JPH0460455B2 - - Google Patents

Info

Publication number
JPH0460455B2
JPH0460455B2 JP60077927A JP7792785A JPH0460455B2 JP H0460455 B2 JPH0460455 B2 JP H0460455B2 JP 60077927 A JP60077927 A JP 60077927A JP 7792785 A JP7792785 A JP 7792785A JP H0460455 B2 JPH0460455 B2 JP H0460455B2
Authority
JP
Japan
Prior art keywords
phytantriol
reaction
molybdenum
epoxy
epoxy compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60077927A
Other languages
Japanese (ja)
Other versions
JPS61236737A (en
Inventor
Toshiki Mori
Manzo Shiono
Yoshiji Fujita
Hironobu Tamai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP60077927A priority Critical patent/JPS61236737A/en
Publication of JPS61236737A publication Critical patent/JPS61236737A/en
Publication of JPH0460455B2 publication Critical patent/JPH0460455B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は3,7,11,15−テトラメチル−1,
2,3−トリヒドロキシヘキサデカン(以下、こ
の化合物をフイタントリオールと称す)の製造方
法に関する。 本発明の方法により製造されるフイタントリオ
ールは皮膚又は毛髪を養護する作用を有し、皮膚
又は毛髪を保護する目的で使用される化粧品の基
材成分として有用である(特公昭38−5050号公報
参照)。 〔従来の技術〕 従来、イソフイトールを蟻酸と反応させ、つい
で反応混合物に過酸化水素を作用させ、生成する
ヒドロキシジホルミネートを濃アンモニアでケン
化することによりフイタントリオールを製造する
方法が知られている(特公昭38−13859号公報参
照)。この従来法を反応で示せば次のとおりであ
る。 〔発明が解決しようとする問題点〕 上記従来法により得られる粗製フイタントリオ
ールは淡黄色に着色していることが報告されてお
り、また後述の比較例1に示されるように、該粗
製フイタントリオールを分子蒸留することにより
得られる精製物は依然として淡黄色に着色してお
り、かつ不快臭を伴なう。このように着色及び着
臭したフイタントリオールを化粧品の基材成分と
して使用することはできず、該基材成分として使
用するにはさらに精密な精製手段を必要とする。 しかして、本発明の1つの目的は着色及び不快
臭を有しないフイタントリオールの製造方法を提
供するにある。また本発明の他の1つの目的は分
子蒸留することにより着色及び不快臭を有しない
フイタントリオールに容易に精製される粗製フイ
タントリオールの製造方法を提供するにある。 〔問題点を解決するための手段〕 本発明によれば、上記の目的は、イソフイトー
ルをバナジウム又はモリブデンの誘導体からなる
金属触媒の存在下にtert−ブチルハイドロパーオ
キサイド(以下、この化合物をTBTPと称す)
と反応させることによりエポキシ化合物を得、つ
いで該エポキシ化合物を酸性触媒の存在下に開環
させることを特徴とするフイタントリオールの製
造方法を提供することによつて達成され、また該
方法により得られるフイタントリオールを分子蒸
留することを特徴とするフイタントリオールの製
造方法を提供することによつて達成される。 本発明の方法を反応式で示せば次のとおりであ
る。 本発明に従うイソフイトールのエポキシ化反応
を行うに際しては、イソフイトールの1モルに対
してTBHPを約0.5〜5モル、好ましくは1.0〜1.5
モル使用する。TBHPは70%水溶液として市販
されているものをそのまま使用するのが簡便であ
り、また安全である。この反応系に存在させる金
属触媒はバナジウム又はモリブデンの誘導体から
なる。この誘導体としてはハロゲン化物、カルコ
ゲナイド、カルコハライド、ニトロソハライド及
びニトロシルハライド;バナジウム又はモリブデ
ンと他の金属との混合塩;脂肪族、脂環式若しく
は芳香族のカルボン酸又はアルコーール又はフエ
ノールの塩、例えば酢酸塩、プロピオン酸塩、ス
テアリン酸塩、安息香酸塩、蓚酸塩、こはく酸
塩、スルホン酸塩、酒石酸塩、くえん酸塩、サリ
チル酸塩、ナフテン酸塩、低級アルコキシド及び
フエネートなどが挙げられる。これれらの塩はバ
ナジル及びモリブデンのような酸素含有金属陽イ
オンを含むこともでできる。また使用できる他の
誘導体としてバナジン酸塩、モリブデン酸塩など
これらの金属の1種又はそれ以上から誘導される
酸の塩及びエステル;それらのペルー、ポリー、
オルトー、メター、パラー、ピロー、チオー又は
ハロゲノー同族体;タングストバナジン酸塩、ホ
スホモリブデン酸塩、モリブドくえん酸塩、モリ
ブドぎ酸塩、モリブド乳酸塩、モリブドマレイン
酸塩、モリブドマンデル酸塩、モリブドムチン酸
塩、モリブド蓚酸塩、モリブドキナ酸塩、モリブ
ドサツカリン酸塩、モリブ酒石酸塩及びモリブド
タングステン酸塩などの混合塩及び混合エステル
が挙げられる。さらに、アセチルアセトネート、
ベンゾイルアセトネート、グリオキシメート、キ
ノリネート、サリチルアルデヒデート、ベンジル
ヒドロキシメートなどのキレート、配位子が例え
ば脂肪族若しくは脂環式の基又はハロゲン原子で
置換されていてもよいエチレンジアミン、〓,〓
−ジビリジル、o−ニトロソフエノール、〓−ニ
トロソナフトール、サリチルアルドイミジン及び
ポルフイリンの錯体;並び飯に一酸化炭素、モノ
オレフイン、ジオレフイン、アセチレン化合物、
シクロペンタジエン、アンモニア、シアニド、第
三級窒素含有塩基、ホスフイン、アルシン、スチ
ビン及びニトリルなどの配位化剤とバナジウム又
はモリブデンの金属、金属塩又は金属アルキルと
の錯体を使用することもきる。これらの金属触媒
のなかで次の式で示される鎖を含む触媒が好まし
い。 −M=O −O−M=O −M←O= −O−M←O= 式中Mは1個又はそれ以上のイオン結合又はは
共有結合によつて他の原子にさらに結合すること
ができるバナジウム又はモリブデンを表わす。こ
