JPH0460519A - Liquid crystal element and production thereof - Google Patents

Liquid crystal element and production thereof

Info

Publication number
JPH0460519A
JPH0460519A JP16982690A JP16982690A JPH0460519A JP H0460519 A JPH0460519 A JP H0460519A JP 16982690 A JP16982690 A JP 16982690A JP 16982690 A JP16982690 A JP 16982690A JP H0460519 A JPH0460519 A JP H0460519A
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
substrate
crystal element
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16982690A
Other languages
Japanese (ja)
Other versions
JP2553742B2 (en
Inventor
Takashi Sekiya
隆司 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2169826A priority Critical patent/JP2553742B2/en
Publication of JPH0460519A publication Critical patent/JPH0460519A/en
Application granted granted Critical
Publication of JP2553742B2 publication Critical patent/JP2553742B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To improve a contrast ratio and threshold value characteristic, etc., by crimping a liquid crystal material between a pair of substrates with electrodes formed by subjecting the surfaces on the electrode sides facing each other to an irradiation treatment with UV rays. CONSTITUTION:This element consists of a pair of the substrates subjected to the irradiation treatment with the UV rays on the surfaces on the electrode sides of the substrates with the electrodes and the liquid crystal material crimped between these substrates. The irradiating treatment with UV rays in executed by irradiating the surface of the electrode side of the substrate having electrode with UV rays. The surfaces of the substrates with the electrodes are cleaned and activated by such irradiation treatment with the UV rays. Namely, the stains of the org. matter, etc., stuck to the electrode surfaces are removed and cleaned by the UV light in the parts having the electrodes. The electrode surfaces are cleaned and the molecular structure of the substrate surfaces is changed and the surfaces are activated by the energy of the UV light in the parts where the electrodes are removed by etching, etc., and the substrates are exposed. The contrast ratio, threshold value characteristics, etc., are improved in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気・電子工業分野などに使用される液晶素
子に関する。本発明はまた、液晶素子の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid crystal element used in the electrical and electronic industry fields. The present invention also relates to a method for manufacturing a liquid crystal element.

〔従来の技術〕[Conventional technology]

液晶素子により液晶表示等を行うには、液晶分子が配向
していることが必要である。従来の液晶素子では、液晶
分子を所望の配向状態とするため、液晶を挟持する電極
付き基板の電極面上にポリイミドのような樹脂膜を設け
、これをラビング処理したものが広く使われている。更
に、液晶分子の配向性、液晶素子の電界変化に対する急
峻度特性、視野角特性などを改善するため、前記の樹脂
膜に紫外光を照射する技術が知られている(特開昭60
−113213号公報)。
In order to perform liquid crystal display using a liquid crystal element, it is necessary that liquid crystal molecules are oriented. In conventional liquid crystal devices, in order to align liquid crystal molecules in the desired state, a resin film such as polyimide is placed on the electrode surface of a substrate with electrodes that sandwich the liquid crystal, and this is widely used by rubbing treatment. . Furthermore, in order to improve the orientation of liquid crystal molecules, the steepness characteristics of the liquid crystal element with respect to electric field changes, the viewing angle characteristics, etc., a technique is known in which the resin film is irradiated with ultraviolet light (Japanese Unexamined Patent Application Publication No. 1983-1992).
-113213).

しかしながら、これらの従来技術においては電極付き基
板の電極面上に樹脂膜等の配向膜が必須であり、その配
向膜の品質が液晶分子の配向の良否を決定する。したが
って、液晶分子の良好な配開状態を得るためには配向膜
の形成、ラビング処理などの工程を避けて通ることはで
きず、これらの工程が液晶素子の歩留まりの低下の原因
となっている。
However, in these conventional techniques, an alignment film such as a resin film is essential on the electrode surface of the electrode-equipped substrate, and the quality of the alignment film determines the quality of the alignment of liquid crystal molecules. Therefore, in order to obtain a good alignment state of liquid crystal molecules, processes such as forming an alignment film and rubbing treatment cannot be avoided, and these processes are the cause of a decrease in the yield of liquid crystal elements. .

他方、配向膜やラビング処理を行わずに液晶分子の良好
な配向を得るために、液晶素子を曲げ変形処理して剪断
により液晶分子を配向させる方法がINされている(特
開平2−10322号公報) しかしながら、この技術においても液晶が直接接する電
極付き基板の電極側の表面の状態の良否が液晶分子の最
終的な配向の良し悪し、ひいては液晶素子のコントラス
ト比、しきい値特性などに影響する。このため、電極付
き基板の電極側の表面の状態が良好であり、コントラス
ト比、しきい値特性などに優れた液晶素子が望まれてい
る。
On the other hand, in order to obtain good alignment of liquid crystal molecules without using an alignment film or rubbing treatment, a method has been proposed in which the liquid crystal element is subjected to bending deformation treatment and the liquid crystal molecules are aligned by shearing (Japanese Patent Laid-Open No. 2-10322). However, even with this technology, the condition of the electrode-side surface of the electrode-equipped substrate that the liquid crystal is in direct contact with affects the final alignment of the liquid crystal molecules, which in turn affects the contrast ratio, threshold characteristics, etc. of the liquid crystal element. do. Therefore, there is a demand for a liquid crystal element in which the surface of the electrode-attached substrate on the electrode side is in good condition and has excellent contrast ratio, threshold characteristics, and the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、液晶分子と電極付き基板の界面相互作用が良
好であり、液晶分子の配向性に優れ、コントラスト比、
しきい値特性等の良好な液晶素子を提供しようとするも
のである。
The present invention has good interfacial interaction between liquid crystal molecules and a substrate with electrodes, excellent orientation of liquid crystal molecules, and a high contrast ratio.
The purpose is to provide a liquid crystal element with good threshold characteristics and the like.

