JPH0460696B2 - - Google Patents

Info

Publication number
JPH0460696B2
JPH0460696B2 JP59185445A JP18544584A JPH0460696B2 JP H0460696 B2 JPH0460696 B2 JP H0460696B2 JP 59185445 A JP59185445 A JP 59185445A JP 18544584 A JP18544584 A JP 18544584A JP H0460696 B2 JPH0460696 B2 JP H0460696B2
Authority
JP
Japan
Prior art keywords
particles
particle size
particle
mixing
standard deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59185445A
Other languages
Japanese (ja)
Other versions
JPS6164326A (en
Inventor
Masumi Koishi
Seiji Aotani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP18544584A priority Critical patent/JPS6164326A/en
Publication of JPS6164326A publication Critical patent/JPS6164326A/en
Publication of JPH0460696B2 publication Critical patent/JPH0460696B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、複合粒子の製造方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for producing composite particles.

従来の技術 従来、粒子の製造方法(造粒)としては、湿潤
状態の原料を容器の転動運動により造粒する転動
造粒、容器に充填した乾燥あるいは湿潤原料に圧
縮応力を作用させて成形する圧縮造粒、加湿し流
動性を与えた原料をダイスあるいは金網などから
押出し円筒状あるいは顆粒状に成形する押出し造
粒、原料を上向きの空気流によつて流動状態を保
ち水分を噴霧して造流する流動造粒、加湿調整し
た原料を回転するブレードに供給し剪断力を与え
て解砕する解砕造粒、固体混合機で加湿された原
料を処理し造粒する混合造粒、溶融液を液滴状に
分散し空気中で冷却固化し球状の粒となす噴射造
粒などの物理的造粒の他、乳化重合、懸濁重合な
どにより微粒子の重合体を得る化学的造粒が行わ
れている。
Conventional technology Conventionally, methods for producing particles (granulation) include rolling granulation, in which wet raw materials are granulated by rolling motion of a container, and compressive stress is applied to dry or wet raw materials filled in a container. Compression granulation, which involves molding, extrusion granulation, which involves extruding humidified and fluidized raw materials through a die or wire gauze, and forming them into a cylindrical or granular shape; Fluidized granulation, in which the humidified raw material is fed to a rotating blade and crushed by applying shearing force, Mixed granulation, in which the humidified raw material is processed and granulated using a solid mixer. In addition to physical granulation, such as injection granulation, in which a molten liquid is dispersed into droplets and cooled and solidified in air to form spherical particles, chemical granulation, in which fine particle polymers are obtained through emulsion polymerization, suspension polymerization, etc. is being carried out.

発明が解決しようとする問題点 しかしながら、これらの従来の粒子の製造方法
では、微細な粒子から大きな粒子まで必要に応じ
て製造することが可能ではあるが、粒子の物理的
構造を観察すると、構造的に粒子径に対する比表
面積が小さく、その用途は限られたものとなる。
Problems to be Solved by the Invention However, with these conventional particle manufacturing methods, it is possible to produce particles ranging from fine to large particles as required; however, when observing the physical structure of the particles, the structure Generally, the specific surface area relative to the particle size is small, and its uses are limited.

例えば懸濁重合によつて得られた重合体粒子
は、物質の分離、取分け選択的物質分離用担体な
どとしてクロマトグラフイーに適用すると高効率
であると期待されるが、カラムに充填して用いる
とクロマトグラフイーとしての表面積を得ること
が困難であり、この表面積を得るために重合体粒
子の粒径を小さくするとクロマトグラフイー中を
流れる液体の流量が小さくなるという問題を有す
る。
For example, polymer particles obtained by suspension polymerization are expected to be highly efficient when applied to chromatography as carriers for substance separation, especially selective substance separation, but they are used by filling columns. It is difficult to obtain a sufficient surface area for chromatography, and if the particle size of the polymer particles is reduced in order to obtain this surface area, there is a problem in that the flow rate of the liquid flowing through the chromatography becomes small.

また従来の粒子の製造方法で得られる粒子で
は、必要に応じて適宜の表面特性を付与すること
も困難である。
Furthermore, with particles obtained by conventional particle manufacturing methods, it is difficult to impart appropriate surface properties as necessary.