の種類の触媒には金属酸化物、金属から誘導され
るオキシ酸の塩及びエステル、酸素含有金属イオ
ンの塩並びに〓−ジケトンから誘導されるキレー
トが含まれる。特に五酸化バナジウム、メタバナ
ジン酸アンモニウム、オルトバナジン酸第三級ブ
チル、オルトバナジン酸ネオペンチル、オルトバ
ナジン酸シクロヘキシル、バナジルアセチルアセ
トネートなどの5価のバナジウム化合物;及び三
酸化モリブデン、ヘキサカルボニルモリブデン、
トリカルボニルトリアセトニトリルブデンなどの
6価のモリブデン化合物が好適に使用される。触
媒は反応媒質中に可溶性でも不溶性でもよい。金
属触媒の使用量はイソフイトールに対して約
0.001〜10重量%、好ましくは約0.01〜1.0重量%
である。 エポキシ化反応は反応に不活性な溶媒の存在下
又は不存在下に行われる。溶媒としてはベンゼ
ン、トルエン、キシレンなどの芳香族炭化水素;
ジクロロメタン、1,2−ジクロロエタンなどの
ハロゲン化脂肪族炭化水素;ヘキサン、ヘプタン
などの脂肪族炭化水素などが用いられる。反応温
度は特に限定されないが、通常約50〜150℃、好
ましくは80〜110℃の範囲である。反応終了後、
未反応のTBHP又は副生する過酸化物が残存し
ないように反応混合物を亜硫酸ナトリウム水溶液
で洗滌することが好ましい。 このようにして得られたエポキキシ化合物を酸
性触媒の存在下に開環させることによりフイタン
トリオールを製造することがでできる。酸性触媒
としては硫酸、塩酸、リン酸、過塩素酸などが使
用される。酸性触媒の使用量はエポキシ化合物に
対して約1〜100重量%、好ましくは5〜20重量
%である。この反応は室温付近で行うのが適当で
あり、また溶媒の存在下に行うのが望ましい。溶
媒としては例えば、テトラヒドロフラン、イソプ
ロピルアルコールなどの水溶性でかつ反応に不活
性な溶媒が用いられる。エポキシ化合物の消失を
もつて反応終了とする。この確認はGLC分析に
より行うのが簡便である。 反応終了後、反応混合物を水酸化ナトリウム、
水酸化カリウム、水酸化カルシウム、水酸化バリ
ウム、炭酸ナトリウム、炭酸カリウム、炭酸水素
ナトリウム、炭酸水素カリウムなどのアルカリの
水溶液により中和したのち、ジエチルエーテル、
ジイソプロピルエーテルなどのエーテル;ペンタ
ン、ヘキサン、ヘプタンなどの脂肪族炭化水素;
酢酸エチル、酢酸イソブチルなどの脂肪族カルボ
ン酸エステルなどの溶剤で抽出し、抽出液を中性
になるまで水洗する。このようにして得られる抽
出液から溶剤を留去することによりフイタントリ
オールの粘稠な液体が得られる。この粗製フイタ
ントリオールを分子蒸留することにより無色透明
でかつ無臭のフイタントリオールとすることがで
きる。 〔実施例〕 以下、実施例により本発明を説明するが、本発
明はこれらの実施例により限定されるものではな
い。 実施例 1 撹拌機、冷却器及び温度計を付けた2l容三口フ
ラスコにイソフイトール463.6g(1.57mole)、70
%(重量)TBHP水溶液221.8g(1.72mole)及
び五酸化バナジウム710mgを仕込み、90℃で6時
間反応させた。反応終了後、反応混合物に14%
(重量)亜硫酸ナトリウム水溶液350.4gを加え、
室温で30分間撹拌混合したのち、この混合液を分
液漏斗に移し、分液した。上層液を等容量の1N
−水酸化ナトリウム水溶液と室温で撹拌混合した
のち、n−ヘキサンで抽出した。抽出液を等容量
の水で3回洗滌した。ついで抽出液からn−ヘキ
サンを留去させることにより1,2−エポキシ−
3,7,11,15−テトラメチルヘキサデカン−3
−オールを518.6g得た。 ついで、撹拌機、冷却器及び温度計を付けた3l
容三口フラスコに1,2−エポキシ−3,7,
11,15−テトラメチルヘキサデカン−3−オール
518.6gとイソプロパノール1l、水800ml及び70%
(重量)過塩素酸70mlを仕込み、室温で9時間反
応させた。1,2−エポキシ−3,7,11,15−
テトラメチルヘキサデカン−3−オールが消失し
たことをGLC分析(OV−12%、カラム長1m注
入口温度230℃、カラム200℃、検出器FID)によ
つて確認したのち、反応混合物に1N−水酸化ナ
トリウム水溶液1を加えて室温で30分間撹拌し
た。得られた混合液をn−ヘキサンで抽出した。
抽出液を等容量の水で3回洗滌したのち、これよ
りn−ヘキサンを留去させて粗フイタントリオー
ル514.5gを得た。この粗フイタントリオールを
分子蒸留することによりり、170℃/0.02Torrの
留分として無色透明かつ無臭の粘稠な液体を
457.7g得た。この留分はGLC分析(前述の分析
条件と同一)の結果、99.0%純度のフイタントリ
オールであつた。 実施例 2 撹拌機、冷却器及び温度計を付けた1容三口
フラスコにイソフイトール236.2g(0.8mole)、
70%(重量)TBHP水溶液113.5g(0.88mole)
及びバナジルアセチルアセトネート236mgを仕込
み、96℃で7時間反応させた。反応終了後、反応
混合物に10%(重量)亜硫酸ナトリウム水溶液
250gを加え、ついで実施例1と同様にして処理
することにより1,2−エポキシ−3,7,11,
15−テトラメチルヘキサデカン−3−オールを
277.4g得た。 ついで、撹拌機、冷却器及び温度計を付けた2
容三口フラスコに1,2−エポキシ−3,7,
11,15−テトラメチルヘキサデカン−3−オール
277.4gとイソプロパノール500ml及び10%(重
量)硫酸水溶液250mlを仕込み、室温で3時間反
応させた。1,2−エポキシ−3,7,11,15−
テトラメチルヘキサデカン−3−オールの消失を
実施例1と同様にして確認したのち、反応混合物
をIN−水酸化ナトリウム水溶液1で中和処理
したのちn−ヘキサンで抽出した。抽出液を等容
量の水で3回洗滌したのち、これよりn−ヘキサ
ンを留去させて粗フイタントリオール220.3gを
得た。この粗フイタントリオールを分子蒸留する
ことにより、170℃/0.02Torrの留分を198.3g得
た。このものは無色透明でかつ無臭の粘稠な液体
であり、99.3%純度のフイタントリオールであつ
た。 実施例 3〜8 実施例1において五酸化バナジウム710mgの代
りに各種の金属触媒の所定量を用いる以外は同様
にして反応及び処理を行うことによりそれぞれ
1,2−エポキシ−3,7,11,15−テトラメチ
ルヘキドサデカン−3−オールを得た。これらの
収量を第1表に示す。ついで、各々得られた1,
2−エポキシ−3,7,11,15−テトラメチルヘ
キサデカン−3−オールの277.4gを実施例2に
おけると同様の条件下で反応させ、処理すること
によりそれぞれ粗フイタントリオールとし、これ
らを同様に分子蒸留することによりそれぞれ無色
透明でかつ無臭の粘稠な液体を得た。これらの結
果を第1表に示す。
