JPH0460602A - Focus detector and observation device equipped with the same - Google Patents
Focus detector and observation device equipped with the sameInfo
- Publication number
- JPH0460602A JPH0460602A JP17248190A JP17248190A JPH0460602A JP H0460602 A JPH0460602 A JP H0460602A JP 17248190 A JP17248190 A JP 17248190A JP 17248190 A JP17248190 A JP 17248190A JP H0460602 A JPH0460602 A JP H0460602A
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical system
- photodetector
- reflected
- focus detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 95
- 238000001514 detection method Methods 0.000 claims abstract description 37
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 230000004907 flux Effects 0.000 abstract description 12
- 230000015572 biosynthetic process Effects 0.000 abstract 3
- 238000003384 imaging method Methods 0.000 description 42
- 238000006243 chemical reaction Methods 0.000 description 31
- 238000010586 diagram Methods 0.000 description 16
- 239000000758 substrate Substances 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 7
- 210000001747 pupil Anatomy 0.000 description 6
- 239000002184 metal Substances 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000001444 catalytic combustion detection Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Focusing (AREA)
- Automatic Focus Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は焦点検出装置及び該焦点検出装置を備えた観察
装置に関し、特に投光手段からの光束を結像光学系の一
部の領域を介して物体へ投光し、該物体からの反射光束
のうち、該結像光学系の他の領域を通過する光束の検出
器面上の入射位置情報を検出することにより、該結像光
学系の焦点位置の検出を行った焦点検出装置及び該焦点
検出装置を備えた観察装置に関するものである。Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a focus detection device and an observation device equipped with the focus detection device, and in particular, to a focus detection device and an observation device equipped with the focus detection device. The imaging optical system detects the incident position information on the detector surface of the luminous flux that passes through other areas of the imaging optical system among the reflected luminous flux from the object. The present invention relates to a focus detection device that detects the focus position of , and an observation device equipped with the focus detection device.
(従来の技術)
従来より結像光学系の焦点位置を充電的に検出する焦点
検出装置には、種々のタイプのものが提案されている。(Prior Art) Various types of focus detection devices that chargeably detect the focal position of an imaging optical system have been proposed.
例えば特開昭57−210308号公報では投光手段よ
り光束を物体側に投光し、物体からの反射光束を利用し
て焦点検出を行う所謂能動方式の焦点検出装置か提案さ
れている。又特開昭57−72111号公報や特開昭6
0−41013号公報等では結像光学系により形成され
た物体像の結像状態を利用して焦点検出を行う受動方式
の焦点検出装置が提案されている。又特開昭57−22
210号公報では能動方式で、このとき光束を結像光学
系を介して物体側へ投光するようにしたT T L (
Through TheLens)方式の焦点検出装置
が提案されている。For example, Japanese Patent Application Laid-Open No. 57-210308 proposes a so-called active type focus detection device in which a light beam is projected toward an object by a light projecting means and focus detection is performed using the light beam reflected from the object. Also, JP-A No. 57-72111 and JP-A No. 6
0-41013 and the like propose a passive focus detection device that performs focus detection using the imaging state of an object image formed by an imaging optical system. Also, JP-A-57-22
Publication No. 210 uses an active method, and at this time, the light beam is projected to the object side via an imaging optical system.
A focus detection device using a through-the-lens method has been proposed.
第5図は従来の能動方式でかつTTL方式を用いた焦点
検出装置を備えた顕微鏡の光学系の要部概略図である。FIG. 5 is a schematic diagram of a main part of an optical system of a microscope equipped with a conventional active type focus detection device using a TTL type.
同図において1は焦点合わせ用の光源で例えばレーザー
ダイオード、LED (発光ダイオード)等から成って
いる。光源1からの光束はコンデンサーレンズ2により
集光される。コンデンサーレンズ2で集光された光束の
一部は光軸に対して一方の側の部分か反射面91b、他
方の側の部分が透過面91aになっているナイフェツジ
ミラー91の透過面91aを通過する。透過面91aを
通過した光束はビームスプリッタ−8により反射され光
束18として結像光学系9に入射する。結像光学系9へ
の入射光束は、第8図て示すようにその瞳面111上で
結像光学系9の光軸114に対して主光線が偏心した光
束であり、瞳面111中の斜線て示す領域112(11
3の様な光束は、ナイフェツジミラー91の透過・反射
面の形状によりつくる)内を通過する。In the figure, reference numeral 1 denotes a light source for focusing, which is comprised of, for example, a laser diode, an LED (light emitting diode), or the like. A light beam from a light source 1 is condensed by a condenser lens 2. A part of the light beam condensed by the condenser lens 2 passes through the transmission surface 91a of the knife mirror 91, which has a reflection surface 91b on one side with respect to the optical axis and a transmission surface 91a on the other side. pass through. The light beam that has passed through the transmission surface 91a is reflected by the beam splitter 8 and enters the imaging optical system 9 as a light beam 18. The incident light flux to the imaging optical system 9 is a luminous flux whose principal ray is decentered with respect to the optical axis 114 of the imaging optical system 9 on the pupil plane 111, as shown in FIG. Area 112 (11
A light beam such as 3 passes through the inside (formed by the shape of the transmitting/reflecting surface of the knife mirror 91).
結像光学系9を通過した光束18は、物体92に投光さ
れ、その近傍に光源1の発光部のスボ・ソト像を結像す
る。物体92て反射した光束のうち、投光時とは光軸1
14に対して略対称な光路に沿フて反射した光束17は
、結像光学系9を再通過する。そしてビームスプリッタ
−8で反射し、ナイフェツジミラー91の反射面91b
で反射してコンデンサーレンズ6により集光されて焦点
検出用の充電変換素子7の受光面にスポット像を形成す
る。The light beam 18 that has passed through the imaging optical system 9 is projected onto an object 92 and forms a subo-soto image of the light emitting part of the light source 1 in the vicinity thereof. Of the luminous flux reflected by the object 92, the optical axis 1 at the time of projection is
The light beam 17 reflected along an optical path substantially symmetrical with respect to the optical path 14 passes through the imaging optical system 9 again. Then, it is reflected by the beam splitter 8, and the reflection surface 91b of the knife mirror 91 is reflected.