また本発明は、上記のような液晶素子を簡単に効率よく
製造することのできる液晶素子の製造方法を提供しよう
とするものである。
Another object of the present invention is to provide a method for manufacturing a liquid crystal element that can easily and efficiently manufacture the liquid crystal element as described above.

〔課題を解決するための手段] 本発明者は前記課題を解決するために鋭意研究を重ねた
結果、液晶素子の電極付き基板として電極側の表面が紫
外光照射処理されたものを使用した液晶素子によりその
目的が達成されることを見出し、この知見に基づいて本
発明を完成するに至った。
[Means for Solving the Problems] As a result of extensive research in order to solve the above problems, the present inventors have developed a liquid crystal using a substrate with electrodes of a liquid crystal element whose surface on the electrode side is treated with ultraviolet light irradiation. The inventors have discovered that the object can be achieved by using a device, and have completed the present invention based on this knowledge.

すなわち本発明は、対向する電極側の表面が紫外光照射
処理された一対の電極付き基板間に液晶材料を挟持して
なる液晶素子を提供するものである。
That is, the present invention provides a liquid crystal element in which a liquid crystal material is sandwiched between a pair of electrode-attached substrates whose surfaces on opposing electrode sides have been treated with ultraviolet light irradiation.

本発明の液晶素子は、一対の電極付き基板とそれらの間
に挟持された液晶材料からなる。
The liquid crystal element of the present invention consists of a pair of substrates with electrodes and a liquid crystal material sandwiched between them.

電極付き基板の基板としては、ガラス、可撓性プラスチ
ンク基板などが挙げられる。可撓性プラスチック基板と
しては、例えば、ポリエーテルスルホン(PES)、ポ
リエチレンテレフタレート(PET)、ポリカーボネー
ト(PC)などが好適に使用される。
Examples of the substrate for the electrode-attached substrate include glass and flexible plastic substrates. As the flexible plastic substrate, for example, polyether sulfone (PES), polyethylene terephthalate (PET), polycarbonate (PC), etc. are preferably used.

電極としては、上記基板上に蒸着等の方法で形成された
透明電極が好ましい。具体的には、Inzos  5n
OzWI等が挙げられる。電極はエツチング等の方法で
パターンニングされていてもよい。電極がパターンニン
グされているとき、電極の取り除かれた部分では基板が
露出している。
The electrode is preferably a transparent electrode formed on the substrate by a method such as vapor deposition. Specifically, Inzos 5n
OzWI etc. are mentioned. The electrodes may be patterned by a method such as etching. When the electrode is patterned, the substrate is exposed where the electrode is removed.

本発明の液晶素子では、上記の電極付き基板の電極側の
表面が紫外光照射処理されている。
In the liquid crystal element of the present invention, the electrode-side surface of the electrode-attached substrate is subjected to ultraviolet light irradiation treatment.

紫外光照射処理は、電極付き基板の電極側の表面に紫外
光を照射して行う。照射する紫外光の波長としては、1
80〜400nmが好ましい。これより波長の長い紫外
光では、処理効果が薄くなることがある。また、これよ
り波長の短い紫外光では、光源の窓に特殊な材質のガラ
スが必要であったり、空気中の酸素による紫外光の吸収
を避けるだめのガス置換や真空引きが必要であったりす
るため、コスト高となって実用的でない。
The ultraviolet light irradiation treatment is performed by irradiating the electrode-side surface of the electrode-equipped substrate with ultraviolet light. The wavelength of the ultraviolet light to be irradiated is 1
80-400 nm is preferred. Ultraviolet light with a longer wavelength than this may reduce the treatment effect. Furthermore, for ultraviolet light with a shorter wavelength, the window of the light source may require a special glass material, or gas replacement or evacuation may be necessary to avoid absorption of ultraviolet light by oxygen in the air. Therefore, the cost is high and it is not practical.

紫外光の出力は50〜400W程度が好ましい。The output of the ultraviolet light is preferably about 50 to 400W.

また、紫外光の照射時間は30〜180秒程度が好まし
い。出力や照射時間がこれ以下では、照射の効果が薄く
なることがあり、これ以上では、基板等を損傷するおそ
れがある。
Moreover, the irradiation time of ultraviolet light is preferably about 30 to 180 seconds. If the output or irradiation time is less than this, the effect of irradiation may be weakened, and if it is more than this, there is a risk of damaging the substrate and the like.

このような紫外光照射処理により、電極付き基板の表面
が清浄化され、また活性化されると考えらえる。すなわ
ち、電極のある部分では、紫外光により電極表面に付着
している有機物等の汚れが除去されて清浄になり、電極
が工7チング等により取り除かれ基板が露出している部
分では、基板表面が清浄化されるとともに紫外光のエネ
ルギーで基板表面の分子構造が変化し活性化されると考
えられる。これらの効果から、液晶材料と電極付き基板
の界面相互作用が改善され、液晶素子のコントラスト比
、しきい値特性等が向上する。
It is thought that the surface of the electrode-attached substrate is cleaned and activated by such ultraviolet light irradiation treatment. In other words, in the part where the electrode is, dirt such as organic matter adhering to the electrode surface is removed by ultraviolet light, making it clean, and in the part where the electrode is removed by etching etc. and the substrate is exposed, the surface of the board is It is thought that the molecular structure of the substrate surface changes and becomes activated due to the energy of the ultraviolet light. These effects improve the interfacial interaction between the liquid crystal material and the substrate with electrodes, and improve the contrast ratio, threshold characteristics, etc. of the liquid crystal element.