[Industrial Application Field] The present invention relates to 3,7,11,15-tetramethyl-1,
The present invention relates to a method for producing 2,3-trihydroxyhexadecane (hereinafter, this compound is referred to as phytantriol). The phytantriol produced by the method of the present invention has the effect of caring for the skin or hair, and is useful as a base component of cosmetics used for the purpose of protecting the skin or hair (Japanese Patent Publication No. 38-5050 (see official bulletin). [Prior Art] Conventionally, there is a known method for producing phytantriol by reacting isophytol with formic acid, then allowing hydrogen peroxide to act on the reaction mixture, and saponifying the resulting hydroxydiformate with concentrated ammonia. (Refer to Special Publication No. 38-13859). The reaction of this conventional method is as follows. [Problems to be Solved by the Invention] It has been reported that the crude phytantriol obtained by the above conventional method is colored pale yellow, and as shown in Comparative Example 1 below, the crude phytantriol is colored pale yellow. The purified product obtained by molecular distillation of tantriol is still pale yellow in color and has an unpleasant odor. Such colored and odorized phytantriol cannot be used as a base component of cosmetics, and requires more precise purification means for use as a base component of cosmetics. Therefore, one object of the present invention is to provide a method for producing phytantriol that is free from coloration and unpleasant odor. Another object of the present invention is to provide a method for producing crude phytantriol, which can be easily purified to phytantriol free from coloration and unpleasant odor by molecular distillation. [Means for solving the problem] According to the present invention, the above object is achieved by treating isophytol with tert-butyl hydroperoxide (hereinafter referred to as TBTP) in the presence of a metal catalyst consisting of a derivative of vanadium or molybdenum. )
The present invention is achieved by providing a method for producing phytantriol, which is characterized by obtaining an epoxy compound by reacting with a compound, and then ring-opening the epoxy compound in the presence of an acidic catalyst; This is achieved by providing a method for producing phytantriol, which is characterized by carrying out molecular distillation of phytantriol. The reaction formula of the method of the present invention is as follows. When carrying out the epoxidation reaction of isophytol according to the present invention, TBHP is added in an amount of about 0.5 to 5 mol, preferably 1.0 to 1.5 mol, per 1 mol of isophytol.