The light is reflected by the condenser lens 6 and is focused to form a spot image on the light receiving surface of the charge conversion element 7 for focus detection.
同図において、光源1と物体92、物体92と光電変換
素子7は各々互いに略共役関係となっている。In the figure, the light source 1 and the object 92, and the object 92 and the photoelectric conversion element 7 are each in a substantially conjugate relationship with each other.
10は顕微鏡のテレビカメラてあり、結像光学系9を介
して物体92と略共役位置にあり、物体92を観察して
いる。今、物体92か第5図の位置く合焦位置)11に
あるとき充電変換素子7面上には第7図に示すような光
線104が良好なるスポット光として結像する。このと
き、光電変換素子7からは、第7図に示す曲線101の
如く急峻な強度分布が得られる。Reference numeral 10 denotes a television camera of the microscope, which is located at a substantially conjugate position with the object 92 through the imaging optical system 9, and observes the object 92. Now, when the object 92 is at the focused position 11 shown in FIG. 5, a light ray 104 as shown in FIG. 7 forms an image on the surface of the charge conversion element 7 as a good spot light. At this time, a steep intensity distribution as shown by a curve 101 shown in FIG. 7 is obtained from the photoelectric conversion element 7.
又、物体92が前ビン(後ピン)の位置12(13)に
あるときは、光電変換素子7面上には第7図に示すよう
な光線106(105)が入射する。このときの光線1
06(105)は光線101に比べて拡がったスポット
光となり、充電変換素子7からは同図の曲線103のよ
うに広がりかつ物体92からの反射光束17か光軸11
4に対して偏心している為に、光線104による強度分
布に対し横方向にズした強度分布が得られる。When the object 92 is at the front pin (rear pin) position 12 (13), a light ray 106 (105) as shown in FIG. 7 is incident on the surface of the photoelectric conversion element 7. Ray 1 at this time
06 (105) becomes a spot light that is spread out compared to the light ray 101, and from the charge conversion element 7 it spreads out like a curve 103 in the same figure, and the light beam 17 reflected from the object 92 or the optical axis 11
4, an intensity distribution shifted in the lateral direction from the intensity distribution due to the light ray 104 is obtained.
このときの充電変換素子7面上での入射光束のズレ量と
物体92の合焦位置11からのデイフォーカス量とは一
定の関係にある。第9図の装置では、光電変換素子7面
上への入射光束の光量重心の所定位置からのズレ量を検
出することにより結像光学系9の焦点検出を行フている
。At this time, the amount of deviation of the incident light beam on the surface of the charge conversion element 7 and the amount of day focus from the focus position 11 of the object 92 are in a constant relationship. In the apparatus shown in FIG. 9, the focus of the imaging optical system 9 is detected by detecting the amount of deviation of the light intensity center of the light beam incident on the surface of the photoelectric conversion element 7 from a predetermined position.
即ち、光電変換素子7に2分割センサーを用いて、入射
光束の強度分布か曲線101のとき、第5図に示すよう
に左側のセンサー7aからの出力値をA、右側のセンサ
ー7bからの出力値をBとして出力値Aと出力値Bとの
差信号A−BがA−B=Oとなるように設定しておく。That is, when a two-split sensor is used as the photoelectric conversion element 7 and the intensity distribution of the incident light beam is a curve 101, the output value from the left sensor 7a is A, and the output value from the right sensor 7b is A, as shown in FIG. The value is set to B so that the difference signal A-B between the output value A and the output value B becomes A-B=O.
第9図は物体92のデイフォーカス量に対する充電変換
素子7からの差信号A−Bとの関係を示した説明図であ
る。即ち物体92が位置12にあるときは差信号はA−
B>O1物体92が位置13にあるときは差信号はA−
B<Oとなる。FIG. 9 is an explanatory diagram showing the relationship between the day focus amount of the object 92 and the difference signal AB from the charge conversion element 7. That is, when object 92 is at position 12, the difference signal is A-
B>O1 When object 92 is at position 13, the difference signal is A-
B<O.
第5図に示す焦点検出装置は、光電変換素子7からの出
力信号の差信号A−BかA−B=0となるように、結像
光学系9又は物体92を光軸上に沿って移動させて、こ
れにより結像光学系9に物体9を合焦せしめている。The focus detection device shown in FIG. 5 moves the imaging optical system 9 or the object 92 along the optical axis so that the difference signal A-B of the output signal from the photoelectric conversion element 7 or A-B=0. By moving the object 9, the object 9 is brought into focus on the imaging optical system 9.
(発明が解決しようとする問題点)
第5図に示す焦点検出装置では、物体92が位置13に
あり、合焦位置11より距離ΔXたけデイフォーカスし
ていると、充電変換素子7付近では反射光束17は、第
7図に示すように、光電変換素子7から距離β2 ・2
・ΔX程度、手前の点105aに結像する。(Problems to be Solved by the Invention) In the focus detection device shown in FIG. As shown in FIG. 7, the light beam 17 is at a distance β2·2 from the photoelectric conversion element 7.
- An image is formed on the point 105a in the front by about ΔX.
但し、βは物体92か結像光学系9を介して充電変換素
子7側に結像される際の近軸横倍率である。However, β is the paraxial lateral magnification when the object 92 is imaged onto the charging conversion element 7 side via the imaging optical system 9.
