、複合ワイヤのど
の様な製造法にも適用することができる。即ち複
合ワイヤの製法としては、前述の如く帯鋼を管状
に湾曲成形しながら内部へ粉粒状フラツクスを充
填し(場合によつては帯鋼の合わせ部をシーム溶
接し)た後伸線加工する方法の他、予め管状に成
形した外皮用鋼管内へ粉粒状フラツクスを充填し
た後、所定の断面寸法まで伸線加工する方法があ
るが、本発明は後者の様な製法を採用する場合に
も全く同様に適用することができる。 [実施例] 下記の如く帯鋼の板厚及び化学成分を一定と
し、帯鋼の製造条件(圧延終了温度、巻取り温
度、AlやNの析出に影響する焼鈍温度及び焼鈍
時間等)を変えることにより、第1表に示す如く
r値の異なる8種類の外皮用鋼製フープを製造し
た。尚第1表には、外皮用鋼製フープの伸線性を
評価する特性値として提唱されているエリクセン
値(特開昭54−110148号)も併記し、伸線加工性
との相関々係を調べた。 (帯鋼の板厚及び化学成分) 板厚:0.95mm 化学成分(重量%):C…0.001、Mn…0.20、Si
…0.01、P…0.020、S…0.020、sol.Al…0.025、
N…0.0060、残部Fe
[Industrial Application Field] The present invention relates to a method for manufacturing composite wire, and in particular, by specifying the physical properties of the steel sheath before wire drawing, wire breakage accidents during forming and wire drawing can be eliminated, and quality can be improved. The present invention relates to a method for manufacturing stable composite wires with high productivity. [Prior art] As is well known, composite wire is obtained by filling the inside of a metal sheath with granular flux and then drawing it, and it has a self-shielding effect and is suitable for automatic welding. Since it is a thing,
The demand is rapidly increasing. Various methods for manufacturing composite wire have been proposed, but
The following methods are currently most commonly used. (1) A wide cold-rolled coil is slit to form a hoop for pipe making. At this point, the width and thickness of the hoop are determined in consideration of the area reduction rate during pipe forming and wire drawing. (2) Connect (weld) the hoops longitudinally. (3) Fill the inside of the hoop with powdery flux while curving it in the width direction to form a tubular shape. In this case, the abutting portions of both side edges of the hoop may be seam welded to seal the joint. (4) The cross-sectional dimensions of the product (5.0 to 1.2 mm) are
〓) Wire drawing process is performed. In this case, the total area reduction rate is 90% or more in most cases. By the way, as the outer skin material used for manufacturing the composite wire, a soft drawing steel plate, which has excellent press workability among cold-rolled coils, is used. The processing properties of cold-rolled steel coils include tensile strength, yield value, elongation, bending strength, Erichsen value,
There are conical cup values, hardness, etc., and by comprehensively evaluating these values, it is possible to know whether the workability is good or bad. From this point of view, when selecting a steel material for the outer sheath of a composite wire, the above-mentioned machining characteristic values are used as criteria for appropriate judgment. [Problems to be solved by the invention] However, even when using a steel material for the outer skin selected based on the processing characteristic values as described above,
Wire breakage accidents often occur during forming and drawing of composite wires. The present invention aims to provide a technology that can prevent such wire breakage accidents and manufacture composite wires of stable quality with high productivity. [Means for Solving the Problems] The method for manufacturing a composite wire according to the present invention is to fill the constituent outer sheath with powdery flux and further wire-draw the same to manufacture the composite wire. The front steel shell has a tensile strength of at least 29Kg/
mm 2 or more, the ferrite crystal grain size specified by JIS G 0552 is 7 to 9, and the plastic strain ratio (value) determined by the following formula []
The gist is that it satisfies each condition of 1.2 or higher. = (r L + r 90 + 2r 45 )/4...(1) However, r L : Plastic strain ratio when strain below the uniform elongation limit is applied in the rolling direction r 90 : Uniform elongation in the direction perpendicular to the rolling direction Plastic strain ratio when applying a strain below the limit r 45 : Plastic strain ratio when applying a strain below the uniform elongation limit in a direction intersecting the rolling direction at a 45 degree angle, each of the following: A value determined by a calculation formula. = (W/W 0 )/(t/t 0 ) W 0 : Plate width before deformation W: Plate width after deformation t 0 : Plate thickness before deformation t: Plate thickness after deformation [Function] Hereinafter, the present invention The effect of the present invention will be explained by clarifying the reason for specifying the physical properties of the outer skin steel used in the following. First, the causes of wire breakage accidents that occur when manufacturing composite wires using the conventional method as described above can be considered as follows. In other words, it is recognized that the above-mentioned processing characteristic values, which are used as criteria for selecting outer skin steel materials, are sufficiently appropriate as general judgment criteria for press workability, as explained above. It is considered that it would be unreasonable to try to judge suitability by directly applying the above-mentioned standard of processing characteristic values to a wire-drawn material in which the extensibility in the rolling direction (lengthwise direction) is particularly important. In other words, in order to understand the characteristics of steel materials for outer skins, for which extensibility in the rolling direction is most important, it is necessary to establish a material testing method that can more accurately determine the superiority or inferiority of extensibility. Based on this idea, we conducted various studies in search of material testing methods that more accurately reflected the suitability of steel materials for outer skins. As a result, we found that the plastic strain ratio (value) expressed by the above formula [] We found that it accurately reflects the The value is determined as follows. That is, for example, as shown in FIG. 1, (a) steel strip for outer skin 1
(b) a direction perpendicular to the rolling direction, and (c) a direction intersecting at a 45 degree angle to the rolling direction, using JIS standard tensile test pieces No. 5 or 13, respectively.
From the ratio of the change in plate width and plate thickness when a strain below the uniform elongation limit is applied to each test piece, r L , r 90 and r 45 are calculated using the following formula, and = (W/W 0 )/(t/t 0 ) (However, W 0 , W, t 0 , and t are as described above) The plastic strain ratio obtained by substituting each obtained value into the formula [] is called the value. ing. It has become clear that this value has a close correlation with the frequency of wire breakage accidents during wire drawing. It was confirmed that wire breakage accidents could be prevented as much as possible by using a steel strip with this value of 1.2 or more as the outer skin. However, even when using steel for the outer skin with a value of 1.2 or higher,
If the tensile strength of the steel material becomes lower than the pulling force applied during wire drawing, a wire breakage accident will naturally occur. Therefore, it is necessary to set a lower limit for the tensile strength of steel materials, but as a result of conducting experiments from this point of view, the lower limit for the tensile strength was set at 29 kg/
It became clear that the standard should be mm 2 . By the way, when manufacturing a composite wire using the method described above, the processing rate must be considerably high in order to eliminate leakage of the filling flux when the wire is drawn continuously after being curved into a tubular shape and filled with granular flux. Therefore, the pulling force must be increased accordingly, but in order to avoid wire breakage accidents under such pulling force, the tensile strength must be at least 29 kg/mm 2 . If the outer skin steel material has a tensile strength less than this value, even if the value is appropriate, frequent occurrence of wire breakage accidents cannot be prevented. In addition, properties that affect the malleability of steel materials,
There is a ferrite crystal grain size specified in JIS G0552, but experimental results show that those with a coarse grain structure with a crystal grain size of less than 7 generally have poor strength, and because the surface roughness of the outer steel material during wire drawing is significant, it is difficult to use ferrite in dies. It was found that the coefficient of friction during passage increased rapidly, making wire breakage more likely to occur. However, if a material with a microstructure with a ferrite crystal grain size exceeding 9 is used, the surface of the outer skin becomes mirror-like during wire drawing, resulting in excessive flatness, and the amount of wire drawing lubricant brought in is drastically reduced, making seizure more likely. , die roughness becomes significant and wire breakage becomes more likely to occur. For this reason, the ferrite crystal grain size was limited to a range of 7 to 9. In this way, in the present invention, the plastic strain ratio (value), tensile strength, and ferrite grain size of the outer steel material are strictly specified, but these physical properties are determined by considering the malleability during wire drawing. This is specified as the physical properties before wire processing, and as long as a skin steel material that satisfies these physical properties is used, it can be applied to any manufacturing method for composite wire. In other words, the method for manufacturing composite wire is to bend a steel strip into a tubular shape as described above, fill the inside with granular flux (in some cases, seam weld the joints of the steel strips), and then wire-draw the steel strip. In addition to this method, there is a method in which powdery flux is filled into a steel pipe for the outer skin that has been formed into a tubular shape in advance, and then wire-drawn to a predetermined cross-sectional dimension. It can be applied in exactly the same way. [Example] As shown below, the plate thickness and chemical composition of the steel strip are kept constant, and the manufacturing conditions of the steel strip (rolling end temperature, coiling temperature, annealing temperature and annealing time that affect the precipitation of Al and N, etc.) are changed. As a result, eight types of steel hoops for outer shells having different r values were manufactured as shown in Table 1. Table 1 also includes the Erichsen value (Japanese Unexamined Patent Publication No. 110148/1983), which has been proposed as a characteristic value for evaluating the wire drawability of steel hoops for outer skins, and shows the correlation with wire drawability. Examined. (Thickness and chemical composition of steel strip) Plate thickness: 0.95mm Chemical composition (weight%): C...0.001, Mn...0.20, Si
…0.01, P…0.020, S…0.020, sol.Al…0.025,
N…0.0060, remainder Fe