Use moles. TBHP is commercially available as a 70% aqueous solution, and it is convenient and safe to use it as is. The metal catalyst present in this reaction system consists of vanadium or molybdenum derivatives. These derivatives include halides, chalcogenides, chalcohalides, nitrosohalides and nitrosylhalides; mixed salts of vanadium or molybdenum with other metals; salts of aliphatic, cycloaliphatic or aromatic carboxylic acids or alcohols or phenols, e.g. Examples include acetate, propionate, stearate, benzoate, oxalate, succinate, sulfonate, tartrate, citrate, salicylate, naphthenate, lower alkoxide, and phenate. These salts can also contain oxygen-containing metal cations such as vanadyl and molybdenum. Other derivatives that may also be used include salts and esters of acids derived from one or more of these metals, such as vanadates, molybdates;
Ortho, meta, para, pyro, thio or halogeno congeners; tungstovanadate, phosphomolybdate, molybdocitrate, molybdoformate, molybdolactate, molybdomaleate, molybdomandelate , molybdomutate, molybdooxalate, molybdoquinate, molybdosaccharate, molybdotartrate, and molybdotungstate. Furthermore, acetylacetonate,
Chelates such as benzoylacetonate, glyoximate, quinolinate, salicylaldehydate, benzyl hydroxymate, ethylenediamine in which the ligand may be substituted with, for example, an aliphatic or alicyclic group or a halogen atom, 〓, 〓
- Complexes of diviridyl, o-nitrosophenol, -nitrosonaphthol, salicylaldimidine and porphyrin; and carbon monoxide, monoolefin, diolefin, acetylene compound,
It is also possible to use complexes of coordinating agents such as cyclopentadiene, ammonia, cyanide, tertiary nitrogenous bases, phosphine, arsine, stibine and nitriles with metals, metal salts or metal alkyls of vanadium or molybdenum. Among these metal catalysts, catalysts containing chains represented by the following formula are preferred. -M=O -O-M=O -M←O= -O-M←O= where M can be further bonded to other atoms by one or more ionic or covalent bonds. Represents vanadium or molybdenum that can be produced. Catalysts of this type include metal oxides, salts and esters of oxyacids derived from metals, salts of oxygen-containing metal ions, and chelates derived from -diketones. In particular, pentavalent vanadium compounds such as vanadium pentoxide, ammonium metavanadate, tertiary butyl orthovanadate, neopentyl orthovanadate, cyclohexyl orthovanadate, vanadyl acetylacetonate; and molybdenum trioxide, hexacarbonylmolybdenum,
Hexavalent molybdenum compounds such as tricarbonyltriacetonitrile budene are preferably used. The catalyst may be soluble or insoluble in the reaction medium. The amount of metal catalyst used is approximately
0.001-10% by weight, preferably about 0.01-1.0% by weight
It is. The epoxidation reaction is carried out in the presence or absence of a solvent inert to the reaction. Aromatic hydrocarbons such as benzene, toluene, and xylene as solvents;
Halogenated aliphatic hydrocarbons such as dichloromethane and 1,2-dichloroethane; aliphatic hydrocarbons such as hexane and heptane are used. The reaction temperature is not particularly limited, but is usually in the range of about 50 to 150°C, preferably 80 to 110°C. After the reaction is complete,