本発明者らは、これら従来の技術的課題を背景
として、粒子径に対する比表面積が大きく、適宜
の表面特性を得ることが容易な粒子を製造するこ
とを企図し鋭意検討した結果、特定の粒子を組み
合わせることにより、強固に固着された複合粒子
が得られることを見出し、本発明に到達したもの
である。
With these conventional technical problems as a background, the present inventors have conducted intensive studies with the aim of producing particles that have a large specific surface area relative to the particle diameter and can easily obtain appropriate surface characteristics. The present invention was achieved based on the discovery that strongly fixed composite particles can be obtained by combining the following.

問題点を解決するための手段 即ち本発明は、粒径R1が1〜500μm、粒度分
布の標準偏差が平均粒径の±40%以下である粒子
と、該粒子の材料とは異なる有機高分子物質
よりなり、粒径R2が0.05〜10μm、粒度分布の標
準偏差が平均粒径の±40%以下、かつ粒径比
R2/R1が1/10以下を満足する粒子とを、該
粒子および粒子自体が実質的に破砕を起こさ
ぬ状態下で混合し、圧縮力および剪断力を与える
ことにより、粒子の表面に複数の粒子を固着
させることを特徴とする複合粒子の製造方法を提
供するものである。
Means for Solving the Problems That is, the present invention provides particles with a particle size R 1 of 1 to 500 μm and a standard deviation of the particle size distribution of ±40% or less of the average particle size, and an organic polymer that is different from the material of the particles. Made of molecular substance, particle size R2 is 0.05 to 10 μm, standard deviation of particle size distribution is ±40% or less of average particle size, and particle size ratio
Particles satisfying R 2 /R 1 of 1/10 or less are mixed under conditions where the particles and the particles themselves are not substantially crushed, and compressive force and shear force are applied to the surface of the particles. The present invention provides a method for producing composite particles, which is characterized by fixing a plurality of particles.

まず基材粒子となる粒子の材質、形状は特に
限定されないが、該材質は粒子の材質とは異な
るものである。粒子と粒子の材質が異なれ
ば、後記混合過程において例えば絶縁状態で両者
を混合した場合、両者の表面には異なる電荷が帯
電し易く、粒子に粒子が固着し易くなる。粒
子と粒子とが同じ材料では、このような効果
が低いものとなる。
First, the material and shape of the particles serving as the base particles are not particularly limited, but the material is different from the material of the particles. If the materials of the particles are different, when the two are mixed in an insulating state in the mixing process described later, the surfaces of the two tend to be charged with different charges, and the particles tend to stick to the particles. If the particles are made of the same material, this effect will be low.

粒子の材質としては、ガラス、シリカ、鉄、
銅、アルミニウム、ニツケル、ステンレススチー
ル、酸化鉄、フエライト、カーボンブラツクなど
の無機材料、ポリエチレン、ポリプロピレン、ポ
リスチレン、ポリメタクリル酸メチル、ポリ塩化
ビニル、ナイロン6、ナイロン12、エポキシ樹
脂、フエノール樹脂、セルロース、澱粉などの有
機高分子物質が挙げられる。
The materials of the particles include glass, silica, iron,
Inorganic materials such as copper, aluminum, nickel, stainless steel, iron oxide, ferrite, carbon black, polyethylene, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, nylon 6, nylon 12, epoxy resin, phenolic resin, cellulose, Examples include organic polymer substances such as starch.

またその形状としては球形、楕円形などいかな
る形状でもよいが、粒子が均一に固着結合する
点では球形であることが好ましい。更に構造とし
ては簡単に破壊しない程度に中空体、多孔質体で
あつても構わない。
Although the shape may be any shape such as spherical or elliptical, a spherical shape is preferable in that the particles are uniformly fixed and bonded. Furthermore, the structure may be hollow or porous to the extent that it does not easily break.

粒子の粒径R1、形状が楕円形などの場合は
長軸径は、1〜500μm、好ましくは1〜100μm、
特に好ましくは3〜50μm、またその粒度分布の
標準偏差は平均粒径の±40%以下である。
The particle size R 1 of the particles, if the shape is elliptical, the major axis diameter is 1 to 500 μm, preferably 1 to 100 μm,
Particularly preferably 3 to 50 μm, and the standard deviation of the particle size distribution is ±40% or less of the average particle size.