ここで、物体92か結像光学系9から大きく離れると、
即ちデイフォーカス量ΔXか大きくなってくると、第7
図における距離β2・2・ΔXが増大し、第6図に示す
ように物体92からの反射光束17かナイフェツジミラ
ー91よりも手前の点17aに集光するようになってく
る。この結果、物体92からの反射光束17の全てがナ
イフェツジミラー91の透過部91aを通通し、反射面
91bで反射されなくなり、充電変換素子7へは入射し
なくなってくる。このとき光電変換素子7からの差信号
A−Bは、第9図に示すようにA−B=Oとなる。Here, if the object 92 is far away from the imaging optical system 9,
That is, as the day focus amount ΔX increases, the seventh
The distance β2·2·ΔX in the figure increases, and the reflected light beam 17 from the object 92 comes to be focused on a point 17a in front of the knife mirror 91, as shown in FIG. As a result, all of the reflected light beam 17 from the object 92 passes through the transmitting portion 91a of the knife mirror 91, is no longer reflected by the reflective surface 91b, and is no longer incident on the charge conversion element 7. At this time, the difference signal AB from the photoelectric conversion element 7 becomes AB=O as shown in FIG.
即ち、デイフォーカス量ΔXがある値ΔX MAX以上
大きくなると、差信号A−BはA−B=0となり、この
結果、焦点検出が出来なくなってくるという問題点が生
してくる。That is, when the day focus amount ΔX increases beyond a certain value ΔX MAX, the difference signal AB becomes AB=0, resulting in a problem that focus detection becomes impossible.
本発明は物体か大きくデイフォーカスしていた場合、駆
動手段により物体又は結像光学系を移動調整し、物体か
らの反射光束か光検出器に入射し、光検出器からは所定
の差信号が得られるようにして、結像光学系の焦点位置
を広範囲にわたり高鯖度に検出することができる焦点検
出装置の提供を目的とする。In the present invention, when an object is largely day focused, the driving means moves and adjusts the object or the imaging optical system, and the reflected light beam from the object enters the photodetector, and the photodetector outputs a predetermined difference signal. It is an object of the present invention to provide a focus detection device that can detect the focal position of an imaging optical system over a wide range with high accuracy.
(問題点を解決するための手段)
本発明の焦点検出装置及びそれを備えた観察装置は、光
源と、対物光学系と、該光源からの光の部を遮光して該
対物光学系の光軸に対して偏心した光束を該対物光学系
に向ける光制限部材と、該対物光学系を介して照明され
た被検面からの反射光を該対物光学系を介して検出する
光検出器とを有し、該光検出器からの信号に基づいて該
被検面の該光軸の方向に関する変位を検出する焦点検出
装置において、前記光制限部材か前記被検面からの反射
光を反射して前記光検出器に向ける反射面を有し、前記
被検面からの反射光のうち該反射面の傍を通過して前記
光検出器へ入射しない光を検出する補助光検出器を配置
し、該補助光検出器からの信号に基づいて前記被検面の
前記光軸の方向に関する位置を調整することを特徴とし
ている。(Means for Solving the Problems) A focus detection device of the present invention and an observation device equipped with the same include a light source, an objective optical system, and a light portion of the objective optical system that is blocked by blocking a portion of light from the light source. a light restricting member that directs a light beam eccentric with respect to the axis toward the objective optical system; and a photodetector that detects, via the objective optical system, reflected light from a test surface illuminated via the objective optical system. and detects a displacement of the surface to be measured in the direction of the optical axis based on a signal from the photodetector, wherein the light limiting member reflects the reflected light from the surface to be measured. an auxiliary photodetector having a reflective surface directed toward the photodetector, and detecting light that passes by the reflective surface and does not enter the photodetector among the reflected light from the test surface; , the position of the surface to be inspected in the direction of the optical axis is adjusted based on the signal from the auxiliary photodetector.
又、本発明では光源と、対物光学系と、該光源からの光
の一部を取り出して該対物光学系の光軸に対して偏心し
た光束を該対物光学系に向ける光制限部材と、該対物光
学系を介して照明された被検面からの反射光を該対物光
学系を介して検出する光検出器とを有し、該光検出器か
らの信号に基すいて該被検面の該光軸の方向に関する変
位を検出する焦点検出装置において、前記光制限部材か
前記光源からの光の一部を反射して前記対物光学系に向
ける反射面を有し、前記被検面からの反射光のうち該反
射面の傍を通過した光を前記光検出器で検出し、前記被
検面からの反射光のうち該反射面で反射して前記光検出
器へ入射しない光を検出する補助光検出器を配置し、該
補助光検出器からの信号に基づいて首記被検面の前記光
軸の方向に関する位置を調整することを特徴としている
。Further, the present invention includes a light source, an objective optical system, a light restriction member that extracts a part of the light from the light source and directs a light beam decentered with respect to the optical axis of the objective optical system to the objective optical system; and a photodetector that detects, via the objective optical system, reflected light from the surface to be inspected illuminated via the objective optical system. In the focus detection device that detects displacement in the direction of the optical axis, the light limiting member has a reflecting surface that reflects a part of the light from the light source and directs it toward the objective optical system, and Of the reflected light, the light that passes by the reflective surface is detected by the photodetector, and of the reflected light from the test surface, the light that is reflected by the reflective surface and does not enter the photodetector is detected. The present invention is characterized in that an auxiliary photodetector is arranged, and the position of the test surface in the direction of the optical axis is adjusted based on a signal from the auxiliary photodetector.
この他本発明では次の構成を有することを特徴としてい
る。In addition, the present invention is characterized by having the following configuration.
(イ)前記光源が発光タイオート又はレーザーダイオー
ドを備えており前記光源か、首記発光ダイオード或は前
記レーザーダイオードからの光を集光して前記光制限部
材に向けるコンデンサーレンズを有すること。(a) The light source includes a light emitting diode or a laser diode, and has a condenser lens that collects light from the light source, the light emitting diode, or the laser diode and directs it toward the light restriction member.
(ロ)前記対物光学系か前記光制限部材からの光束を所
定位置に集光する対物レンズ系を有し、前記光検出器が
該所定位置と前記被検面との前記光軸方向に関する相対
的な変位に応じた信号を出力し、又前記光検出器が前記
光制限部材からの前記反射光を集光するレンズ系と該レ
ンズ系からの光を光電変換し、該光の入射位置に応じた
信号を出力するセンサーとを有し、前記センサーと前記
所定位置とか光学的に共役となるよう、又は/及び前記
光源の発光部と前記所定位置とか光学的に共役となるよ
う前記対物光学系を配置したこと。(b) The objective optical system includes an objective lens system that condenses the light beam from the light restriction member at a predetermined position, and the photodetector is configured to provide a relative relationship between the predetermined position and the test surface in the optical axis direction. The photodetector outputs a signal according to the displacement of the light, and the photodetector converts the light from the lens system to a lens system that collects the reflected light from the light restriction member and photoelectrically converts the light from the lens system to the incident position of the light. and a sensor that outputs a corresponding signal, and the objective optical system is configured such that the sensor and the predetermined position are optically conjugate, and/or the light emitting part of the light source and the predetermined position are optically conjugate. Having placed the system.
(ハ)前記光検出器からの信号と前記補助光検出器から
の信号とに基づいて前記被検面の前記光軸方向に関する
位置を調整する調整手段を備えること。(c) An adjusting means is provided for adjusting the position of the test surface in the optical axis direction based on the signal from the photodetector and the signal from the auxiliary photodetector.
(ニ)前記光制限部材か、透明基板と、該透明基板の一
部に前記反射面を構成するよう形成した反射膜とを有し
、該透明基板を前記光軸に対して傾けて配置し、該反射
膜で前記光源からの光を遮光すること。(d) The light restricting member has a transparent substrate and a reflective film formed on a part of the transparent substrate to constitute the reflective surface, and the transparent substrate is arranged at an angle with respect to the optical axis. , blocking light from the light source with the reflective film.
(*)前記光制限部材が、透明基板と、該透明基板の一
部に首記反射面を構成するよう形成した反射膜とを有し
、該透明基板を前記光軸に対して傾けて配置し、該透明
基板の該反射膜以外の部分を介して前記被検面からの反
射光を前記光検出器で検出していること。(*) The light restriction member has a transparent substrate and a reflective film formed on a part of the transparent substrate to constitute the above-mentioned reflective surface, and the transparent substrate is arranged at an angle with respect to the optical axis. and the photodetector detects reflected light from the test surface through a portion of the transparent substrate other than the reflective film.
(実施例)
第1図は本発明の焦点検出装置の第1実施例を示す概略
図であり、顕微鏡に本焦点検出装置を搭載した様子を図
示しである。(Embodiment) FIG. 1 is a schematic diagram showing a first embodiment of the focus detection device of the present invention, and shows how the focus detection device is mounted on a microscope.
本実施例の装置は、第5図の従来の焦点検出装置とは異
なり、ナイフェツジミラー91(光制限部材)の近傍に
フォトタイオート(PD)より成る補助光検出器3を設
け、この光検出器3て、ビームスプリッタ8側からナイ
フェツジミラー91に入射した反射光束17のうち反射
部91bで反射せす透過面91aを通過した光(充電変
換素子7に入射しない光)を検出している。そしてこの
ときの該補助検出器3からの出力信号は制御器4に入力
され、制御器4からの指令信号で、駆動手段40を介し
て物体92を結像光学系9の光軸114方向に移動させ
る。これにより、光電変換素子7の受光面に物体92の
表面で反射した反射光束(17)が入射するように、物
体92の位置を調整する。The apparatus of this embodiment differs from the conventional focus detection apparatus shown in FIG. The photodetector 3 detects the light (light that does not enter the charge conversion element 7) that passes through the transmission surface 91a and is reflected by the reflection part 91b, out of the reflected light beam 17 that enters the knife mirror 91 from the beam splitter 8 side. are doing. The output signal from the auxiliary detector 3 at this time is input to the controller 4, and the object 92 is moved in the direction of the optical axis 114 of the imaging optical system 9 via the driving means 40 according to the command signal from the controller 4. move it. Thereby, the position of the object 92 is adjusted so that the reflected light beam (17) reflected from the surface of the object 92 is incident on the light receiving surface of the photoelectric conversion element 7.
又、制aIJ器4は光#1の発光のルjmを行なうと共
に、充電変換素子7からの出力信号(A−B)に広答し
て、駆動手段40に所定の信号を人力し、物体92の表
面を結像光学、!−9に対して合焦させる為にも作動す
る。In addition, the control aIJ device 4 controls the emission of light #1, and also responds to the output signal (A-B) from the charge conversion element 7 and manually inputs a predetermined signal to the drive means 40 to move the object. Imaging optics on the surface of 92,! It also operates to focus on -9.
次に本実施例の装置の構成を、第5図の従来の焦点検出
装置を一部重複するが、順次説明する。Next, the configuration of the apparatus of this embodiment will be explained in sequence, although some parts overlap with the conventional focus detection apparatus shown in FIG.
第1図において、■は光源で中心波長λ。の準単色光を
放射するLED (発光タイオート)から成っており波
長λ。の単色光又は波長λ。を中心とした拡がりを有す
る光束を放射している。In Fig. 1, ■ is the light source and the center wavelength λ. It consists of an LED (light emitting diode) that emits quasi-monochromatic light of wavelength λ. Monochromatic light or wavelength λ. It emits a beam of light that spreads around .
2はコンデンサーレンズであり、光源1からの光束を集
光し、ナイフェツジミラー91に向けている。コンデン
サーレンズ2は、光源1からの光束を効率的にナイフェ
ツジミラー91に向ける為に設けてあり、また、光源1
の発光部の像を、物体92の表面上に、結像光学系と共
に形成するように働く。コンデンサーレンズ2の交換等
によって、この発光部の像の大きさ(結像倍率)を調整
することができる。A condenser lens 2 condenses the light beam from the light source 1 and directs it toward the knife mirror 91. The condenser lens 2 is provided to efficiently direct the luminous flux from the light source 1 to the knife mirror 91, and also
The light-emitting section 92 forms an image of the light emitting section on the surface of the object 92 together with the imaging optical system. By exchanging the condenser lens 2, etc., the size of the image of this light emitting section (imaging magnification) can be adjusted.
光制限部材91は、光軸114に関して一方の側(図中
、上側)に反射部91b、他方の側(図中、下側)に光
透過部91aを歯打するナイフェツジミラーで構成され
ている。8はビームスプリッタ−で、ハーフミラ−を光
軸114に対して斜設しである。ナイフェツジミラー9
1の光透過部91aを通過し、ビームスプリッタ8に入
射した光束は、ヒ゛−ムスブリッタ8により反射され、
光束18として結像光学系9に入射する。結像光学系9
への入射光束は、第8図で示したように、その瞳面11
1上で、結像光学系9の光軸114に対して、その主光
線か偏心した光束であり、瞳面111の斜線て示す領域
112内を通過する。The light restricting member 91 is composed of a knife mirror that has a reflecting part 91b on one side (upper side in the figure) and a light transmitting part 91a on the other side (lower side in the figure) with respect to the optical axis 114. ing. Reference numeral 8 denotes a beam splitter, which has a half mirror installed obliquely with respect to the optical axis 114. Naifetsuji Mirror 9
The light beam that passes through the light transmission section 91a of 1 and enters the beam splitter 8 is reflected by the beam splitter 8, and
The light enters the imaging optical system 9 as a light beam 18 . Imaging optical system 9
As shown in FIG.
1, the principal ray is a decentered light beam with respect to the optical axis 114 of the imaging optical system 9, and passes through a region 112 shown by diagonal lines on the pupil plane 111.
その後、結像光学系9を射出した光束18は、物体92
に入射し、物体92の表面近傍に光源1の発光部の像を
結像する。物体92の表面(被検面)で反射した反射光
束は、入射時の光路と、光軸114に対して略対称な光
路に沿って逆方向に向かい反射光束17となって結像光
学系9を再び通過する。そしてビームスプリッタ8て反
射し、ナイフェツジミラー91の反射部91bで反射し
コンデンサーレンズ6により集光されて、焦点検出用の
充電変換素子7面に入射する。Thereafter, the light beam 18 exiting the imaging optical system 9 is directed to the object 92.
, and forms an image of the light emitting part of the light source 1 near the surface of the object 92. The reflected light beam reflected by the surface (test surface) of the object 92 travels in the opposite direction along an optical path that is approximately symmetrical with respect to the optical axis 114 and becomes a reflected light beam 17 and passes through the imaging optical system 9. pass again. The light is then reflected by the beam splitter 8, reflected by the reflecting portion 91b of the knife mirror 91, condensed by the condenser lens 6, and incident on the charging conversion element 7 for focus detection.
同図において、物体92の表面か結像光学系9に対して
合焦した時に、光源1の発光部と物体92の表面、物体
92の表面と充電変換素子7の受光面は各々互いに光学
的に共役になる。In the figure, when the surface of an object 92 is focused on the imaging optical system 9, the light emitting part of the light source 1 and the surface of the object 92, and the surface of the object 92 and the light receiving surface of the charge conversion element 7 are optically connected to each other. becomes conjugate to
10はテレビカメラであり、その撮像面か結像光学系9
を介して物体92の表面と光学的に共役になるよう、本
焦点検出装置は作動する。尚このテレビカメラ10て、
物体92を観察する。10 is a television camera, and its imaging surface or imaging optical system 9
The focus detection device operates so as to be optically conjugate with the surface of the object 92 via the . Furthermore, this TV camera 10,
Observe object 92.
本実施例の結像光学系9は顕微鏡の対物レンズ系であり
、このレンズ系は複数個のレンズを備えたレンズアセン
ブリより成る。また、光電変換素子7は2分割センサー
で構成されている。The imaging optical system 9 of this embodiment is an objective lens system of a microscope, and this lens system consists of a lens assembly including a plurality of lenses. Further, the photoelectric conversion element 7 is composed of a two-part sensor.
また、第2図に示すように、ナイフェツジミラー91は
、カラス板よりなる透明基板の一部にAfl、AU等の
金属膜を形成して反射部91bを構成し、他の部分(金
属がない部分)を光透過部91aとしている。Further, as shown in FIG. 2, the knife mirror 91 has a reflective part 91b formed by forming a metal film such as Afl or AU on a part of a transparent substrate made of a glass plate, and the other part (metal The portion with no blank portion) is defined as a light transmitting portion 91a.
第1図において、物体92の表面か位置11即ち合焦位
置にあれば、第1図に示すように、反射光束17は、ナ
イフェツジミラー91の反射部91bで反射し、光電変
換素子7の受光面上に、第7図に示した光束104の如
く入射し、受光面上に鮮明な光スポットを形成する。In FIG. 1, when the surface of the object 92 is at position 11, that is, the in-focus position, the reflected light beam 17 is reflected by the reflecting portion 91b of the knife mirror 91, and the photoelectric conversion element 7 A light beam 104 shown in FIG. 7 is incident on the light receiving surface of the light receiving surface, forming a clear light spot on the light receiving surface.
又、物体92の表面か位置12(前ピン)にあるとき、
反射光束17は、光電変換素子7の後方に集光するよう
になるので反射光束17はナイフェツジミラー91の反
射部91bで反射し、充電変換素子7の受光面上に、第
7図に示す光束106の如く入射し、受光面上に拡がっ
た光スポットを形成する。Also, when the surface of the object 92 is at position 12 (front pin),
Since the reflected light beam 17 comes to be focused behind the photoelectric conversion element 7, the reflected light beam 17 is reflected by the reflection part 91b of the knife mirror 91, and appears on the light receiving surface of the charge conversion element 7 as shown in FIG. The light beam 106 enters the light beam and forms a spread light spot on the light-receiving surface.
一方、物体92の表面か位置13(後ピン)にあり、デ
イフォカス量ΔXが大きい時には、第7図に示すように
、充電変換素子7に対し反射光束17の結像位置105
aか大きくすれてβ22・ΔXか大きくなってくる。従
って、第2図に示すように、反射光束17はナイフェツ
ジミラー91の手前の点17bに結像した後に、ナイフ
ェツジミラー91に入射するようになる。On the other hand, when the surface of the object 92 is at position 13 (rear focus) and the defocus amount ΔX is large, as shown in FIG.
As a becomes larger, β22・ΔX becomes larger. Therefore, as shown in FIG. 2, the reflected light beam 17 forms an image at a point 17b in front of the knife mirror 91, and then enters the knife mirror 91.
このときの反射光束17は前述したように、ナイフェツ
ジミラー91の反射部91bには入射しないか、入射し
ても、その量か小さく、光透過部91aに、反射光束1
7の殆とか入射するようになる。As described above, the reflected light beam 17 at this time does not enter the reflection part 91b of the knife mirror 91, or even if it does, the amount is small and the reflected light flux 17 enters the light transmission part 91a.
Almost all of 7 is now incident.
即ち、充電変換素子7の受光面に反射光束17か殆と入
射しない為に、充電変換素子7からの差信号A−Bは常
にほぼA−B=Oとなり合焦状態として誤まってしまう
誤信号か得られるようになる。In other words, since almost none of the reflected light beam 17 enters the light receiving surface of the charge conversion element 7, the difference signal A-B from the charge conversion element 7 is always approximately A-B=O, which may lead to an error in the in-focus state. You will be able to get a signal.
そこて、本実施例では、第2図に示すようにナイフェツ
ジミラー91近傍の有効光束外に補助光検出器3を設け
、この補助光検出器3で、ナイフェツジミラー91の透
過部91aを通過してきた光束17の一部を検出するよ
うにしている。そして、補助光検出器3からの受光した
光の強度に応じた出力値(信号レベル)が所定値以上あ
るときは制御器4で物体92か大きくデイフォーカス(
後ピン)しているものと見なし、制御器4から所定の指
令信号を駆動手段40に与え、駆動手段40により物体
92を光軸上、合焦位置11へ向う方向(結像光学系9
の方向)に移動させている。Therefore, in this embodiment, as shown in FIG. A portion of the light beam 17 that has passed through 91a is detected. When the output value (signal level) corresponding to the intensity of the light received from the auxiliary light detector 3 is equal to or higher than a predetermined value, the controller 4 controls the object 92 to be greatly focused (
The controller 4 gives a predetermined command signal to the driving means 40, and the driving means 40 moves the object 92 on the optical axis in a direction toward the in-focus position 11 (imaging optical system 9).
direction).
第1O図は、デイフォーカス量と補助光検出器3からの
出力値Cとの関係を示す説明図である。FIG. 1O is an explanatory diagram showing the relationship between the day focus amount and the output value C from the auxiliary light detector 3.
同図においては、デイフォーカス量ΔX MAX(第9
図参照)よりも大きくデイフォーカスしている範囲ΔD
内にあるとき、補助光検出器3からは出力信号C1が得
られることを示している。In the same figure, day focus amount ΔX MAX (9th
(See figure) Day focus range ΔD
It is shown that an output signal C1 is obtained from the auxiliary photodetector 3 when the auxiliary photodetector 3 is within the range.
このように、本実施例では、物体92の表面が後ピン方
向で大きくデイフォーカスしているときは、補助光検出
器3から所定の信号が得られるのてこの出力信号に基づ
いて制御器4と駆動手段40を用いて物体92を所定量
光軸上114に沿って移動させることにより、物体92
の表面からの反射光束17がナイフェツジミラー91の
反射部91bて反射して充電変換素子7の受光面上に入
射するようにしている。As described above, in this embodiment, when the surface of the object 92 is largely defocused in the rear focusing direction, a predetermined signal is obtained from the auxiliary light detector 3, and the controller 4 is controlled based on the output signal of the lever. By moving the object 92 by a predetermined amount along the optical axis 114 using the driving means 40, the object 92
The reflected light beam 17 from the surface of the mirror 91 is reflected by the reflecting portion 91b of the knife mirror 91 and is incident on the light receiving surface of the charge conversion element 7.
これにより、本実施例の焦点検出装置では、物体92か
前ピン方向、後ピン方向で大きくデイフォーカスしてい
ても、物体92の表面からの反射光束17を、光電変換
素子7面上に入射させることができるようにしている。As a result, in the focus detection device of this embodiment, even if the object 92 is largely day-focused in the front focus direction or back focus direction, the reflected light beam 17 from the surface of the object 92 is incident on the photoelectric conversion element 7 surface. I'm trying to be able to do that.
本実施例によれば、物体92が広い範囲にわたってデイ
フォーカスしていても、正確に焦点位置を検出すること
ができる。According to this embodiment, even if the object 92 is day-focused over a wide range, the focal position can be detected accurately.
第3図は本実施例の焦点検出装置を使用した焦点検出方
法の手順を示すフローチャート図である。同図に示す処
理は、電気回路を組んでハート的に行なっても良く、又
検出器3,7からの出力信号なA/D変換してCPUを
利用してソフト的に行っても良い。FIG. 3 is a flowchart showing the steps of a focus detection method using the focus detection device of this embodiment. The processing shown in the figure may be performed in a hardware manner by constructing an electric circuit, or may be performed in software by converting the output signals from the detectors 3 and 7 from analog to digital using a CPU.
上記実施例において、光源lの出力(光強度)が大きく
て、光学系で光の利用効率を高める必要がない時には、
コンデンサーレンズ2を取りはずしたり、或は、コンデ
ンサーレンズ2.6を取りはずして、装置を構成するこ
ともできる。このように構成する場合も、物体92の表
面が結像光学系9に対して合焦した時に、この表面と、
光W1の発光部及び光電変換素子7の受光面とが、互い
に共役になるよう、光源1と素子7を配列するのかいい
。In the above embodiment, when the output (light intensity) of the light source l is large and there is no need to increase the light utilization efficiency in the optical system,
The device can also be configured by removing the condenser lens 2 or by removing the condenser lens 2.6. Also in this case, when the surface of the object 92 is focused on the imaging optical system 9, this surface and
The light source 1 and the element 7 are arranged so that the light emitting part of the light W1 and the light receiving surface of the photoelectric conversion element 7 are conjugate with each other.
上記実施例では、充電変換素子7として2分割センサー
を用いていたか、このセンサーの代りにP S D
(Position 5ensitive detec
to) 、 1次元また2次元CCDなとのセンサー
の使用が可能である。また、光源1としても、レーザー
タイオート(半導体レーザー)を、LEDの代りに使用
できる。In the above embodiment, a two-split sensor was used as the charging conversion element 7, or a PSD sensor was used instead of this sensor.
(Position 5 sensitive detect
to), it is possible to use sensors such as one-dimensional or two-dimensional CCDs. Further, as the light source 1, a laser diode (semiconductor laser) can be used instead of an LED.
上記実施例において1例えば第4図に示すようにコンデ
ンサーレンズ2とナイフェツジミラー91との間にハー
フミラ−5を配置し、コンデンサーレンズ2からの光束
をハーフミラ−5を通過させてナイフェツジミラー91
の透過部91aに導光すると共に、ビームスプリッタ−
8で反射し、ナイフェツジミラー91の透過部91aを
通過してきた反射光束17を、ハーフミラ−5て反射し
、補助光検出器3に入射させるようにしても良い。In the above embodiment, a half mirror 5 is arranged between the condenser lens 2 and the knife mirror 91 as shown in FIG. mirror 91
The light is guided to the transmitting section 91a of the beam splitter.
The reflected light beam 17 reflected by the half mirror 5 and passed through the transmission part 91a of the knife mirror 91 may be reflected by the half mirror 5 and made to enter the auxiliary light detector 3.
又、第11図に示すように、光源1とコンデンサーレン
ズ2と補助光検出器3から成る系と、コンデンサーレン
ズ6と光電変換素子7から成る系とを入れ替えて構成し
ても本発明は同棟に通用することができる。また、ナイ
フエ・ソシミラ−91は第2図で示した如く透明基板(
カラス板等)の一部にAl1.Au、等の金属膜を形成
して構成できるが、第12図に示す如く、単に、少なく
とも結像光学系9側の表面に反射面を備えるナイフェツ
ジを配置してもいい。また、第6図で示したナイフェツ
ジミラー91を使用する場合には、反射膜のパターニン
グ形状を適宜設定することにより、第13図に示すよう
に、結像光学系9の瞳面111の一部分の円形領域11
3のみを光束18が通過するようにすることもできる。Furthermore, as shown in FIG. 11, the present invention is the same even if the system consisting of the light source 1, condenser lens 2, and auxiliary photodetector 3 is replaced with the system consisting of the condenser lens 6 and photoelectric conversion element 7. It can be used for buildings. In addition, Naifue Sosimilar-91 has a transparent substrate (as shown in Figure 2).
Al1. Although it can be constructed by forming a metal film such as Au, it is also possible to simply arrange a knife having a reflective surface on at least the surface on the side of the imaging optical system 9, as shown in FIG. In addition, when using the knife mirror 91 shown in FIG. 6, by appropriately setting the patterning shape of the reflective film, the pupil plane 111 of the imaging optical system 9 can be adjusted as shown in FIG. Partial circular area 11
It is also possible to allow the light beam 18 to pass only through the light beam 3.
また、本発明では、被検面に対する合焦制御は、上記実
施例の如く物体を上下動させても良いが、顕微鏡全体を
上下動させたり、光学系の一部(例えば対物レンズ)を
上下動させて、合焦を行なうようにしてもいい。また、
本発明の焦点検出装置は顕微鏡以外の他の光学機器にも
通用可能である。In addition, in the present invention, focusing control on the test surface may be performed by moving the object up and down as in the above embodiment, but it is also possible to control the focus by moving the entire microscope up and down, or by moving a part of the optical system (for example, the objective lens) up and down. It is also possible to focus by moving the lens. Also,
The focus detection device of the present invention can be applied to optical instruments other than microscopes.
(発明の効果)
本発明によれば結像光学系の焦点位置を検出する際に航
述したように結像光学系に偏心した光束を入射させる為
の各要素と補助検出器等の各要素を適切に設定すること
により、デイフォーカス量か大きい広いデイフォーカス
範囲にわたって高鯖度に焦点位置の検出が出来る焦点検
出装置を達成することかできる。(Effects of the Invention) According to the present invention, each element for making an eccentric light beam incident on the imaging optical system and each element such as an auxiliary detector as described above when detecting the focal position of the imaging optical system. By appropriately setting , it is possible to achieve a focus detection device that can detect the focus position with high precision over a wide dayfocus range with a large dayfocus amount.
第1図は本発明の第1実施例の光学系の要部概略図、第
2図は第1図の光学部材近傍の説明図、第3図は第1実
施例の信号処理のフローチャート図、第4図は本発明の
第2実施例の光学系の要部概略図、第5図は従来の焦点
検出装置の要部概略図、第6図は第5図の一部分の説明
図、第7図は焦点検出装置に用いられている検出器に入
射する光束の説明図、第8図は第1図の結像光学系の瞳
面上の光束の説明図、第9.第10図は゛デイフォーカ
ス量と検出器からの出力信号との関係を示す説明図であ
る。第11図は第1図で示した実尻側の変形例を示す図
、第12図は光制限部材の他の例を示す図、第13図は
光制限部材の他の例を示す為の結像光学系の瞳面上での
光束の説明図。
図中1は光源、2,6はコンデンサーレンズ、3は補助
検出器、4は制御器、40は駆動手段、5はハーフミラ
−17は検出器、8はビームスプリッタ−19は結像光
学系、10はテレビカメラ、92は物体、111は結像
光学系の瞳面、114は光軸、91はナイフェツジミラ
ー121はナイフェツジである。FIG. 1 is a schematic diagram of the main parts of the optical system according to the first embodiment of the present invention, FIG. 2 is an explanatory diagram of the vicinity of the optical member in FIG. 1, and FIG. 3 is a flowchart of signal processing according to the first embodiment. FIG. 4 is a schematic diagram of the main parts of the optical system according to the second embodiment of the present invention, FIG. 5 is a schematic diagram of the main parts of a conventional focus detection device, FIG. 6 is an explanatory diagram of a part of FIG. 9 is an explanatory diagram of the light flux incident on the detector used in the focus detection device, FIG. 8 is an explanatory diagram of the light flux on the pupil plane of the imaging optical system of FIG. FIG. 10 is an explanatory diagram showing the relationship between the day focus amount and the output signal from the detector. FIG. 11 is a diagram showing a modified example of the real end side shown in FIG. 1, FIG. 12 is a diagram showing another example of the light restricting member, and FIG. 13 is a diagram showing another example of the light restricting member. FIG. 3 is an explanatory diagram of a light flux on a pupil plane of an imaging optical system. In the figure, 1 is a light source, 2 and 6 are condenser lenses, 3 is an auxiliary detector, 4 is a controller, 40 is a driving means, 5 is a half mirror, 17 is a detector, 8 is a beam splitter, 19 is an imaging optical system, 10 is a television camera, 92 is an object, 111 is a pupil plane of an imaging optical system, 114 is an optical axis, and 91 is a knife mirror 121 is a knife.
Claims (2)
遮光して該対物光学系の光軸に対して偏心した光束を該
対物光学系に向ける光制限部材と、該対物光学系を介し
て照明された被検面からの反射光を該対物光学系を介し
て検出する光検出器とを有し、該光検出器からの信号に
基づいて該被検面の該光軸の方向に関する変位を検出す
る焦点検出装置において、前記光制限部材が前記被検面
からの反射光を反射して前記光検出器に向ける反射面を
有し、前記被検面からの反射光のうち該反射面の傍を通
過して前記光検出器へ入射しない光を検出する補助光検
出器を配置し、該補助光検出器からの信号に基づいて前
記被検面の前記光軸の方向に関する位置を調整すること
を特徴とする焦点検出装置。(1) A light source, an objective optical system, a light restriction member that blocks part of the light from the light source and directs a light beam decentered with respect to the optical axis of the objective optical system toward the objective optical system, and the objective optical system. a photodetector that detects, via the objective optical system, reflected light from the surface to be inspected that is illuminated via the optical system; In a focus detection device that detects displacement in an axial direction, the light restriction member has a reflecting surface that reflects light reflected from the test surface and directs it toward the photodetector, and the light restriction member An auxiliary photodetector is arranged to detect light that passes by the reflective surface and does not enter the photodetector, and the optical axis of the surface to be detected is detected based on a signal from the auxiliary photodetector. A focus detection device characterized by adjusting a position with respect to a direction.
装置。(2) An observation device characterized by using the focus detection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17248190A JPH0460602A (en) | 1990-06-29 | 1990-06-29 | Focus detector and observation device equipped with the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17248190A JPH0460602A (en) | 1990-06-29 | 1990-06-29 | Focus detector and observation device equipped with the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0460602A true JPH0460602A (en) | 1992-02-26 |
Family
ID=15942792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17248190A Pending JPH0460602A (en) | 1990-06-29 | 1990-06-29 | Focus detector and observation device equipped with the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0460602A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004520105A (en) * | 2000-12-19 | 2004-07-08 | ハイシャン ゼン、 | Method and apparatus for fluorescence and reflectance imaging and spectroscopy and method and apparatus for simultaneous measurement of electromagnetic radiation by multiple measuring devices |
-
1990
- 1990-06-29 JP JP17248190A patent/JPH0460602A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004520105A (en) * | 2000-12-19 | 2004-07-08 | ハイシャン ゼン、 | Method and apparatus for fluorescence and reflectance imaging and spectroscopy and method and apparatus for simultaneous measurement of electromagnetic radiation by multiple measuring devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4632532A (en) | Focus detecting apparatus | |
US4688920A (en) | Focus state detecting system | |
US4733062A (en) | Focus detecting device | |
JP3091243B2 (en) | Multi-point distance measuring device | |
US6501541B2 (en) | Electronic distance meter | |
US4549802A (en) | Focus detection apparatus | |
JP2007010951A (en) | Focus detecting device and imaging apparatus | |
US4455065A (en) | Optical device | |
US6501540B2 (en) | Surveying instrument having an optical distance meter | |
JPH0460602A (en) | Focus detector and observation device equipped with the same | |
JP2757541B2 (en) | Focus detection device and observation device having the same | |
JPH0580246A (en) | Automatic focusing device and observation device equipped with the same | |
JP3237023B2 (en) | Position detection device | |
US4592637A (en) | Focus detecting device | |
US4618762A (en) | In-focus position detecting apparatus | |
JPS63259521A (en) | Composite type focusing detection device | |
JP2003083723A (en) | Three-dimensional shape measuring optical system | |
JP2002156578A (en) | Focus detector as well as objective lens, optical microscope or optical test apparatus having the same | |
JPH10133117A (en) | Microscope equipped with focus detecting device | |
JP2007148084A (en) | Focus detector | |
JPH0572467A (en) | Observing device provided with focal point detecting means | |
JPH1047918A (en) | Displacement-measuring device and microscope with auto-focusing function | |
JPH0522883B2 (en) | ||
JPS5910911A (en) | Detector of focal position | |
JPH02910A (en) | Focus detection optical device |