It is preferable to wash the reaction mixture with an aqueous sodium sulfite solution so that no unreacted TBHP or by-product peroxide remains. Phitanetriol can be produced by ring-opening the epoxy compound thus obtained in the presence of an acidic catalyst. As the acidic catalyst, sulfuric acid, hydrochloric acid, phosphoric acid, perchloric acid, etc. are used. The amount of acidic catalyst used is about 1 to 100% by weight, preferably 5 to 20% by weight, based on the epoxy compound. This reaction is suitably carried out at around room temperature, and preferably in the presence of a solvent. As the solvent, for example, a water-soluble and inert solvent such as tetrahydrofuran or isopropyl alcohol is used. The reaction ends when the epoxy compound disappears. This confirmation is conveniently performed by GLC analysis. After the reaction is complete, the reaction mixture is treated with sodium hydroxide,
After neutralization with an aqueous alkali solution such as potassium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, diethyl ether,
Ethers such as diisopropyl ether; aliphatic hydrocarbons such as pentane, hexane, heptane;
Extract with a solvent such as an aliphatic carboxylic acid ester such as ethyl acetate or isobutyl acetate, and wash the extract with water until it becomes neutral. By distilling off the solvent from the extract thus obtained, a viscous liquid of phytantriol is obtained. By molecularly distilling this crude phytantriol, colorless, transparent and odorless phytantriol can be obtained. [Examples] The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples. Example 1 463.6 g (1.57 mole) of isophytol was added to a 2 L three-necked flask equipped with a stirrer, condenser, and thermometer.
% (weight) TBHP aqueous solution (221.8 g (1.72 mole)) and 710 mg of vanadium pentoxide were charged and reacted at 90° C. for 6 hours. After the reaction is complete, add 14% to the reaction mixture.
(Weight) Add 350.4g of sodium sulfite aqueous solution,
After stirring and mixing at room temperature for 30 minutes, the mixture was transferred to a separatory funnel and separated. Add the upper layer solution to an equal volume of 1N
- After stirring and mixing with an aqueous sodium hydroxide solution at room temperature, the mixture was extracted with n-hexane. The extract was washed three times with equal volumes of water. Then, by distilling off n-hexane from the extract, 1,2-epoxy-
3,7,11,15-tetramethylhexadecane-3
-518.6g of oar was obtained. Next, a 3l tank with a stirrer, cooler and thermometer.
1,2-epoxy-3,7, in a three-necked flask
11,15-tetramethylhexadecane-3-ol
518.6g and 1l of isopropanol, 800ml of water and 70%
(Weight) 70 ml of perchloric acid was charged and reacted at room temperature for 9 hours. 1,2-epoxy-3,7,11,15-
After confirming the disappearance of tetramethylhexadecane-3-ol by GLC analysis (OV-12%, column length 1m, inlet temperature 230℃, column 200℃, detector FID), 1N water was added to the reaction mixture. Aqueous sodium oxide solution 1 was added and stirred at room temperature for 30 minutes. The resulting mixture was extracted with n-hexane.