【表】 得られた各供試フープを使用し、常法[前記(1)
〜(4)の工程を経る方法]に従つて伸線加工を行な
い(伸線速度は500又は1000m/min)、断線の発
生頻度を調べた。 結果は第2図に示す通りであり、伸線速度が
500m/minの実験例を見ると、値が1.2未満の
ものでは断線が頻発し伸線設備の稼働率は70%以
下となつているが、値が1.2以上の外皮用フー
プを用いた場合の断線は激減し90%以上の稼動率
を得ることができる。また値が1.2以上のもの
を用いた場合は、伸線速度を1000m/minに高め
た場合でも80%以上の稼動率が保障されるが、
値が1.2未満のものでは伸線速度を1000m/min
に高めると断線が激増し、連続稼動自体が無理に
なる。 尚第1表のエリクセン値と第2図の実験データ
を対比して見れば明らかな様に、エリクセン値は
伸線加工時の断線発生頻度とは格別の相関々係を
有しておらず、必ずしも伸線性の目安とすること
はできない。 上記の実験では外皮用鋼材の値のみをとり上
げて伸線性との関係を調べたが、更に値の他、
引張り強さ、降伏点、伸び及びフエライト結晶粒
度等の関係も含めた断線発生頻度との関係を明確
にする為、これらの物性の異なる多数の外皮用フ
ープを用いて伸線実験を行なつた。 その結果は第2表にまとめて示す通りであり、
引張り強さが29Kg/mm2未満で且つフエライト結晶
粒度が6未満の粗粒物では、強度不足の影響と伸
線時の肌荒れによる引抜抵抗増大の影響が顕著に
現われ、断線事故が頻発すると共に製品ワイヤの
肌荒れも著しい。またフエライト結晶粒度が9を
超える細粒物では、伸線時に外皮表面が鏡面化し
て潤滑剤の持ち込み量が減少する為ダイス荒れが
著しくなり、やはり断線事故が頻発している。こ
れらに対し値、引張り強さ及びフエライ結晶粒
度が何れも規定範囲にある実施例では、伸線時の
断線も少なく肌荒れの少ない複合ワイヤを効率良
く製造することができる。
[Table] Using each test hoop obtained, the conventional method [(1)
The wire drawing process was carried out according to the method of passing through the steps of (4) to (4) (the wire drawing speed was 500 or 1000 m/min), and the frequency of occurrence of wire breakage was investigated. The results are shown in Figure 2, and the wire drawing speed is
Looking at experimental examples at 500 m/min, wires with a value of less than 1.2 frequently break and the operating rate of the wire drawing equipment is below 70%. The number of disconnections is drastically reduced and an operating rate of over 90% can be achieved. In addition, if a wire with a value of 1.2 or higher is used, an operating rate of 80% or higher is guaranteed even when the wire drawing speed is increased to 1000 m/min.
If the value is less than 1.2, the drawing speed is 1000m/min.
If the voltage is increased to a high level, the number of disconnections will increase dramatically, making continuous operation impossible. As is clear from comparing the Erichsen values in Table 1 and the experimental data in Figure 2, the Erichsen values do not have a particular correlation with the frequency of wire breakage during wire drawing. It cannot necessarily be used as a guideline for wire drawability. In the above experiment, only the value of the steel material for the outer skin was taken up to investigate the relationship with wire drawability, but in addition to the value,
In order to clarify the relationship between tensile strength, yield point, elongation, and the frequency of wire breakage, including the relationship with the ferrite grain size, we conducted wire drawing experiments using a number of outer hoops with different physical properties. . The results are summarized in Table 2,
For coarse-grained materials with a tensile strength of less than 29 Kg/ mm2 and a ferrite crystal grain size of less than 6, the effects of insufficient strength and increased drawing resistance due to rough skin during wire drawing are noticeable, leading to frequent wire breakage accidents and The surface of the product wire is also noticeably rough. Furthermore, in the case of fine-grained materials with a ferrite crystal grain size exceeding 9, the surface of the outer skin becomes mirror-like during wire drawing, reducing the amount of lubricant carried in, resulting in significant die roughness, and wire breakage accidents also occur frequently. On the other hand, in embodiments in which the values, tensile strength, and ferrite grain size are all within the specified ranges, composite wires with less breakage during wire drawing and less surface roughness can be efficiently produced.