本発明の液晶素子は、上記の紫外光照射処理を施した一
対の電極付き基板間に液晶材料を挟持してなるものであ
る。このとき、一対の電極付き基板は電極側を内側に対
向して配置されている。
The liquid crystal element of the present invention is formed by sandwiching a liquid crystal material between a pair of electrode-attached substrates that have been subjected to the above-mentioned ultraviolet light irradiation treatment. At this time, the pair of electrode-equipped substrates are arranged with the electrode sides facing inside.

挟持する液晶材料としては、公知の任意の液晶材料を使
用することができる。これらの中でも、強誘電性液晶材
料が好ましい。特に、強誘電性高分子液晶又はその組成
物からなる液晶材料が好ましい。このような液晶材料を
用いると、ラビング法によらずとも曲げ変形等の剪断力
による方法で液晶分子を容易に配向させることができる
Any known liquid crystal material can be used as the sandwiched liquid crystal material. Among these, ferroelectric liquid crystal materials are preferred. In particular, a liquid crystal material made of a ferroelectric polymer liquid crystal or a composition thereof is preferred. When such a liquid crystal material is used, liquid crystal molecules can be easily aligned by a method using shear force such as bending deformation without using a rubbing method.

具体的には、好適な強誘電性高分子液晶としては、以下
のものが挙げられる。
Specifically, suitable ferroelectric polymer liquid crystals include the following.

(1)ポリアクリレート主鎖を有する強誘電性高分子液
晶 1h (J、 C,Dubois  ら、 Mo1. Cry
st、 Liq、 Cryst、、 1986、 13
7. 349) (3)ポリクロロアクリレート玉鎖を有する強誘電性高
分子液晶 l (J、 C,Dubois ら、 Mo1. Crys
t、 Liq、 Cryst、+ 1986、 137
. 349) (4)ポリオキシシラン主鎖を有する強誘電性高分子液
晶 (2)ポリメタクリレート主鎖を有する強誘電性高分子
液晶 (特開昭63−264629号公報) (5)ポリシロキサン主鎖を有する強誘電性高分子液晶 (特開昭63−2 B 0742号公報)H3 (特開平2−640号公報) (6)ポリエステル主鎖を有する強誘電性高分子液晶 C0゜ (特開平1−113424号公報) (特開昭64−22918号公報) (R,Zentelら、 Liq、 Cryst、  
1987.2.83)なお、各高分子液晶の側鎖(メソ
ゲン)部分は、低分子液晶において知られている様々な
骨格(例えばビフェニル骨格、フェニルベンゾエート骨
格、ビフェニルベンゾエート骨格、フェニル−4−フェ
ニルヘンシェード骨格)を有している。そして、各骨格
中のベンゼン環は、それぞれ、例えば、ピリミジン環、
ピリジン環、ピリダジン環、シクロヘキサン環、ジオキ
ソボリナン環等で置き換えられていてもよ(、また、フ
ッ素、塩素等のハロゲン基を有していてもよい。また、
光学活性基は、例えば、1−メチルアルキル基、2−フ
ルオロアルキル基、2−クロロアルキル基、2−クロロ
−3−メチルアルキル基、1〜トリフルオロメチルアル
キル基、1−アルコキシカルボニルエチル基、2−アル
コキシ−1−メチルエチル基、2−アルコキンプロピル
基、2−クロロ−1−メチルアルキル基、2−アルコキ
ンカルボニル−1−トリフルオロメチルプロピル基等で
置き換えられていてもよい。また、スペーサーの長さは
、強誘電性を示す限り1〜30の範囲で変化してもよい
(1) Ferroelectric polymer liquid crystal 1h with polyacrylate main chain (J, C. Dubois et al., Mo1. Cry
st, Liq, Cryst, 1986, 13
7. 349) (3) Ferroelectric polymer liquid crystal with polychloroacrylate beads (J, C. Dubois et al., Mo1. Crys
t, Liq, Cryst, + 1986, 137
.. 349) (4) Ferroelectric polymer liquid crystal having a polyoxysilane main chain (2) Ferroelectric polymer liquid crystal having a polymethacrylate main chain (JP-A-63-264629) (5) Polysiloxane main chain (6) Ferroelectric polymer liquid crystal C0° having a polyester main chain (Japanese Unexamined Patent Application Publication No. 1983-1999) -113424) (Japanese Unexamined Patent Publication No. 113424) (R, Zentel et al., Liq, Cryst,
1987.2.83) The side chain (mesogen) moiety of each polymeric liquid crystal has various skeletons known in low-molecular liquid crystals (e.g., biphenyl skeleton, phenylbenzoate skeleton, biphenylbenzoate skeleton, phenyl-4-phenyl skeleton). Henshade skeleton). The benzene ring in each skeleton is, for example, a pyrimidine ring,
It may be substituted with a pyridine ring, pyridazine ring, cyclohexane ring, dioxoborinane ring, etc. (and may have a halogen group such as fluorine or chlorine.
Examples of optically active groups include 1-methylalkyl group, 2-fluoroalkyl group, 2-chloroalkyl group, 2-chloro-3-methylalkyl group, 1-trifluoromethylalkyl group, 1-alkoxycarbonylethyl group, It may be substituted with a 2-alkoxy-1-methylethyl group, a 2-alcoquinepropyl group, a 2-chloro-1-methylalkyl group, a 2-alcokynecarbonyl-1-trifluoromethylpropyl group, or the like. Further, the length of the spacer may vary within the range of 1 to 30 as long as it exhibits ferroelectricity.