After washing the extract three times with an equal volume of water, n-hexane was distilled off from the extract to obtain 514.5 g of crude phythanetriol. By molecularly distilling this crude phytantriol, a colorless, transparent, odorless, viscous liquid is produced as a distillate at 170°C/0.02 Torr.
Obtained 457.7g. As a result of GLC analysis (under the same analytical conditions as above), this fraction was found to be phytantriol with a purity of 99.0%. Example 2 236.2 g (0.8 mole) of isophytol was placed in a 1-volume three-necked flask equipped with a stirrer, a condenser, and a thermometer.
70% (weight) TBHP aqueous solution 113.5g (0.88mole)
and 236 mg of vanadyl acetylacetonate were charged and reacted at 96°C for 7 hours. After the reaction is complete, add 10% (by weight) sodium sulfite aqueous solution to the reaction mixture.
250g of 1,2-epoxy-3,7,11,
15-tetramethylhexadecane-3-ol
Obtained 277.4g. Then, a stirrer, a cooler and a thermometer were attached.
1,2-epoxy-3,7, in a three-necked flask
11,15-tetramethylhexadecane-3-ol
277.4 g, 500 ml of isopropanol, and 250 ml of 10% (by weight) sulfuric acid aqueous solution were charged, and reacted at room temperature for 3 hours. 1,2-epoxy-3,7,11,15-
After confirming the disappearance of tetramethylhexadecane-3-ol in the same manner as in Example 1, the reaction mixture was neutralized with IN-sodium hydroxide aqueous solution 1 and then extracted with n-hexane. After washing the extract three times with an equal volume of water, n-hexane was distilled off from the extract to obtain 220.3 g of crude phythanetriol. By molecularly distilling this crude phytantriol, 198.3 g of a fraction at 170° C./0.02 Torr was obtained. This product was a colorless, transparent, odorless, viscous liquid, and was phytantriol with a purity of 99.3%. Examples 3 to 8 1,2-epoxy-3,7,11, and 1,2-epoxy-3,7,11, and 15-tetramethylhexidosadecan-3-ol was obtained. The yields are shown in Table 1. Then, the obtained 1,
277.4 g of 2-epoxy-3,7,11,15-tetramethylhexadecane-3-ol were reacted and treated under the same conditions as in Example 2 to obtain crude phythanetriol, and these were similarly treated. A colorless, transparent, and odorless viscous liquid was obtained by molecular distillation of each. These results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば上記の実施例から明らか
なとおり分子蒸留することにより無色透明でかつ
無臭のフイタントリオールに容易に精製される粗
製フイタントリオールを高収量でかつ容易に製造
することができる。また本発明の方法によれば上
記の実施例から明らかなとおり無色透明でかつ無
臭のフイタントリオールを容易に製造することが
できる。
According to the method of the present invention, as is clear from the above examples, crude phytantriol, which is easily purified to colorless, transparent and odorless phytantriol by molecular distillation, can be easily produced in high yield. can. Furthermore, according to the method of the present invention, colorless, transparent, and odorless phytantriol can be easily produced, as is clear from the above examples.