【表】 [発明の効果] 本発明は以上の様に構成されており、特に外皮
鋼材の値、引張り強さ及びフエライト結晶粒度
を厳密に規定することによつて、伸線加工時の断
線頻度を激減することができ、生産効率を大幅に
高め得ることになつた。しかも得られる複合ワイ
ヤは肌荒れや焼付きのない美麗な外観を呈してお
り、その品質も高めることができる。
[Table] [Effects of the Invention] The present invention is constructed as described above, and in particular, by strictly specifying the value, tensile strength, and ferrite crystal grain size of the outer steel material, the frequency of wire breakage during wire drawing can be reduced. As a result, production efficiency can be greatly increased. Furthermore, the resulting composite wire has a beautiful appearance without roughness or seizure, and its quality can also be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は値を算出する為の試験片採取方向を
説明する為の見取り図、第2図は実験で得た値
と断線発生頻度の関係を示すグラフ、第3〜5図
は実験で使用した供試フープの金属組織を示す図
面代用顕微鏡写真である。
Figure 1 is a sketch to explain the direction in which specimens are taken to calculate the values, Figure 2 is a graph showing the relationship between the values obtained in the experiment and the frequency of wire breakage, and Figures 3 to 5 are the diagrams used in the experiment. It is a micrograph substituted for a drawing showing the metallographic structure of a test hoop.