粒子の粒径が1μm未満では、後記する粒子
の粒径、即ち粒径比R2/R1が1/10以下を勘案
すると均一な複合粒子を得られない場合があり、
一方500μmを越えると粒子の表面活性が低いも
のとなり、粒子表面への粒子の固着が困難と
なる。
If the particle size of the particles is less than 1 μm, it may not be possible to obtain uniform composite particles, considering that the particle size described later, that is, the particle size ratio R 2 / R 1 is 1/10 or less.
On the other hand, if the diameter exceeds 500 μm, the surface activity of the particles will be low, making it difficult for the particles to adhere to the particle surface.

粒子の粒度分布の標準偏差は、粒子ほど問
題にはならないが、平均粒径の±40%以下である
ことが、本発明における複合粒子を得ることから
必要である。
The standard deviation of the particle size distribution of particles is not as important as that of particles, but it is necessary to be within ±40% of the average particle diameter in order to obtain composite particles in the present invention.

次に粒子の材質は、前記粒子で挙げられた
有機高分子物質の他、各種ビニル系単量体、ジエ
ン系単量体などから得られる有機高分子物質を例
示することができ、前記した理由によりかかる材
質は粒子とは異なる必要がある。
Next, as for the material of the particles, in addition to the organic polymer substances listed for the particles, organic polymer substances obtained from various vinyl monomers, diene monomers, etc. can be exemplified. The material on which it rests needs to be different from the particles.

粒子の形状、構造は粒子と同様に特に限定
されるものではない。
Like the particles, the shape and structure of the particles are not particularly limited.

粒子の粒径R2、楕円形などの場合は長軸径
は0.05〜10μm、好ましくは0.1〜5μm、粒度分布
の標準偏差は平均粒径の40%以下、好ましくは10
%以下、更に粒径比R2/R1が1/10以下、好ま
しくは1/10〜1/1000、更に好ましくは1/10
〜1/100である。
The particle size R 2 of the particles is 0.05 to 10 μm, preferably 0.1 to 5 μm, and the standard deviation of the particle size distribution is 40% or less of the average particle size, preferably 10
% or less, and furthermore, the particle size ratio R 2 /R 1 is 1/10 or less, preferably 1/10 to 1/1000, and even more preferably 1/10.
~1/100.

粒子の粒径が0.05μm未満では粒径が小さす
ぎて得られる複合粒子の表面特性を活かすことが
できず、一方10μmを越えると均一な複合粒子を
得られない場合が発生する。
If the particle size is less than 0.05 μm, the particle size is too small to take advantage of the surface properties of the resulting composite particles, while if it exceeds 10 μm, uniform composite particles may not be obtained.

また粒子の粒子表面への固着現象は、まず
表面活性の大きい、即ち粒径のより小さい粒子
から先に付着していくと考えられるので、粒子
の粒度分布の標準偏差はなるべく狭い方がよく、
そのため少なくとも平均粒径の40%以下、好まし
くは10%以下とする必要があり、40%を越えると
得られる複合粒子は一番外側に不揃いな大きな粒
子が固着して目的とする表面特性を得ることが
困難である。
Furthermore, in the phenomenon of particles sticking to particle surfaces, it is thought that particles with higher surface activity, that is, particles with smaller particle sizes, adhere first, so it is better that the standard deviation of the particle size distribution of particles is as narrow as possible.
Therefore, it is necessary to keep the average particle size at least 40% or less, preferably 10% or less; if it exceeds 40%, the composite particles obtained will have irregular large particles fixed on the outermost side to achieve the desired surface characteristics. It is difficult to do so.

更に粒子への粒子の固着状態は両者の粒径
比によつて左右され、粒径比R2/R1が1/10を
越えると、粒子の粒径が粒子の粒径に比し大
きくなりすぎて一旦固着した粒子が微少な外力
により剥離し易くなる。
Furthermore, the state of adhesion of particles to particles is influenced by the particle size ratio of the two, and when the particle size ratio R 2 /R 1 exceeds 1/10, the particle size of the particles becomes larger than the particle size of the particles. As a result, the particles once fixed are likely to be peeled off by a minute external force.

このような有機高分子物質よりなる粒子は、
乳化重合法、懸濁重合法、沈澱重合法などの化学
的造粒法の他、スプレードライ法、液中乾燥法、
粉砕法、重合体溶液からの析出法などの物理的造
粒法によつて製造することができる。
Particles made of such organic polymer substances are
In addition to chemical granulation methods such as emulsion polymerization method, suspension polymerization method, and precipitation polymerization method, spray drying method, submerged drying method,
It can be produced by a physical granulation method such as a pulverization method or a precipitation method from a polymer solution.