Claims (1)

【特許請求の範囲】 1 イソフイトールをバナジウム又はモリブデン
の誘導体からなる金属触媒の存在下にtert−ブチ
ルハイドロパーオキサイドと反応させることによ
りエポキシ化合物を得、ついで該エポキシ化合物
を酸性触媒の存在下に開環させることを特徴とす
る3,7,11,15−テトラメチル−1,2,3,
−トリヒドロキシヘキサデカンの製造方法。 2 イソフイトールをバナジウム又はモリブデン
の誘導体からなる金属触媒の存在下にtert−ブチ
ルハイドロパーオキサイドと反応させることによ
りエポキシ化合物を得、ついで該エポキシ化合物
を酸性触媒の存在下に開環させ、生成する3,
7,11,15−テトラメチル−1,2,3−トリヒ
ドロキシヘキサデカンを分子蒸留することを特徴
とする3,7,11,15−テトラメチル−1,2,
3−トリヒドロキシヘキサデカンの製造方法。
[Claims] 1. An epoxy compound is obtained by reacting isophytol with tert-butyl hydroperoxide in the presence of a metal catalyst consisting of a derivative of vanadium or molybdenum, and then the epoxy compound is opened in the presence of an acidic catalyst. 3,7,11,15-tetramethyl-1,2,3, characterized by being ringed
- A method for producing trihydroxyhexadecane. 2 An epoxy compound is obtained by reacting isophytol with tert-butyl hydroperoxide in the presence of a metal catalyst consisting of a derivative of vanadium or molybdenum, and then the epoxy compound is ring-opened in the presence of an acidic catalyst to produce 3 ,
3,7,11,15-tetramethyl-1,2, characterized by molecular distillation of 7,11,15-tetramethyl-1,2,3-trihydroxyhexadecane.
A method for producing 3-trihydroxyhexadecane.
JP60077927A 1985-04-11 1985-04-11 Production of phytanetriol Granted JPS61236737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60077927A JPS61236737A (en) 1985-04-11 1985-04-11 Production of phytanetriol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60077927A JPS61236737A (en) 1985-04-11 1985-04-11 Production of phytanetriol