Claims (1)

【特許請求の範囲】 1 鋼製外皮内に粉粒状フラツクスを充填し、更
にこれを伸線して複合ワイヤを製造するに当た
り、伸線前の鋼製外皮は、少なくとも引張り強さ
が29Kg/mm2以上であり且つJIS G 0552で規定さ
れるフエライト結晶粒度が7〜9であり、しかも
下記式によつて求められる塑性ひずみ比(値)
が1.2以上の各条件を満足するものであることを
特徴とする複合ワイヤの製造方法。 =(rL+r90+2r45)/4 但し rL:圧延方向に一様伸び限界以下のひずみを与え
たときの塑性ひずみ比 r90:圧延方向と直交する方向に一様伸び限界以
下のひずみを与えたときの塑性ひずみ比 r45:圧延方向に対して45度の角度で交差する方
向に一様伸び限界以下のひずみを与えたときの
塑性ひずみ比、 であつて、夫々下記計算式によつて求められる。 =(W/W0)/(t/t0) W0:変形前の板幅 W:変形後の板幅 t0:変形前の板厚 t:変形後の板厚
[Scope of Claims] 1. When manufacturing a composite wire by filling a steel sheath with granular flux and drawing the flux, the steel sheath before wire drawing has a tensile strength of at least 29 kg/mm. 2 or more, the ferrite crystal grain size specified by JIS G 0552 is 7 to 9, and the plastic strain ratio (value) determined by the following formula:
A method for manufacturing a composite wire, characterized in that the ratio satisfies each condition of 1.2 or more. = (r L + r 90 + 2r 45 ) / 4 where r L : Plastic strain ratio when applying strain below the uniform elongation limit in the rolling direction r 90 : Strain below the uniform elongation limit in the direction perpendicular to the rolling direction Plastic strain ratio when given r 45 : Plastic strain ratio when a strain below the uniform elongation limit is given in a direction intersecting the rolling direction at an angle of 45 degrees, and is calculated using the following formula, respectively. It is sought after. = (W/W 0 )/(t/t 0 ) W 0 : Plate width before deformation W: Plate width after deformation t 0 : Plate thickness before deformation t: Plate thickness after deformation
JP6798185A 1985-03-30 1985-03-30 Production of flux cored wire Granted JPS61226199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6798185A JPS61226199A (en) 1985-03-30 1985-03-30 Production of flux cored wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6798185A JPS61226199A (en) 1985-03-30 1985-03-30 Production of flux cored wire