粒子としては、各種の表面特性を同時に利用
するために、2種以上の有機高分子物質の混合物
よりなる粒子を用いてもよく、また必要に応じ
異なる有機高分子物質よりなる粒子を2種以上
併用することもできる。
In order to utilize various surface properties at the same time, the particles may be made of a mixture of two or more organic polymeric substances, or if necessary, particles made of two or more different organic polymeric substances may be used. They can also be used together.

なお粒子と粒子の重量比率は、組み合わせ
る粒子と粒子との粒径によつて変わるが、通
常粒子 100重量部に対し粒子が10〜200重量
部であり、例えば粒径10μm程度の粒子を
0.5μm程度の粒子で取り巻き、粒子の表面特
性を利用する場合は、粒子 100重量部に対し
粒子は20〜100重量部が好ましく、この場合、
粒子の表面に粒子を単層〜2、3層取り巻く
ことができる。
Note that the weight ratio between particles varies depending on the particle size of the particles to be combined, but it is usually 10 to 200 parts by weight of particles to 100 parts by weight of particles, for example, particles with a particle size of about 10 μm.
When surrounding with particles of about 0.5 μm and utilizing the surface characteristics of the particles, the amount of particles is preferably 20 to 100 parts by weight per 100 parts by weight of the particles. In this case,
A single layer to two or three layers of particles can be surrounded on the surface of the particles.

本発明では、このように特定された粒子と粒
子とを次に両者が実質的に破砕を起こさぬ状態
下で混合し、圧縮力および剪断力、必要に応じ衝
撃力、更に好ましくは粒子間のひねり摩擦力を与
えることにより、粒子の表面に複数の粒子を
固着させるものである。
In the present invention, the particles thus specified and the particles are then mixed together under conditions in which both particles do not substantially fracture, and compressive force and shear force, impact force if necessary, and more preferably inter-particle By applying twisting frictional force, a plurality of particles are fixed to the surface of the particles.

粒子と粒子との混合は、通常乾式混合によ
るが、混合系が多少湿つた状態でもよい。
The particles are usually mixed by dry mixing, but the mixing system may be slightly moist.

粒子と粒子を混合する場合、混合容器を絶
縁状態として混合系を絶縁下におき、粒子およ
び粒子を帯電し易くすることが好ましい。
When mixing particles, it is preferable that the mixing container is insulated and the mixing system is placed under insulation to facilitate charging of the particles.

即ち帯電することにより粒子同志、粒子同
志は互いに反発して凝集することがなく、一方粒
子と粒子とは異なる材料からなるため通常電
荷種が異なり互いに引き寄せられ粒子の表面に
粒子が吸着、固着するという現象を生起するも
のと考えられる。
In other words, by being electrically charged, particles repel each other and do not agglomerate, while particles are made of different materials, so they usually have different charge types and are attracted to each other, causing particles to adsorb and stick to the surface of the particles. It is thought that this phenomenon occurs.

粒子と粒子を混合することによつて粒子
は粒子により取り巻かれるが、粒子が粒子
に付着後、更に混合を続けると粒子と粒子と
は強固に結合し例えば得られる複合粒子を水中に
分散しても両者は剥離しないようになる。
By mixing particles, the particles become surrounded by particles, but after the particles adhere to the particles, if the mixing is continued, the particles become tightly bonded, and for example, the resulting composite particles are dispersed in water. Also, both will not peel off.

このような現象は、混合中に粒子と粒子と
が点接触し、接触点において圧縮力および剪断
力、場合により衝撃力、更には粒子間のひねり摩
擦力が働き、該接触点で一時的に例えば約1000℃
前後の熱が瞬時に発生し融着による固着現象を生
起するためと考えられる。
This phenomenon occurs when particles come into point contact during mixing, and compressive force, shearing force, impact force in some cases, and even twisting friction force between particles act at the contact point, causing temporary damage at the contact point. For example, about 1000℃
This is thought to be because heat is generated instantaneously in the front and back, causing a sticking phenomenon due to fusion.