また、強誘電性高分子液晶の組成物としては、上記の強
誘電性高分子液晶に熱可塑性樹脂、架橋性樹脂、非強誘
電性の高分子液晶等の高分子物質を混合したものなどを
挙げることができる。これらの高分子物質は単独あるい
は211!以上を混合してもよいし、共重合体を用いる
こともできる。また、強誘電性高分子液晶の組成物とし
ては、上記強誘電性高分子液晶と低分子化合物との組成
物又は上記強誘電性高分子液晶と高分子物質の混合物と
低分子化合物との組成物を用いることもできる。
In addition, the composition of the ferroelectric polymer liquid crystal may be a mixture of the above-mentioned ferroelectric polymer liquid crystal with a polymer substance such as a thermoplastic resin, a cross-linked resin, or a non-ferroelectric polymer liquid crystal. can be mentioned. These polymeric substances can be used alone or 211! The above may be mixed, or a copolymer may also be used. Further, as the composition of the ferroelectric polymer liquid crystal, a composition of the above-mentioned ferroelectric polymer liquid crystal and a low-molecular compound, or a composition of the above-mentioned ferroelectric polymer liquid crystal and a mixture of a high-molecular substance and a low-molecular compound You can also use objects.

低分子化合物としては液晶性のものでも非液晶性のもの
でもどちらでも用いることができる。低分子化合物の混
合は、液晶温度域や応答時間の改善に有効な場合がある
As the low molecular compound, either a liquid crystal compound or a non-liquid crystal compound can be used. Mixing low molecular weight compounds may be effective in improving the liquid crystal temperature range and response time.

上記の構成を有する本発明の液晶素子は、以下の方法に
より好適に製造することができる。
The liquid crystal element of the present invention having the above configuration can be suitably manufactured by the following method.

すなわち、電極付き基板の電極側の表面に紫外光を照射
する工程、紫外光を照射した電極側の表面に液晶材料を
塗布して液晶層を形成する工程、形成された液晶層の上
に電極側の表面に紫外光を照射した電極付き基板を液晶
層と電極側の表面とが接するように重ね合わせる工程及
び得られた重ね合わせ物の液晶材料を配向する工程から
なることを特徴とする液晶素子の製造方法により製造す
る。
That is, a step of irradiating the electrode-side surface of a substrate with an electrode with ultraviolet light, a step of applying a liquid crystal material to the electrode-side surface irradiated with ultraviolet light to form a liquid crystal layer, and a step of applying an electrode on the formed liquid crystal layer. A liquid crystal characterized by comprising the steps of stacking substrates with electrodes whose side surfaces are irradiated with ultraviolet light so that the liquid crystal layer and the electrode side surface are in contact with each other, and orienting the liquid crystal material of the obtained stacked product. Manufactured by an element manufacturing method.

先ず、紫外光の照射工程では、電極付き基板の電極側の
表面に紫外光を照射する。
First, in the ultraviolet light irradiation step, ultraviolet light is irradiated onto the electrode-side surface of the electrode-attached substrate.

照射する紫外光としては、前記のとおりである。The ultraviolet light to be irradiated is as described above.

次に、液晶層を形成する工程では、紫外光を照射した電
極側の表面に液晶材料を塗布して液晶層を形成する。
Next, in the step of forming a liquid crystal layer, a liquid crystal material is applied to the surface of the electrode irradiated with ultraviolet light to form a liquid crystal layer.

液晶材料を塗布する方法としては、液晶材料を溶媒で溶
いたり加熱したりすることにより流動性を高め、これを
マイクログラビア法、ダイレクトグラビア法等により、
電極付き基板の電極側の表面に均一な膜厚に塗布する方
法が通する。流動性を高めた液晶材料を含浸部材に含浸
させ、この含浸部材を電極付き基板の電極側の表面にに
押し当てて移動しながら塗布する含浸塗布法(特開平2
−10322号公報記載)も好適である。
The method of applying the liquid crystal material is to increase the fluidity by dissolving the liquid crystal material in a solvent or heating it, and then to apply it by microgravure method, direct gravure method, etc.
A successful method is to coat the electrode-side surface of the electrode-equipped substrate with a uniform film thickness. An impregnating coating method in which an impregnated member is impregnated with a liquid crystal material with increased fluidity, and the impregnated member is pressed against the electrode-side surface of the electrode-equipped substrate and applied while moving.
-10322) is also suitable.

次いで、基板の重ね合わせ工程では、形成された液晶層
の上に、電極側の表面に紫外光を照射した電極付き基板
を、液晶層と電極側の表面とが接するように重ね合わせ
る。
Next, in the substrate stacking step, a substrate with electrodes whose electrode-side surface has been irradiated with ultraviolet light is stacked on top of the formed liquid crystal layer so that the liquid crystal layer and the electrode-side surface are in contact with each other.