Publications (2)

Publication Number Publication Date
JPS61226199A JPS61226199A (en) 1986-10-08
JPH0460757B2 true JPH0460757B2 (en) 1992-09-28

Family

ID=13360670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6798185A Granted JPS61226199A (en) 1985-03-30 1985-03-30 Production of flux cored wire

Country Status (1)

Country Link
JP (1) JPS61226199A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5236158B2 (en) * 2005-01-26 2013-07-17 日本ウエルディング・ロッド株式会社 Ferritic stainless steel welding wire and manufacturing method thereof
JP5207933B2 (en) * 2008-11-21 2013-06-12 株式会社神戸製鋼所 Steel strip for flux cored wire with seam and method for manufacturing seamed flux cored wire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158897A (en) * 1979-05-30 1980-12-10 Nippon Steel Weld Prod & Eng Co Ltd Small diameter flux-cored welding wire excelling in feeding performance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158897A (en) * 1979-05-30 1980-12-10 Nippon Steel Weld Prod & Eng Co Ltd Small diameter flux-cored welding wire excelling in feeding performance

Also Published As

Publication number Publication date
JPS61226199A (en) 1986-10-08

Similar Documents

Publication Publication Date Title
US3610290A (en) Metal laminates and tubing embodying such laminates
JPH06336649A (en) Hot rolled steel wire rod, extra fine steel wire, stranded steel wire and production of extra fine steel wire
EP1867742A1 (en) High-strength steel sheet and high-strength welded steel pipe excelling in ductile fracture performance and process for producing them
EP1006203B1 (en) Can steel strip and method of producing can steel strip
EP0748876A1 (en) Titanium alloy, member made of the titanium alloy and method for producing the titanium alloy member
EP2808415B1 (en) Pipeline and manufacturing method thereof
JPH0460757B2 (en)
EP0059957B1 (en) Method of forming electric welded steel tube
EP0662523B1 (en) Steel sheet of high stress-corrosion-cracking resistance for cans and method of manufacturing the same
JPS5941462A (en) Preparation of composite electrode wire for discharge machining
JP7306494B2 (en) Rectangular steel pipe, manufacturing method thereof, and building structure
JPH07106412B2 (en) High conductivity copper coated steel trolley wire manufacturing method
JP3108615B2 (en) Method for producing steel sheet for welded can with excellent flanging and neck formability
JP2998582B2 (en) Cold rolled steel sheet excellent in deep drawability and punching workability and method for producing the same
JPH07100687A (en) Wire for arc welding
JP3182984B2 (en) Manufacturing method of high strength extra fine steel wire
WO2023276644A1 (en) Square steel tube, method for manufacturing same, and building structure
US5496420A (en) Can-making steel sheet
JP4277724B2 (en) Secondary processed steel pipe with excellent fatigue characteristics
EP1373588A1 (en) Micro-alloyed oxygen-free copper alloy and its use
CN116511294A (en) Continuous production process of concave steel pipe
JP2737577B2 (en) Manufacturing method and welding method of electric resistance welded steel pipe excellent in vibration damping characteristics
JP2001096316A (en) Hydroforming method for steel pipe
US1171637A (en) Process of working clad metals.
EP0070082A2 (en) A high strength hot rolled steel sheet having excellent flash butt weldability