この固着現象は、粒子の方が融点が高い場合
は粒子が粒子表面にめり込むような状態で固
着し、一方粒子の方が融点が高い場合は粒子
の表面に粒子がめり込むような状態で固着する
ものとも考えられる。
In this sticking phenomenon, if the particle has a higher melting point, the particle will stick in a state where it sinks into the particle surface, whereas if the particle has a higher melting point, the particle will stick in a state where it sinks into the surface of the particle. It can also be considered a thing.

粒子と粒子との混合温度は、粒子および
粒子自体が溶融しない温度で行えばよいが、通
常は室温で混合する。
The mixing temperature between the particles may be such that the particles and the particles themselves do not melt, but they are usually mixed at room temperature.

本発明を実施する際の混合手段の例としては、
乳鉢を用いる方法の他、V型タンブラー、二重円
錐型タンブラーなどの固体混合機、ニーダーミキ
サー、インターナルミキサー、ポニーミキサー、
ミユーラーミキサー、ロールミル、クラツチヤー
などの捏和機、かい型撹拌機、タービン型撹拌
機、ヘンシエルミキサーなどの一般的な撹拌機を
用いる方法などを挙げることができる。
Examples of mixing means when carrying out the present invention include:
In addition to the method using a mortar, solid mixers such as V-shaped tumblers and double cone tumblers, kneader mixers, internal mixers, pony mixers,
Examples include a method using a kneading machine such as a Mueller mixer, a roll mill, or a crutcher, or a general agitator such as a paddle-type agitator, a turbine-type agitator, or a Henschel mixer.

前記の如き混合手段を用いれば、通常、粒子
と粒子とを両者が実質的に破砕を起こさぬ状態
下で混合することができ、その際粒子と粒子
との間に圧縮力および剪断力、必要に応じ衝撃
力、更に好ましくは粒子間のひねり摩擦力を与え
ることができる。
By using the above-mentioned mixing means, it is usually possible to mix particles under conditions that do not cause substantial fragmentation of the particles, and in this case, compressive force and shear force between the particles can be applied as necessary. An impact force, more preferably a twisting friction force between particles, can be applied depending on the size of the particles.

ここで乳鉢を用いる場合は、粒子の粒径は
10μm程度以下が好ましく、通常30〜120分間混合
する。この場合混合時間が30分未満では、粒子
と粒子の固着が十分でない場合があり、またあ
まり長時間混合すると粒子または粒子の熱変
形温度が低い場合はその形状が変形することがあ
る。
If a mortar is used here, the particle size of the particles is
The diameter is preferably about 10 μm or less, and mixing is usually performed for 30 to 120 minutes. In this case, if the mixing time is less than 30 minutes, the adhesion between the particles may not be sufficient, and if the particles are mixed for too long, the shape of the particles or particles may be deformed if the heat distortion temperature of the particles is low.

その他の混合方法の場合には、粒子と粒子
の粒径は、本発明の範囲内であれば特に限定され
ないが、乳鉢を用いる場合と同様に混合時間を適
宜選択する必要がある。
In the case of other mixing methods, the particle diameters of the particles are not particularly limited as long as they are within the scope of the present invention, but it is necessary to appropriately select the mixing time as in the case of using a mortar.

かくて粒子の表面に該粒子より粒径の小さい
粒子が1層あるいは2層以上取り巻き、固着す
ることにより粒子の表面積はその粒径の僅かな
増加にかかわらず数倍以上に増加し、かつ粒子
の表面の性質を粒子に付与することができる。
In this way, by surrounding and fixing one or more layers of particles with a smaller particle size than the particle on the surface of the particle, the surface area of the particle increases several times or more despite a slight increase in the particle size, and surface properties can be imparted to the particles.

即ち粒子は有機高分子物質よりなり、その表
面の性質は多様であり、例えば粒子を乳化重合
法で製造すれば、単量体の種類、後処理の方法な
どによりその表面にカルボキシル基、水酸基、ス
ルホン酸基、アミノ基、エポキシ基、クロロメチ
ル基、メチロール基、アミド基などの官能基を導
入することができ、よつてこのような粒子を用
いることにより粒子の表面に各種官能基を導入
し粒子の表面特性を変化させることができる。
That is, particles are made of organic polymeric substances, and their surface properties vary. For example, if particles are manufactured by emulsion polymerization, carboxyl groups, hydroxyl groups, Functional groups such as sulfonic acid groups, amino groups, epoxy groups, chloromethyl groups, methylol groups, and amide groups can be introduced, and by using such particles, various functional groups can be introduced onto the surface of the particles. The surface properties of the particles can be changed.