重ね合わせる基板としては、前工程で液晶材料を塗布し
たものと同様に紫外光照射した電極付き基板を用いる。
As the substrate to be superimposed, a substrate with electrodes that has been irradiated with ultraviolet light is used, similar to the one that was coated with a liquid crystal material in the previous step.

そして、重ね合わせる基板と液晶層の間に気泡が入らな
いように上下の基板を重ね合わせ、上下の基板により液
晶層を均一な膜厚で挟持する。このとき、重ね合わせる
基板を加熱することが好ましい。
Then, the upper and lower substrates are stacked to prevent air bubbles from entering between the stacked substrates and the liquid crystal layer, and the liquid crystal layer is sandwiched between the upper and lower substrates to have a uniform thickness. At this time, it is preferable to heat the substrates to be stacked.

更に、液晶材料の配向処理工程では、得られた重ね合わ
せ物の液晶材料を配向処理して液晶分子を配向させる。
Furthermore, in the liquid crystal material alignment treatment step, the obtained superimposed liquid crystal material is subjected to alignment treatment to orient the liquid crystal molecules.

液晶材料の配向処理方法としては、重ね合わせを行った
基板を加熱し、等方相一液晶相間の相転移点より低い温
度で上下の基板にすり剪断をかけて液晶材料を配向処理
し、液晶分子を配向させる方法(特開平110322号
公報記載)が好適である。
As a method for aligning liquid crystal materials, the stacked substrates are heated, and the upper and lower substrates are sheared at a temperature lower than the phase transition point between the isotropic phase and the liquid crystal phase to align the liquid crystal material. A method of orienting molecules (described in JP-A-110322) is suitable.

以上の各工程は、電極付き基板として長尺の可撓性を有
するものを用いると連続して行うことも可能であり、液
晶素子の生産性が更に向上して好ましい。
The above steps can be carried out continuously if a long flexible substrate with electrodes is used, which is preferable as it further improves the productivity of the liquid crystal element.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて詳細に説明するが、本
発明はこれに限定されるものではない。
Hereinafter, the present invention will be explained in detail based on Examples, but the present invention is not limited thereto.

実施例1 電極付き基板として、ガラスの片面にITO透明電極(
0,2cij、厚さ1000人)を蒸着したものを用い
た。
Example 1 As a substrate with electrodes, an ITO transparent electrode (
0.2 cij, thickness: 1,000 layers) was used.

第1図に、使用した基板と電極の形状を示す。Figure 1 shows the shapes of the substrate and electrodes used.

基板1上に、ITO透明電極2が、円形の部分と引き出
し線の部分3を有する形状に蒸着により形成されている
ものとした。
An ITO transparent electrode 2 was formed on a substrate 1 by vapor deposition in a shape having a circular part and a lead line part 3.

この電極付き基板の電極側表面に、日本電池製UVクリ
ーナーを用いて、紫外光を2分間照射した。このUVク
リーナーの王な紫外光の発光ピークは184.9及び2
53.7 n m、発光強度はトータル120Wであっ
た。
The electrode-side surface of this electrode-attached substrate was irradiated with ultraviolet light for 2 minutes using a UV cleaner manufactured by Nippon Battery. The main ultraviolet light emission peaks of this UV cleaner are 184.9 and 2.
53.7 nm, and the total emission intensity was 120W.

紫外光を照射した電極付き基板をUVクリーナーから取
り出し、その電極側の表面に下記の繰り返し単位を有す
る強誘電性高分子液晶を含浸塗布法により塗布して厚さ
約1μmの液晶層を形成した。
The substrate with electrodes that had been irradiated with ultraviolet light was taken out of the UV cleaner, and a ferroelectric polymer liquid crystal having the following repeating units was coated on the electrode-side surface by impregnation coating to form a liquid crystal layer with a thickness of approximately 1 μm. .

CH。CH.

Mn=8700 (Iso  :等吉相、SmA  :スメクチ・ンクA
相、SmC”:カイラルスメクチノクC相、gニガラス
状相〕次いで、液晶材料を100″Cまで加熱したあと
、形成された液晶層の上に、上記の電極付き基板と同様
二こ紫外光を照射した対向基板を、液晶層と電極側の表
面とが接するように重ね合わせた。
Mn=8700 (Iso: Tokichi phase, SmA: Smekchi Nku A
phase, SmC": chiral smectinoku C phase, glassy phase] Next, after heating the liquid crystal material to 100"C, the formed liquid crystal layer was exposed to two ultraviolet rays in the same manner as the electrode-attached substrate described above. The counter substrates that had been irradiated with the above were stacked together so that the liquid crystal layer and the surface on the electrode side were in contact with each other.

その後、得られた重ね合わせ物を1°C/分の割合で徐
冷しながら、重ね合わせ物に68〜60°Cにかけて0
.5 mの剪断変形を10往復加えて液晶材料を配向処
理し、液晶分子を配向させた。
Thereafter, while slowly cooling the obtained stacked product at a rate of 1°C/min, the stacked product was heated to 68 to 60°C to 0.
.. The liquid crystal material was aligned by applying shear deformation of 5 m 10 times to align the liquid crystal molecules.

更に、重ね合わせ物を室温まで冷し、基板の周囲を瞬間
接着剤(セメダイン製 ハイス−パー)で封止して、液
晶素子を得た。更に、透明電極の引き出し線にリード線
を半田付けした。
Furthermore, the stacked product was cooled to room temperature, and the periphery of the substrate was sealed with an instant adhesive (Hi-Super, manufactured by Cemedine) to obtain a liquid crystal element. Furthermore, a lead wire was soldered to the lead wire of the transparent electrode.