Publications (2)

Publication Number Publication Date
JPS61236737A JPS61236737A (en) 1986-10-22
JPH0460455B2 true JPH0460455B2 (en) 1992-09-28

Family

ID=13647718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60077927A Granted JPS61236737A (en) 1985-04-11 1985-04-11 Production of phytanetriol

Country Status (1)

Country Link
JP (1) JPS61236737A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776443A (en) * 1996-03-18 1998-07-07 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Hair care compositions
US6531303B1 (en) 1998-07-06 2003-03-11 Arkion Life Sciences Llc Method of producing geranylgeraniol
CN1308623A (en) * 1998-07-06 2001-08-15 伊斯曼化学公司 Method of production of vitamin E
US6410755B1 (en) 1998-07-06 2002-06-25 Dcv, Inc. Method of vitamin production
DE19903459A1 (en) 1999-01-28 2000-08-03 Basf Ag Process for the production of high-purity phytantriol
FR2809954B1 (en) * 2000-06-08 2004-03-12 Oreal USE OF PHYTANTRIOL AS AN ANTI-POLLUTION AGENT, ESPECIALLY IN A COSMETIC COMPOSITION

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514112A (en) * 1974-06-26 1976-01-14 Mitsubishi Gas Chemical Co Gurishidooruoyobi paraa toruirusanno dojiseizoho
JPS5293705A (en) * 1976-02-02 1977-08-06 Daicel Chem Ind Ltd Continuous preparation of glycerine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514112A (en) * 1974-06-26 1976-01-14 Mitsubishi Gas Chemical Co Gurishidooruoyobi paraa toruirusanno dojiseizoho
JPS5293705A (en) * 1976-02-02 1977-08-06 Daicel Chem Ind Ltd Continuous preparation of glycerine

Also Published As

Publication number Publication date
JPS61236737A (en) 1986-10-22

Similar Documents

Publication Publication Date Title
JPS63166846A (en) Carbonization of olefinic unsaturated compound using plladium catalyst
EP0350700A2 (en) Preparation of organic carbonates by oxidative carbonylation using palladium-cobalt catalyst
GB1565716A (en) Manufacture of alkylcarboxylic acids
US4256913A (en) Preparation of carboxylic acids using a BF3 catalyst complex
JPH0460455B2 (en)
EP0144118B1 (en) Alkoxycarbonylation or carbonylation with co and organic hydroxyl compound
JPS61161294A (en) Manufacture of molybdenum/glycol complex
EP0350697A2 (en) Preparation of organic carbonates by oxidative carbonylation using palladium-manganese catalyst
EP0015537B1 (en) Process for the preparation of dienoic acids
JPH0237212B2 (en)
US4044041A (en) Preparation of esters of unsaturated alcohols
EP0440420B1 (en) Process for preparation of condensed alcohols by alkoxide catalysis
US3646116A (en) Direct production of esters from ethylene and methanol
US3953526A (en) Synthesis of hydroquinone
US4000185A (en) Process for the production of 1,4-diacyloxy-2-butene from butadiene
JP2990275B1 (en) Mercury-catalyzed synthesis of tertiary carboxylic acids
EP0156498B1 (en) Process for producing acetic acid
US4758681A (en) Method of making molybdenum/alkylene glycol complexes useful as epoxidation catalysts
EP0212729A2 (en) Process for the preparation of diesters of alkanedioic acids
US4113971A (en) Process for preparing diacyloxy olefins
US3439029A (en) Process for the production of acetic acid by catalytic gas-phase oxidation of n-butenes
US4801755A (en) Isobutane oxidation in the presence of a soluble propylene glycol/vanadium catalyst
JP2891533B2 (en) α- (4-isobutylphenyl) ethyl hydroperoxide and method for producing the same
US4162363A (en) Conversion of dienes or monoolefins to diesters
US4803305A (en) Isobutane oxidation in the presence of a soluble iron complex as catalyst

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term