また粒子が疎水性で、該粒子を親水性媒体に
分散させたい場合、あるいは逆の場合に本発明を
適用すれば、粒子の親疎水性を前記のような手
段により逆転させることができ、容易に分散する
ようになる。
Furthermore, if the present invention is applied when the particles are hydrophobic and it is desired to disperse the particles in a hydrophilic medium, or vice versa, the hydrophilicity and hydrophobicity of the particles can be reversed by the above-mentioned means, and it is easy to disperse the particles in a hydrophilic medium. Becomes dispersed.

このように粒子が必要な表面性能を有してお
らず、一方粒子単独では粒径が小さすぎて実用
に供し得ない場合などに、本発明は極めて有用な
手段であるといえる。
As described above, the present invention can be said to be an extremely useful means in cases where the particles do not have the necessary surface properties, and the particle size alone is too small to be put to practical use.

作 用 粒子とこれより小さい粒径の粒子とを混合
し、混合の際の両粒子の接触点に働く圧縮力およ
び剪断力によつて瞬時に発生した高熱により、該
接触点を溶融、固着して粒子の表面を粒子が
取り巻き、かくて粒子の表面特性を改善するも
のである。
Action Particles and particles with a smaller particle size are mixed, and the high heat instantaneously generated by the compressive force and shear force acting on the contact point of both particles during mixing melts and solidifies the contact point. The particles surround the surface of the particles, thus improving the surface properties of the particles.

実施例 次に実施例によつて本発明を更に具体的に説明
する。
Examples Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 平均粒径5μm、粒度分布の標準偏差が平均粒径
の40%であるポリエチレン粒子70gと、平均粒径
0.3μm、粒度分布の標準偏差が平均粒径の3%で
あり、かつ粒子表面のカルボキシ基量が
0.056meq/gのポリスチレン粒子30gとを、自
動乳鉢を用い25℃で60分間混合した。
Example 1 70 g of polyethylene particles with an average particle size of 5 μm and a standard deviation of particle size distribution of 40% of the average particle size, and
0.3 μm, the standard deviation of the particle size distribution is 3% of the average particle size, and the amount of carboxy groups on the particle surface is
30 g of polystyrene particles of 0.056 meq/g were mixed at 25° C. for 60 minutes using an automatic mortar.

この結果、ポリスチレン粒子は、第1図の電子
顕微鏡写真(倍率1万倍)からも明らかなよう
に、ポリエチレン粒子に付着し、表面を完全に被
つていた。
As a result, the polystyrene particles adhered to the polyethylene particles and completely covered the surface, as is clear from the electron micrograph in FIG. 1 (magnification: 10,000 times).

また得られた複合粒子を水中に容易に分散し、
激しく掻き混ぜても、ポリスチレン粒子の剥離は
認められなかつた。
In addition, the obtained composite particles can be easily dispersed in water,
Even with vigorous stirring, no peeling of the polystyrene particles was observed.

実施例 2 平均粒径200μm、粒度分布の標準偏差が平均粒
径の25%であるスチレン−ジビニルベンゼン共重
合体粒子90gと、平均粒径0.31μm、粒度分布の
標準偏差が平均粒径の1%であり、かつ粒子表面
に1級アミノ基量を0.033meq/gの量導入した
スチレン−グリシジルメタクリレート共重合体粒
子10gとを、V型タンブラーに入れ、1分間に12
回転の回転速度で、24時間ふり混ぜた。
Example 2 90 g of styrene-divinylbenzene copolymer particles with an average particle size of 200 μm and a standard deviation of particle size distribution of 25% of the average particle size, and 90 g of styrene-divinylbenzene copolymer particles with an average particle size of 0.31 μm and a standard deviation of particle size distribution of 1% of the average particle size. % and 10 g of styrene-glycidyl methacrylate copolymer particles with 0.033 meq/g of primary amino groups introduced onto the particle surface were placed in a V-shaped tumbler, and 12
Shake and mix for 24 hours at a rotating speed.