第2図は、得られた液晶素子の断面図である。FIG. 2 is a cross-sectional view of the obtained liquid crystal element.

1は基板、2はITO透明電極、4は液晶材料、5は接
着剤、6はリード線である。
1 is a substrate, 2 is an ITO transparent electrode, 4 is a liquid crystal material, 5 is an adhesive, and 6 is a lead wire.

得られた液晶素子のコントラスト比を測定した。The contrast ratio of the obtained liquid crystal element was measured.

第3図は、使用した測定系を示す略示図である。FIG. 3 is a schematic diagram showing the measurement system used.

液晶素子7を恒温槽8に入れ、液晶素子7から引き出し
た一方のリード線6をアースし、他方のリード線6をコ
ンピュータ10に接続された任意関数発生器11の出力
端子に増幅器12を介して接続した。また、液晶素子7
の下部に設置した光源9から発した光の液晶素子7によ
る透過光量を液晶素子7の上部に設置した偏光顕微鏡1
3により検知し、光電子増倍管14により電気的信号と
して波形記録器15により記録した。
The liquid crystal element 7 is placed in a constant temperature bath 8, one lead wire 6 drawn out from the liquid crystal element 7 is grounded, and the other lead wire 6 is connected to the output terminal of an arbitrary function generator 11 connected to a computer 10 via an amplifier 12. I connected it. In addition, the liquid crystal element 7
A polarizing microscope 1 installed above the liquid crystal element 7 measures the amount of light emitted from a light source 9 installed at the bottom of the liquid crystal element 7 and transmits the light through the liquid crystal element 7.
3 and recorded as an electrical signal by a photomultiplier tube 14 by a waveform recorder 15.

このような測定系を用いて、第4図(a)に示すように
、液晶素子の電極間に±IOVの直流電圧を印加した。
Using such a measurement system, a DC voltage of ±IOV was applied between the electrodes of the liquid crystal element, as shown in FIG. 4(a).

このとき、第4図(b)に示すように、明状態の透過光
量(IoN)と暗状態の透過光量(IOFF )の比C
vを電圧印加時コントラスト比として測定した。
At this time, as shown in FIG. 4(b), the ratio C of the amount of transmitted light in the bright state (IoN) and the amount of transmitted light in the dark state (IOFF)
v was measured as the contrast ratio when voltage was applied.

CV = I ON/ I 0FF CvO値は大きいほど液晶素子として良好である。CV = I ON/I 0FF The larger the CvO value, the better the liquid crystal element is.

次いで、第5図(a)に示すように、液晶素子の電極間
に+10■の直流電圧を1秒間印加したあと電圧を0■
とした場合における5秒後の透過光量(1ON)と、−
10■の直流電圧を1秒間印加したあと電圧をOVとし
た場合における5秒後の透過光量(I OFF )との
比Cmをメモリ時コントラスト比として測定した(第5
図(b))。
Next, as shown in FIG. 5(a), a DC voltage of +10 cm was applied for 1 second between the electrodes of the liquid crystal element, and then the voltage was reduced to 0 cm.
The amount of transmitted light after 5 seconds (1ON) in the case of -
The ratio Cm to the amount of transmitted light (I OFF ) after 5 seconds when the voltage was set to OV after applying a DC voltage of 10 μ for 1 second was measured as the memory contrast ratio (5th
Figure (b)).

Cm−1ON/ I OFF CmO値も大きいほど液晶素子として良好である。Cm-1 ON/I OFF The larger the CmO value, the better the liquid crystal element.

次ムこ、液晶素子のしきい値特性を測定した。測定系は
第3図と同様とした。第6図(a)に示した波形(パル
ス幅10m5)の電圧を液晶素子の電極間に印加し、書
き込み電圧Vwを0からVr(リセット電圧)まで徐々
に増加させたときのVwに対するメモリ時の透過光量1
mを記録した(第6図(b))。第6図(C)に示すよ
うに、ImをVwの関数とみたとき、透過光量が全体の
10%に達するのに必要な書き込み電圧V、。と透過光
量が全体の90%に達するのに必要な書き込み電圧V、
。からゑ、峻度T −V q。/V、。を計算し、しき
い値特性を評価した。Tは1に近いほど液晶素子のしき
い値特性が良好であることを意味する。
Next, we measured the threshold characteristics of the liquid crystal element. The measurement system was the same as that shown in Figure 3. Memory time versus Vw when a voltage with the waveform (pulse width 10m5) shown in Figure 6(a) is applied between the electrodes of the liquid crystal element and the write voltage Vw is gradually increased from 0 to Vr (reset voltage). amount of transmitted light 1
m was recorded (Figure 6(b)). As shown in FIG. 6(C), when Im is viewed as a function of Vw, the write voltage V is required for the amount of transmitted light to reach 10% of the total. and the write voltage V required for the amount of transmitted light to reach 90% of the total,
. Karae, steepness T −V q. /V. was calculated and the threshold characteristics were evaluated. The closer T is to 1, the better the threshold characteristics of the liquid crystal element.

結果を第1表に示す。The results are shown in Table 1.

比較例1 電極付き基板への紫外光照射時に紫外光が基板の電極側
表面に達しないよう、基板表面をアルミ箔で覆った以外
は実施例1と同様にして液晶素子を製造した。
Comparative Example 1 A liquid crystal element was manufactured in the same manner as in Example 1, except that the surface of the substrate was covered with aluminum foil so that the ultraviolet light did not reach the electrode-side surface of the substrate when irradiating the electrode-equipped substrate with ultraviolet light.

得られた液晶素子について、実施例1と同様に特性を評
価した。結果を第1表に示す。
The properties of the obtained liquid crystal element were evaluated in the same manner as in Example 1. The results are shown in Table 1.

実施例2 電極付き基板の基板としてポリエチレンテレフタレート
(PET)基板(厚さ100μm、ダイセル化学工業製
 CELEC−K)を用いた以外は実施例1と同様にし
て液晶素子を製造した。
Example 2 A liquid crystal element was manufactured in the same manner as in Example 1 except that a polyethylene terephthalate (PET) substrate (100 μm thick, CELEC-K manufactured by Daicel Chemical Industries, Ltd.) was used as the substrate with electrodes.

得られた液晶素子について、実施例1と同様に特性を評
価した。結果を第1表に示す。
The properties of the obtained liquid crystal element were evaluated in the same manner as in Example 1. The results are shown in Table 1.

比較例2 電極付き基板への紫外光照射時に紫外光が基板の電極側
表面に達しないよう、基板表面をアルミ箔で覆った以外
は実施例2と同様にして液晶素子を製造じた。
Comparative Example 2 A liquid crystal element was manufactured in the same manner as in Example 2, except that the surface of the substrate was covered with aluminum foil so that the ultraviolet light did not reach the electrode-side surface of the substrate during irradiation of the electrode-attached substrate with ultraviolet light.

得られた液晶素子について、実施例1と同様に特性を評
価した。結果を第1表に示す。
The properties of the obtained liquid crystal element were evaluated in the same manner as in Example 1. The results are shown in Table 1.

実施例3 電極付き基板の基板としてポリエーテルスルホン(PE
S)基板(厚さ100μm、住人ヘークライト製 FS
T−1351)を用いた以外は実施例1と同様にして液
晶素子を製造した。
Example 3 Polyether sulfone (PE) was used as the substrate for the electrode-attached substrate.
S) Substrate (thickness 100μm, manufactured by Jushimaheklite FS)
A liquid crystal element was manufactured in the same manner as in Example 1 except that T-1351) was used.

得られた液晶素子について、実施例1と同様に特性を評
価した。結果を第1表に示す。
The properties of the obtained liquid crystal element were evaluated in the same manner as in Example 1. The results are shown in Table 1.

比較例3 電極付き基板への紫外光照射時に紫外光が基板の電極側
表面に達しないよう、基板表面をアルミ箔で覆った以外
は実施例3と同様にして液晶素子を製造した。
Comparative Example 3 A liquid crystal element was manufactured in the same manner as in Example 3, except that the surface of the substrate was covered with aluminum foil so that the ultraviolet light did not reach the electrode-side surface of the substrate when irradiating the electrode-equipped substrate with ultraviolet light.

得られた液晶素子について、実施例1と同様に特性を評
価した。結果を第1表に示す。
The properties of the obtained liquid crystal element were evaluated in the same manner as in Example 1. The results are shown in Table 1.

第1表 以上、いずれの場合も、実施例の結果は比較例のそれよ
り優れており、紫外光照射の効果か確認された。
As shown in Table 1, in all cases, the results of the examples were superior to those of the comparative examples, confirming the effect of ultraviolet light irradiation.

C発明の効果〕 本発明の液晶素子は、液晶分子と基板の界面相互作用が
良好であり、液晶分子の配向性に優れ、コントラスト比
、しきい値特性等の良好なものである。
C Effects of the Invention] The liquid crystal element of the present invention has good interfacial interaction between the liquid crystal molecules and the substrate, excellent orientation of the liquid crystal molecules, and good contrast ratio, threshold characteristics, and the like.

また本発明の液晶素子の製造方法によると、上記のよう
な液晶素子を簡単に効率よく製造することができる。
Further, according to the method for manufacturing a liquid crystal element of the present invention, the above liquid crystal element can be manufactured easily and efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例で使用した基板と電極の形状を示す斜
視図である。 第2図は、実施例Iで得られた液晶素子の断面図である
。 第3図は、実施例Iで液晶素子の特性測定に使用した測
定系を示す略示図である。 第4図(a)、第5図(a)及び第6図<a)は、実施
例1で液晶素子の電極間に印加した電圧を示すグラフで
ある。横軸は時刻、縦軸は印加電圧を示す。 第4図(b)、第5図(b)及び第6図(b)は、実施
例1の液晶素子の透過光量を示すグラフである。横軸は
時刻、縦軸は透過光量を示す。 第6図(C)は、書き込み電圧と透過光量との関係を示
すグラフである。横軸は書き込み電圧(VW) 、縦軸
は透過光量(Im)を示す。 基板 引き出し線 接着剤 液晶素子 光源 任意関数発生器 偏光顕微鏡 波形記録器 ITO透明電極 液晶材料 リード線 恒温槽 コンピュータ 増幅器 光電子増倍管 偏光板 第 回 第 1114Ln^」1ζ六−生11 16  請 元 秩 書き沁み電圧
FIG. 1 is a perspective view showing the shapes of the substrate and electrodes used in the example. FIG. 2 is a cross-sectional view of the liquid crystal element obtained in Example I. FIG. 3 is a schematic diagram showing a measurement system used to measure the characteristics of a liquid crystal element in Example I. 4(a), FIG. 5(a), and FIG. 6<a) are graphs showing the voltage applied between the electrodes of the liquid crystal element in Example 1. The horizontal axis shows time, and the vertical axis shows applied voltage. FIG. 4(b), FIG. 5(b), and FIG. 6(b) are graphs showing the amount of transmitted light of the liquid crystal element of Example 1. The horizontal axis shows time, and the vertical axis shows the amount of transmitted light. FIG. 6(C) is a graph showing the relationship between the write voltage and the amount of transmitted light. The horizontal axis shows the write voltage (VW), and the vertical axis shows the amount of transmitted light (Im). Substrate lead wire Adhesive Liquid crystal element Light source Arbitrary function generator Polarizing microscope Waveform recorder ITO Transparent electrode Liquid crystal material Lead wire Constant temperature bath Computer amplifier Photomultiplier tube Polarizing plate No. 1114Ln^' 1ζ6-生11 16 Requester Chichigaki pressure voltage

Claims (1)

【特許請求の範囲】 1、対向する電極側の表面が紫外光照射処理された一対
の電極付き基板間に液晶材料を挟持してなる液晶素子。 2、電極付き基板の電極側の表面に紫外光を照射する工
程、紫外光を照射した電極側の表面に液晶材料を塗布し
て液晶層を形成する工程、形成された液晶層の上に電極
側の表面に紫外光を照射した電極付き基板を液晶層と電
極側の表面とが接するように重ね合わせる工程及び得ら
れた重ね合わせ物の液晶材料を配向処理する工程からな
ることを特徴とする液晶素子の製造方法。
[Claims] 1. A liquid crystal element in which a liquid crystal material is sandwiched between a pair of electrode-attached substrates whose surfaces on opposing electrode sides have been treated with ultraviolet light irradiation. 2. A step of irradiating the electrode-side surface of the electrode-equipped substrate with ultraviolet light, a step of applying a liquid crystal material to the electrode-side surface irradiated with ultraviolet light to form a liquid crystal layer, and applying an electrode on the formed liquid crystal layer. It is characterized by comprising the steps of stacking electrode-equipped substrates whose side surfaces are irradiated with ultraviolet light so that the liquid crystal layer and the electrode-side surface are in contact with each other, and aligning the liquid crystal material of the obtained stacked product. A method of manufacturing a liquid crystal element.
JP2169826A 1990-06-29 1990-06-29 Liquid crystal element and manufacturing method thereof Expired - Lifetime JP2553742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2169826A JP2553742B2 (en) 1990-06-29 1990-06-29 Liquid crystal element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2169826A JP2553742B2 (en) 1990-06-29 1990-06-29 Liquid crystal element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0460519A true JPH0460519A (en) 1992-02-26
JP2553742B2 JP2553742B2 (en) 1996-11-13

Family

ID=15893625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2169826A Expired - Lifetime JP2553742B2 (en) 1990-06-29 1990-06-29 Liquid crystal element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2553742B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468599B1 (en) 1998-12-25 2002-10-22 International Business Machines Corporation Method for removing organic compound by ultraviolet radiation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113213A (en) * 1983-11-24 1985-06-19 Fujitsu Ltd Manufacture of liquid crystal display element
JPH0210322A (en) * 1988-06-29 1990-01-16 Idemitsu Kosan Co Ltd Method of orienting liquid crystal optical element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113213A (en) * 1983-11-24 1985-06-19 Fujitsu Ltd Manufacture of liquid crystal display element
JPH0210322A (en) * 1988-06-29 1990-01-16 Idemitsu Kosan Co Ltd Method of orienting liquid crystal optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468599B1 (en) 1998-12-25 2002-10-22 International Business Machines Corporation Method for removing organic compound by ultraviolet radiation
US6756087B2 (en) 1998-12-25 2004-06-29 International Business Machines Corporation Method for removing organic compound by ultraviolet radiation and apparatus therefor

Also Published As

Publication number Publication date
JP2553742B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
US9448456B2 (en) Tunable liquid crystal optical device
JP2001004986A (en) Liquid crystal optical device and its production
JPS6327817A (en) Liquid crystal display device
AU719372B2 (en) Light modulating liquid crystal devices
US5474629A (en) Method for manufacturing a liquid crystal device
JPH0460519A (en) Liquid crystal element and production thereof
TW200416454A (en) Flexible electrically switchable glazing structure and methods of forming same
JPS6026303A (en) Production of liquid crystal display device
JP4054506B2 (en) Liquid crystal light modulator and display device
JPS63214721A (en) Liquid crystal element
JPH02280122A (en) Liquid crystal device
JPH0459890A (en) Ferroelectric polymeric liquid crystal composition
JPH0843810A (en) Electrical insulating film and ferroelectric liquid crystal panel formed by using the same
JPH10293309A (en) Manufacture of liquid crystal display element
GB2112541A (en) Liquid crystal display panel and production method thereof
JPH02205821A (en) Liquid crystal device
JPH06175132A (en) Production of oriented film for liquid crystal display element
JPS62170937A (en) Liquid crystal electrooptical element
JPS62244017A (en) Method for orienting ferroelectric liquid crystal
JPH02131223A (en) Liquid crystal element
JPS62150220A (en) Flexible liquid crystal panel
JPH0470714A (en) High-polymer liquid crystal composite film
JPH0342622A (en) Dot matrix liquid crystal element and production thereof
JPH0232319A (en) Production of liquid crystal optical element and light control device formed by using said element
JPH0627468A (en) Formation of oriented film