この結果実施例1と同様に、スチレン−ジビニ
ルベンゼン共重合体粒子にスチレン−グリシジル
メタクリレート共重合体粒子が固着した複合粒子
ができ、官能基のない粒子の表面に1nm2当たり
約1個という多量の1級アミノ基を付与された複
合粒子を得た。
As a result, as in Example 1, composite particles were obtained in which styrene-glycidyl methacrylate copolymer particles were adhered to styrene-divinylbenzene copolymer particles, and a large amount of about 1 particle per 1 nm 2 was formed on the surface of the particles without functional groups. Composite particles were obtained which were provided with primary amino groups.

実施例 3 平均粒径5μm、粒度分布の標準偏差が平均粒径
の40%であるガラス粒子70gと、平均粒径
0.3μm、粒度分布の標準偏差が平均粒径の3%で
あり、かつ粒子表面のカルボキシ基量が
0.056meq/gのポリスチレン粒子30gとを、自
動乳鉢を用い25℃で60分間混合した。
Example 3 70 g of glass particles with an average particle size of 5 μm and a standard deviation of particle size distribution of 40% of the average particle size, and
0.3 μm, the standard deviation of the particle size distribution is 3% of the average particle size, and the amount of carboxy groups on the particle surface is
30 g of polystyrene particles of 0.056 meq/g were mixed at 25° C. for 60 minutes using an automatic mortar.

この結果、ポリスチレン粒子は、第2図の電子
顕微鏡写真(倍率1万倍)からも明らかなよう
に、ガラス粒子に付着し、表面を完全に被つてい
た。
As a result, the polystyrene particles adhered to the glass particles and completely covered the surface, as is clear from the electron micrograph shown in FIG. 2 (magnification: 10,000 times).

また得られた複合粒子は、水中に容易に分散
し、激しく掻き混ぜても、ポリスチレン粒子の剥
離は認められなかつた。
Furthermore, the obtained composite particles were easily dispersed in water, and no peeling of the polystyrene particles was observed even when vigorously agitated.

発明の効果 本発明によれば、特定の粒子と粒子とを組
み合わせることにより、粒子の表面に粒子が
固着した、粒子径に対する比表面積が大きく、適
宜の表面特性を有する複合粒子を容易に得ること
ができる。
Effects of the Invention According to the present invention, by combining specific particles and particles, it is possible to easily obtain composite particles having particles fixed to the surface of the particles, having a large specific surface area relative to the particle diameter, and having appropriate surface characteristics. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、本発明の一実施態様に
より得られた複合粒子(粒子構造)の電子顕微鏡
写真(倍率1万倍)である。
FIGS. 1 and 2 are electron micrographs (10,000 times magnification) of composite particles (particle structure) obtained according to one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 粒径R1が1〜500μm、粒度分布の標準偏差
が平均粒径の±40%以下である粒子と、該粒子
の材料とは異なる有機高分子物質よりなり、粒
径R2が0.05〜10μm、粒度分布の標準偏差が平均
粒径の±40%以下、かつ粒径比R2/R1が1/10
以下を満足する粒子とを、該粒子および粒子
自体が実質的に破砕を起こさぬ状態下で混合
し、圧縮力および剪断力を与えることにより、粒
子の表面に複数の粒子を固着させることを特
徴とする複合粒子の製造方法。
1. Particles with a particle size R 1 of 1 to 500 μm and a standard deviation of particle size distribution of ±40% or less of the average particle size, and an organic polymer substance different from the material of the particles, and a particle size R 2 of 0.05 to 500 μm. 10 μm, the standard deviation of the particle size distribution is ±40% or less of the average particle size, and the particle size ratio R 2 / R 1 is 1/10
A plurality of particles are fixed to the surface of the particles by mixing the particles and particles satisfying the following conditions under conditions where the particles and the particles themselves are not substantially crushed, and applying compressive force and shear force. A method for producing composite particles.
JP18544584A 1984-09-06 1984-09-06 Preparation of composite particle Granted JPS6164326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18544584A JPS6164326A (en) 1984-09-06 1984-09-06 Preparation of composite particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18544584A JPS6164326A (en) 1984-09-06 1984-09-06 Preparation of composite particle

Publications (2)

Publication Number Publication Date
JPS6164326A JPS6164326A (en) 1986-04-02
JPH0460696B2 true JPH0460696B2 (en) 1992-09-28

Family

ID=16170915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18544584A Granted JPS6164326A (en) 1984-09-06 1984-09-06 Preparation of composite particle

Country Status (1)

Country Link
JP (1) JPS6164326A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747118B2 (en) * 1985-03-05 1995-05-24 株式会社資生堂 Manufacturing method of composite powder
JPH024330Y2 (en) * 1985-03-22 1990-02-01
JPH0775665B2 (en) * 1986-10-27 1995-08-16 日本合成ゴム株式会社 Method for producing microencapsulated fine particles
JPH06102730B2 (en) * 1988-04-28 1994-12-14 鐘淵化学工業株式会社 Bimodal particles for separation materials
JPH0822377B2 (en) * 1990-03-02 1996-03-06 株式会社サンギ Column packing material
EP1454943B1 (en) * 2001-11-02 2014-03-05 Sanyo Chemical Industries, Ltd. Composite resin particles
EP1464666A4 (en) * 2002-04-30 2005-05-11 Kaneka Corp Polymer particles and process for production thereof
JP2006036841A (en) * 2004-07-23 2006-02-09 Trial Corp Composite particle coated with ion exchange resin
JP4975275B2 (en) * 2005-06-13 2012-07-11 花王株式会社 Method for producing composite particles
JP2008050592A (en) * 2006-07-28 2008-03-06 Kyodo Printing Co Ltd Resin particle with powder united thereto and method for granulating the same, particle-containing molded article, particle-containing sheet material, and method of forming these
WO2008013266A1 (en) * 2006-07-28 2008-01-31 Kyodo Printing Co., Ltd. Resin particle with powder united thereto and method of forming the same, particle-containing molded object, particle-containing sheet material, and method of forming these, and functional sheet and process for producing functional sheet
JP2008093579A (en) * 2006-10-12 2008-04-24 Kao Corp Manufacturing method of laminated composite particle
JP4911762B2 (en) * 2006-10-16 2012-04-04 花王株式会社 Method for producing composite particles
JP2011209040A (en) * 2010-03-29 2011-10-20 Sekisui Medical Co Ltd COLUMN FILLER FOR MEASURING HEMOGLOBINS, METHOD FOR MEASURING HEMOGLOBIN A1c, AND METHOD FOR MEASURING HEMOGLOBIN A1c AND ABNORMAL HEMOGLOBINS
US9354242B2 (en) * 2012-10-16 2016-05-31 Ortho-Clinical Diagnostics, Inc. Glass bead flow rates to facilitate immunodiagnostic test element manufacture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846502A (en) * 1971-10-19 1973-07-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846502A (en) * 1971-10-19 1973-07-03

Also Published As

Publication number Publication date
JPS6164326A (en) 1986-04-02

Similar Documents

Publication Publication Date Title
JPH0460696B2 (en)
JPH02238033A (en) Manufacture of porous polymer beads
JPH09509356A (en) Encapsulation method and microcapsules produced thereby
JP2769000B2 (en) Porous polymer beads and method for producing the same
US8147783B2 (en) Nickel hydroxide powder and method for producing same
JPH0581615B2 (en)
Fielden et al. The influence of moisture content on spheronization of extrudate processed by a ram extruder
KR20070053202A (en) Ultra low density thermally clad microspheres
JPH09507787A (en) Adsorption material and method
EP1247831A4 (en) Porous beads and process for producing the same
JPH05505643A (en) Method for forming fine polymer particles and polymer-encapsulated particles
US5380594A (en) Microspherules of activated carbon and a process for manufacturing the same
JPS619433A (en) Production of thermoplastic resin microsphere
HU214982B (en) Solid product containing water soluble or water swellable particulate polymer, process for producing thereof and flocculating process
CN110694559B (en) Preparation method and application of two-dimensional material nanosheet coated microspheres
JPH06126146A (en) Method for manufacturing colored composite particle
CA2143835C (en) Method for manufacturing spherical particles
JP5709268B2 (en) Method for producing composite fine particles having heterogeneous surface
JPH0457374B2 (en)
JP2001106793A (en) Method for granulating filler-containing polytetrafluoroethylene powder
CN102085469B (en) Method for preparing big-diameter granules from micro and nano powder by means of interfacial polymerization
JPH0459010B2 (en)
JP3599536B2 (en) Spherical body composed of crosslinked polymer and method for producing the same
CN114377825B (en) Device for improving dispersion degree of nano particles in polymer nano composite material
WO2001064331A1 (en) Method for producing micro and/or nanocapsules

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees