JPH0460226A - Hydraulic buffer - Google Patents

Hydraulic buffer

Info

Publication number
JPH0460226A
JPH0460226A JP16957590A JP16957590A JPH0460226A JP H0460226 A JPH0460226 A JP H0460226A JP 16957590 A JP16957590 A JP 16957590A JP 16957590 A JP16957590 A JP 16957590A JP H0460226 A JPH0460226 A JP H0460226A
Authority
JP
Japan
Prior art keywords
oil
valve
pressure
oil chamber
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16957590A
Other languages
Japanese (ja)
Inventor
Shinichi Kagawa
伸一 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP16957590A priority Critical patent/JPH0460226A/en
Publication of JPH0460226A publication Critical patent/JPH0460226A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To absorb an impact so effectively as well as to improve the extent of safety by interrupting an interval between two oil chambers with a pressure valve at the initial stage of a collision, and when pressure in the oil chamber exceeds a specified level, securing a sufficient stroke quantity as the pressure valve is opened. CONSTITUTION:A pressure valve 24 is installed in a piston 21 via a holder 22, and its valve element 25 is normally energized in the valve closing direction by dint of a valve spring 26. At the initial stage of absorbing impact energy through an impact absorbing material, in case of a car crash, the valve element 25 interrupts an interval between two oil chambers B and C, thereby checking such a possibility that an inner cylinder 5 might be stroked in the X direction. In addition, when pressure in the oil chamber C exceeds the specified one due to impact force, the valve element 25 is slidden toward the side of the oil chamber B against the valve spring 26, and oil in the oil chamber C flows into the oil chamber B via an oil passage. This oil produces large damping force when it flows through each orifice hole 25D, through which the inner cylinder 5 is stroked in the X direction as absorbing the extent of impact energy so effectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば車両の前部等に設けられ、衝突事故等
の際に衝撃を緩衝するのに好適に用いられる油圧緩衝器
に関し、特に、樹脂材料等からなる衝撃緩和材と併用す
るようにした油圧緩衝器に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a hydraulic shock absorber that is installed, for example, at the front of a vehicle and is suitably used to dampen shocks in the event of a collision. , relates to a hydraulic shock absorber that is used in combination with a shock absorbing material made of a resin material or the like.

[従来の技術〕 第4図に従来技術の油圧緩衝器として車両のバンパ用緩
衝器を例に挙げて示す。
[Prior Art] FIG. 4 shows an example of a vehicle bumper shock absorber as a conventional hydraulic shock absorber.

図において、1はバンパ用緩衝器本体を構成する外筒を
示し、該外筒1は円筒状に形成され、その一端側は略円
板状の蓋体2によって閉塞されている。また、該外筒1
の他端側外周には取付ブラケット3が固着され、該取付
ブラケット3は外筒1を車両の車体側に取付けさせるよ
うになっている。4は外筒1の他端を径方向に折曲げる
ことによって形成されたストッパとしての係止突起を示
し、該係止突起4は後述する内筒5のストッパ部5Aに
当接し、内筒5の抜止めを行うようになっている。
In the figure, reference numeral 1 denotes an outer cylinder constituting the main body of a bumper shock absorber. The outer cylinder 1 is formed in a cylindrical shape, and one end of the outer cylinder 1 is closed by a substantially disc-shaped lid 2. In addition, the outer cylinder 1
A mounting bracket 3 is fixed to the outer periphery of the other end, and the mounting bracket 3 is adapted to mount the outer cylinder 1 to the vehicle body side of the vehicle. Reference numeral 4 indicates a locking projection as a stopper formed by bending the other end of the outer cylinder 1 in the radial direction. It is designed to prevent it from coming off.

5は一端側か外筒1内に摺動可能に挿入され、他端側か
外筒1外に突出した内筒な水上、該内筒5の外周側には
長さ方向中間部に位置して内筒5のフルストローク位置
を規制するストッパ部5Aと、該ストッパ部5Aと内筒
5の一端との間に位置し、内筒5を外筒1内で摺動させ
る段部5Bとが径方向外向きに突設されている。また、
該内筒5の突出端にはバンパ側の取付板6が溶接等の手
段を用いて固着され、該取付板6には後述のガス室A内
に加圧ガスを封入した後にプラグ7がガス室Aを密閉す
べく固着される。
5 is an inner cylinder that is slidably inserted into the outer cylinder 1 at one end and protrudes outside the outer cylinder 1 at the other end, and is located at the middle part in the length direction on the outer peripheral side of the inner cylinder 5. A stopper part 5A that regulates the full stroke position of the inner cylinder 5, and a stepped part 5B that is located between the stopper part 5A and one end of the inner cylinder 5 and that allows the inner cylinder 5 to slide within the outer cylinder 1. It projects outward in the radial direction. Also,
A mounting plate 6 on the bumper side is fixed to the protruding end of the inner cylinder 5 by means such as welding, and a plug 7 is attached to the mounting plate 6 to fill the gas chamber A with pressurized gas, which will be described later. It is fixed to seal chamber A.

8は内筒5内に摺動可能に挿嵌されたフリーピストンを
示し、該フリーピストン8は内筒5内を突出端側のガス
室Aと一端側の油室Bとに画成し、該ガス室Aと油室B
とに圧力差が生じたときに内筒5内を摺動するようにな
っている。
Reference numeral 8 denotes a free piston slidably inserted into the inner cylinder 5, and the free piston 8 defines the inside of the inner cylinder 5 into a gas chamber A on the projecting end side and an oil chamber B on the one end side, The gas chamber A and oil chamber B
It is designed to slide within the inner cylinder 5 when a pressure difference occurs between the two.

9は内筒5の一端側に嵌合固着され、外筒1内に摺動可
能に挿嵌された仕切壁としてのピストンを示し、該ピス
トン9はフリーピストン8によって画成された内筒5の
一端側と外筒1内とにそれぞれ油室B、Cを画成し、外
筒1と内筒5との間には段部5Bとの間に位置して環状
の油室りを画成している。10はピストン9の中央部に
穿設した油室を示し、該油室10は油室B、C間を連通
させ、後述するメータリングビン11の他端側が挿入さ
れるようになっている。
Reference numeral 9 indicates a piston as a partition wall that is fitted and fixed to one end side of the inner cylinder 5 and slidably inserted into the outer cylinder 1. The piston 9 is connected to the inner cylinder 5 defined by the free piston 8. Oil chambers B and C are defined at one end side and inside the outer cylinder 1, respectively, and an annular oil chamber is defined between the outer cylinder 1 and the inner cylinder 5 and located between the step portion 5B. has been completed. Reference numeral 10 denotes an oil chamber bored in the center of the piston 9. The oil chamber 10 communicates between the oil chambers B and C, and the other end of a metering bottle 11, which will be described later, is inserted into the oil chamber 10.

11は油室C内を軸方向に伸長し、一端側が蓋体2の中
央部に固着されたメータリングビンを示し、該メータリ
ングビン11は一端側から他端側に向けて漸次縮径する
テーパ状に形成され、その他端側はピストン9の油室1
0内に挿入されている。そして、該メータリングビン1
1は油室10内にオリフィス通路12を形成し、該オリ
フィス通路12はピストン9が油室C側に向けて摺動す
るときに、該油室C内から油室B内へと流通する油液に
絞り作用を与え、このときに発生する減衰力はメータリ
ングビン11の外径寸法に応して漸次増大するようにな
っている。
Reference numeral 11 indicates a metering bottle that extends in the axial direction within the oil chamber C and has one end fixed to the center of the lid 2, and the diameter of the metering bottle 11 gradually decreases from one end to the other end. It is formed into a tapered shape, and the other end side is the oil chamber 1 of the piston 9.
It is inserted within 0. And the metering bin 1
1 forms an orifice passage 12 in the oil chamber 10, and the orifice passage 12 allows oil to flow from the oil chamber C to the oil chamber B when the piston 9 slides toward the oil chamber C side. A squeezing action is applied to the liquid, and the damping force generated at this time gradually increases in accordance with the outer diameter of the metering bottle 11.

このように構成されるバンパ用緩衝器では、車両の衝突
事故等によって矢示X方向に衝撃力が付加されると、内
筒5はピストン9と共に外筒1内に矢示X方向に押圧さ
れる。そして、油室B、 C内の圧力がガス室A内の圧
力よりも高くなると、この圧力差によってフリーピスト
ン8がガス室A側に摺動すると共に、内筒5がピストン
9と共に油室C側に摺動(ストローク)し、該油室C内
の圧油はオリフィス通路12を介して油室B内に流通す
る。
In the bumper shock absorber configured as described above, when an impact force is applied in the direction of the arrow X due to a vehicle collision, etc., the inner cylinder 5 is pressed into the outer cylinder 1 together with the piston 9 in the direction of the arrow X. Ru. When the pressure in the oil chambers B and C becomes higher than the pressure in the gas chamber A, the free piston 8 slides toward the gas chamber A side due to this pressure difference, and the inner cylinder 5 and the piston 9 move toward the oil chamber C. The pressure oil in the oil chamber C flows into the oil chamber B through the orifice passage 12.

ここで、該オリフィス通路12はメータリングビン11
によってその有効断面積が小さ(なり、流通する圧油に
絞り作用を与えるようになっているから、オリフィス通
路12を流通する圧油によって減衰力を発生でき、衝突
時に発生するエネルギーを吸収して衝撃を緩衝できる。
Here, the orifice passage 12 is connected to the metering bin 11.
Because of this, its effective cross-sectional area is small (and it exerts a throttling effect on the flowing pressure oil), so the pressure oil flowing through the orifice passage 12 can generate a damping force and absorb the energy generated at the time of collision. Can buffer shock.

そして、メータリングビン11はテーパ形状をなして漸
次拡径されているから、ピストン9が油室C側に摺動す
るときに、発生減衰力を漸次増大でき、衝突時の衝撃を
緩和させることができる。
Since the metering bottle 11 has a tapered shape and gradually expands in diameter, when the piston 9 slides toward the oil chamber C side, the generated damping force can be gradually increased, and the impact at the time of a collision can be alleviated. I can do it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上述した従来技術では、内筒5内に設けたフ
リーピストン8がガス室Aと油室Bとでそれぞれガス圧
と油圧とに対して受圧面積が等しくなっているから、衝
突時にフリーピストン8が比較的率(摺動して、内筒5
が外筒1内に早期に縮小(ストローク)するようになり
、例えばウレタン等の弾性樹脂材料からなる衝撃緩和材
と併用するのが難しいという問題がある。
By the way, in the above-mentioned conventional technology, since the free piston 8 provided in the inner cylinder 5 has the same pressure receiving area for gas pressure and oil pressure in the gas chamber A and the oil chamber B, the free piston 8 is disposed in the case of a collision. 8 is relatively high (sliding, inner cylinder 5
There is a problem in that it is difficult to use in combination with a shock absorbing material made of an elastic resin material such as urethane, for example, because the shock absorber begins to shrink (stroke) into the outer cylinder 1 at an early stage.

即ち、衝撃の初期に緩和材によって衝突エネルギーを吸
収しているときに、フリーピストン8が早期に摺動して
内筒5が縮小し始めることがあり、緩和材がエネルギー
を吸収し終ったときには内筒5が外筒1内に大きくスト
ロークし、その後のストローク量が小さくなって効果的
な緩衝作用を得ることができない。
That is, when the impact energy is being absorbed by the cushioning material at the beginning of the impact, the free piston 8 may slide early and the inner cylinder 5 may begin to contract, and when the cushioning material has finished absorbing the energy, The inner cylinder 5 makes a large stroke into the outer cylinder 1, and the subsequent stroke amount becomes small, making it impossible to obtain an effective buffering effect.

本発明は上述した従来技術の問題に鑑みなされたもので
、本発明は衝撃緩和材等と併用した場合でも効果的な緩
衝作用を得ることができ、衝突時の衝撃を吸収して安全
性を向上できるようにした油圧緩衝器を提供することを
目的としている。
The present invention has been made in view of the problems of the prior art described above. Even when used in combination with a shock absorbing material, the present invention can obtain an effective buffering effect, absorbing the impact at the time of a collision, and improving safety. The purpose of the present invention is to provide a hydraulic shock absorber that can be improved.

〔課題を解決するための手段〕[Means to solve the problem]

上述した課題を解決するために本発明は、外筒と、一端
側が該外筒内に挿入され、他端側か該外間外に突出した
内筒と、該内筒または外筒に摺動可能に挿嵌され、ガス
室と油室とを画成するフリーピストンと、前記内筒また
は外筒に設けられ、該フリーピストンによって画成され
た油室な2つの油室に画成する仕切壁と、該仕切壁によ
って画成された各油室間を連通ずる油通路と、該油通路
の途中に設けられ、常時は閉弁して該油通路を遮断し、
前記各油室のうち前記フリーピストン側とは反対側に位
置する油室の圧力が所定の高圧を越えたときに開弁して
該油通路による前記各油室間の連通を許す圧力弁とから
なる構成を採用している。
In order to solve the above-mentioned problems, the present invention provides an outer cylinder, an inner cylinder whose one end side is inserted into the outer cylinder, and whose other end side projects outside the outer cylinder, and which is slidable on the inner cylinder or the outer cylinder. a free piston that is inserted into the inner cylinder or the outer cylinder and defines a gas chamber and an oil chamber; and a partition wall that is provided in the inner cylinder or the outer cylinder and defines two oil chambers that are defined by the free piston. an oil passage communicating between the oil chambers defined by the partition wall; and an oil passage provided in the middle of the oil passage, which is normally closed to block the oil passage;
a pressure valve that opens when pressure in an oil chamber located on the opposite side of the free piston among the oil chambers exceeds a predetermined high pressure, and allows communication between the oil chambers through the oil passage; A configuration consisting of is adopted.

〔作用〕[Effect]

上記構成により、例えば衝撃緩和材と併用した場合に、
該緩和材が衝突エネルギーを吸収する初期段階では各油
室間の油通路を圧力弁で遮断して、油液の流通を阻止で
き、内筒が外筒内へとストロークするのを抑えることが
できる。そして、フリーピストンとは反対側に位置する
油室の圧力が所定の高圧レベルを越えると圧力弁が開弁
じ、油通路を連通させて内筒なストロークさせることが
でき、充分なストローク量を確保できる。
With the above configuration, for example, when used together with a shock absorbing material,
At the initial stage when the cushioning material absorbs the collision energy, the oil passage between each oil chamber can be blocked by a pressure valve to prevent the flow of oil and prevent the inner cylinder from stroking into the outer cylinder. can. Then, when the pressure in the oil chamber located on the opposite side of the free piston exceeds a predetermined high pressure level, the pressure valve opens, allowing the oil passage to communicate with each other and allowing for a smooth stroke, ensuring a sufficient stroke amount. can.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図ないし第3図に基づき説
明する。なお、実施例では前述した第4図に示す従来技
術と同一の構成要素に同一の符号を付し、その説明を省
略するものとする。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 3. In this embodiment, the same components as those of the prior art shown in FIG. 4 described above are given the same reference numerals, and their explanations will be omitted.

而して、第1図は本発明の第1の実施例を示している。FIG. 1 shows a first embodiment of the present invention.

図中、21は内筒5の一端側に嵌合固着され、外筒1内
に摺動可能に挿嵌された仕切壁としてのピストンを示し
、該ピストン21は従来技術で述べたピストン9とほぼ
同様に外筒1および内筒5内に油室B、C,Dを画成し
ているものの、該ピストン21の中央部には軸方向に円
形の摺動穴21Aが穿設されている。そして、該ピスト
ン21の油室B側端面には摺動穴21Aの周囲を取囲む
環状突部21Bが設けられ、該環状突部21Bには周方
向に所定間隔をもって径方向に伸長する複数の油溝21
C(1個のみ図示)が形成されている。また、該ピスト
ン21には、油室C側の端面に位置し、環状突部21B
よりも大きな径方向寸法をもって周方向に伸びるリング
状溝21Dと、該リング状溝21Dを油室Bに常時連通
すべく軸方向に穿設された小径の油室21Eとが設けら
れ、これらは後述のディスクバルブ27によって開、閉
されるようになっている。
In the figure, 21 indicates a piston as a partition wall that is fitted and fixed to one end side of the inner cylinder 5 and slidably inserted into the outer cylinder 1, and the piston 21 is different from the piston 9 described in the prior art. Although oil chambers B, C, and D are defined in the outer cylinder 1 and the inner cylinder 5 in almost the same way, a circular sliding hole 21A is bored in the center of the piston 21 in the axial direction. . An annular protrusion 21B surrounding the sliding hole 21A is provided on the end surface of the piston 21 on the oil chamber B side. Oil groove 21
C (only one is shown) is formed. The piston 21 also has an annular protrusion 21B located on the end face on the oil chamber C side.
A ring-shaped groove 21D extending in the circumferential direction and having a larger radial dimension than It is opened and closed by a disc valve 27, which will be described later.

22は油室B内に位置して内筒5とピストン21との間
に固着されたホルダを示し、該ホルダ22は段付の円筒
状に形成され、後述する弁体25の大径部25Aを摺動
可能に保持するようになっている。また、該ホルダ22
の一端側には径方向外向きに突出して内筒5の端面とピ
ストン21との間で挟持されるフランジ部22Aが穿設
され、該フランジ部22Aの途中には複数の油室22B
、22B、・・・が軸方向に穿設されている。
Reference numeral 22 indicates a holder located in the oil chamber B and fixed between the inner cylinder 5 and the piston 21. The holder 22 is formed in a stepped cylindrical shape, and is connected to a large diameter portion 25A of the valve body 25, which will be described later. It is designed to be slidably held. Moreover, the holder 22
A flange portion 22A that protrudes radially outward and is held between the end surface of the inner cylinder 5 and the piston 21 is bored at one end side, and a plurality of oil chambers 22B are provided in the middle of the flange portion 22A.
, 22B, . . . are bored in the axial direction.

そして、該ホルダ22の他端側には径方向内向きに環状
のばね受部22Cが穿設され、該ばね受部22Cは後述
する弁ばね26の一端側を環状のシム板23を介して保
持するようになっている。
An annular spring receiving part 22C is bored radially inward at the other end of the holder 22, and the spring receiving part 22C connects one end of a valve spring 26, which will be described later, through an annular shim plate 23. It is designed to be retained.

24はピストン21とホルダ22との間に配設された圧
力弁を示し、該圧力弁24は、ホルダ22内に摺動可能
に挿嵌された略円板状の大径部25Aおよび該大径部2
5Aの端面から軸方向に穿設された短尺円柱状の小径弁
部25Bからなる弁体25と、該弁体25の大径部25
Aとホルダ22のばね受部22Cとの間にシム板23を
介して配設され、該シム板23の板厚または枚数に基づ
きそのばね荷重fが設定される弁ばね26とから構成さ
れ、該弁ばね26は弁体25を矢示X方向に常時付勢し
ている。そして、弁体25の小径弁部25Bはピストン
21の摺動穴21Aに摺動可能に挿嵌され、該小径弁部
25Bの端面に開口する軸方向の有底穴25Cと、該有
底穴25Cに常時連通すべく径方向に伸長し、小径弁部
25Bの外周面に開口した複数のオリフィス孔25Dと
が設けられている。
Reference numeral 24 indicates a pressure valve disposed between the piston 21 and the holder 22, and the pressure valve 24 includes a substantially disk-shaped large diameter portion 25A that is slidably inserted into the holder 22, and a large diameter portion 25A that is slidably inserted into the holder 22. Diameter 2
A valve body 25 consisting of a short cylindrical small diameter valve portion 25B bored in the axial direction from the end face of the valve body 5A, and a large diameter portion 25 of the valve body 25.
A valve spring 26 is disposed between A and the spring receiving portion 22C of the holder 22 via a shim plate 23, and the spring load f is set based on the thickness or number of the shim plates 23. The valve spring 26 constantly biases the valve body 25 in the direction of arrow X. The small diameter valve portion 25B of the valve body 25 is slidably inserted into the sliding hole 21A of the piston 21, and has a bottomed hole 25C in the axial direction that opens at the end surface of the small diameter valve portion 25B, and the bottomed hole 25C. A plurality of orifice holes 25D are provided which extend in the radial direction and open on the outer circumferential surface of the small diameter valve portion 25B so as to constantly communicate with the small diameter valve portion 25C.

ここで、該弁体25の有底穴25Cおよび各オリフィス
孔25Dはピストン21の摺動穴21A、各油溝2IC
と共に油室B、C間を連通させる油通路を構成し、この
油通路は摺動穴21Aと油溝21Cとの間で弁体25の
各オリフィス孔25D等を介して油室B、C間を連通、
遮断させるようになっている。即ち、弁体25は小径弁
部25Bが油室Cの圧力に対して受圧面積Sを有し、大
径部25Aも油室Bの圧力に対してほぼ同様の受圧面積
Sを有し、該弁体25は弁ばね26によって矢示X方向
にばね荷重fなる力で付勢されているから、油室B、C
内が動圧で圧力Pのときには PXS<PXS+f  −−−−・・(1)となって、
弁体25は図示の如(閉弁し、油室80間を遮断する。
Here, the bottomed hole 25C and each orifice hole 25D of the valve body 25 are connected to the sliding hole 21A of the piston 21, and each oil groove 2IC.
Together, they form an oil passage that communicates between the oil chambers B and C, and this oil passage connects the oil chambers B and C between the sliding hole 21A and the oil groove 21C via each orifice hole 25D of the valve body 25. communicate,
It is designed to be blocked. That is, in the valve body 25, the small diameter valve portion 25B has a pressure receiving area S with respect to the pressure of the oil chamber C, and the large diameter portion 25A has a substantially similar pressure receiving area S with respect to the pressure of the oil chamber B. Since the valve body 25 is urged by the valve spring 26 in the direction of the arrow X with a spring load f, the oil chambers B and C
When the inside is dynamic pressure and pressure P, PXS<PXS+f -----... (1),
The valve body 25 is closed as shown in the figure, and the oil chambers 80 are cut off.

そして、油室C内の圧力Pが所定の高圧PCまで上昇す
ると、 PcX5=PXS+f  −・・−(2)となって、油
室C内の圧力が高圧PCを越えたときに、弁体25が弁
ばね26に抗して油室B側に摺動して開弁じ、該弁体2
5の各オリフィス孔25Dがピストン21の各油溝21
Cと連通して油室B、C間が連通ずる。
Then, when the pressure P in the oil chamber C rises to a predetermined high pressure PC, PcX5=PXS+f -...-(2), and when the pressure in the oil chamber C exceeds the high pressure PC, the valve body 25 slides toward the oil chamber B side against the valve spring 26 to open the valve, and the valve body 2
Each orifice hole 25D of 5 corresponds to each oil groove 21 of the piston 21.
The oil chambers B and C communicate with each other.

さらに、27はピストン21のリング状溝21Dを開、
閉すべく該ピストン21の端面に設けられたチエツク弁
としてのディスクバルブを示し、該ディスクバルブ27
は油室B内の油液が油入21E、リング状溝21Dを介
して油室C内に向は流通するのを許し、逆向きの流れを
阻止するようになっている。そして、該ディスクバルブ
27は当該緩衝器の組立時や衝突後の復帰時等に圧力弁
24の弁体25がピストン21の環状突部21Bに当接
して図示の如く閉弁した後に、油室B内の油液を油室C
内に流出させ、フリーピストン8がガス室A内のガスA
圧により油室B側へと矢示X方向に摺動するのを許すよ
うになっている。
Furthermore, 27 opens the ring-shaped groove 21D of the piston 21,
A disc valve as a check valve is provided on the end face of the piston 21 to be closed, and the disc valve 27 is shown as a check valve.
allows the oil in the oil chamber B to flow in one direction into the oil chamber C via the oil filler 21E and the ring-shaped groove 21D, and prevents the oil from flowing in the opposite direction. The disc valve 27 is opened in the oil chamber after the valve body 25 of the pressure valve 24 contacts the annular protrusion 21B of the piston 21 and closes as shown in the figure during assembly of the shock absorber or return after a collision. Transfer the oil in B to oil chamber C.
The free piston 8 causes the gas A in the gas chamber A to flow out into the gas chamber A.
The pressure allows it to slide toward the oil chamber B in the direction of arrow X.

本実施例によるバンパ用緩衝器は上述のごとき構成を有
するもので、その基本的作動については従来技術による
ものと格別差異はない。
The bumper shock absorber according to this embodiment has the above-mentioned configuration, and its basic operation is not particularly different from that of the prior art.

然るに本実施例では、ピストン21にホルダ22を介し
て圧力弁24を設け、該圧力弁24を弁体25と弁ばね
26とから構成し、該弁体25の小径弁部25Bをピス
トン21の摺動穴21Aに挿嵌して各オリフィス孔25
Dと各油溝21Cとの間で油室B、C間を連通、遮断さ
せると共に、弁体25を弁ばね26によりばね荷重fを
もって常時閉弁方向に付勢する構成としたから、例えば
ウレタン等の弾性樹脂材料からなる衝撃緩和材と当該緩
衝器とを併用した場合に、車両の衝突事故等によりこの
緩和材が衝突エネルギーを吸収する初期段階では、油室
C内の圧力Pが前記(2)式による所定の高圧Pc、 p c = p a + f/ S  ・”−(3)た
だし、P8 :油室B内の圧力 に達するまでは圧力弁24の弁体25を図示の如く閉弁
状態に保持でき、油室B、C間を遮断して内筒5が外筒
1内へと矢示X方向にストロークするのを抑えることが
できる。
However, in this embodiment, a pressure valve 24 is provided on the piston 21 via a holder 22, and the pressure valve 24 is composed of a valve body 25 and a valve spring 26. Each orifice hole 25 is inserted into the sliding hole 21A.
Since the structure is such that the oil chambers B and C are communicated and isolated between D and each oil groove 21C, and the valve body 25 is always biased in the valve closing direction with a spring load f by the valve spring 26, for example, urethane When a shock absorber made of an elastic resin material such as ( 2) Predetermined high pressure Pc according to formula, p c = p a + f/ S ・”-(3) However, P8: The valve body 25 of the pressure valve 24 is closed as shown in the figure until the pressure in the oil chamber B is reached. It can be maintained in a valve state, and the oil chambers B and C can be shut off to prevent the inner cylinder 5 from stroking into the outer cylinder 1 in the direction of the arrow X.

そして、衝撃緩和材が衝突エネルギーを吸収し、さらに
矢示X方向の衝撃力により油室C内の圧力Pが高圧Pc
を越えるようなときには、弁体25が弁ばね26に抗し
て油室B側に向けて摺動し、摺動穴21A、有底穴25
C1各オリフィス孔25Dおよび各油溝21Gからなる
油通路が各オリフィス孔25Dと各油溝2ICとの間で
連通し、油室C内の油液が油通路を介して油室B内に向
は流通するようになるから、この油液が各オリフィス孔
25Dを流通するときに大きな減衰力を発生でき、衝突
エネルギーを効果的に緩衝しつつ、内筒5を外筒1内へ
と矢示X方向にストロークさせることができる。
The shock absorbing material absorbs the collision energy, and the pressure P in the oil chamber C increases to a high pressure Pc due to the impact force in the direction of the arrow X.
When the valve body 25 exceeds the valve spring 26, the valve element 25 slides toward the oil chamber B side against the valve spring 26, and the sliding hole 21A and the bottomed hole 25
C1 An oil passage consisting of each orifice hole 25D and each oil groove 21G communicates between each orifice hole 25D and each oil groove 2IC, and the oil in the oil chamber C is directed into the oil chamber B via the oil passage. Since this oil fluid flows through each orifice hole 25D, a large damping force can be generated, and the inner cylinder 5 is directed into the outer cylinder 1 while effectively buffering the collision energy. It can be stroked in the X direction.

また、圧力弁24の弁体25が開弁することにより油室
B、C間が連通し、油室Cと油室Bとの圧力差ΔPが前
記(3)式に基づき、例えば差圧値f/Sよりも小さく
なると、再び弁体25が図示の如(閉弁して油室B、C
間を遮断し、その後差圧値f/Sよりも大きくなると開
弁して油室B。
In addition, when the valve body 25 of the pressure valve 24 opens, the oil chambers B and C communicate with each other, and the pressure difference ΔP between the oil chamber C and the oil chamber B is calculated based on the above equation (3), for example, by the differential pressure value. When the value becomes smaller than f/S, the valve body 25 closes again as shown in the figure and opens the oil chambers B and C.
After that, when the differential pressure becomes larger than f/S, the valve opens and oil chamber B is opened.

6間を連通させ、各オリフィス孔25Dで大きな減衰力
を発生でき、内筒5がストロークエンドに達するまで衝
突エネルギーを効果的に吸収することができる。
6 are communicated with each other, a large damping force can be generated in each orifice hole 25D, and collision energy can be effectively absorbed until the inner cylinder 5 reaches the stroke end.

従って本実施例では、車両の衝突事故等による衝撃の初
期段階で圧力弁24の弁体25を閉弁させることによっ
て、内筒5が外筒1内にストロークするのを確実に抑え
ることができ、衝撃緩和材等で衝突エネルギーを吸収さ
せることができる上に、その後、油室C内の圧力が所定
の高圧Pcを越えた段階で弁体25を開弁させて、内筒
5を外筒1内へと矢示X方向にストロークさせつつ、当
該緩衝器により効果的に衝撃を吸収でき、内筒5のスト
ローク量を充分に確保でき、衝突時の安全性を大幅に向
上できる等、種々の効果を奏する。
Therefore, in this embodiment, by closing the valve body 25 of the pressure valve 24 at the initial stage of an impact caused by a vehicle collision, etc., it is possible to reliably prevent the inner cylinder 5 from stroking into the outer cylinder 1. In addition to being able to absorb the collision energy with a shock absorbing material or the like, the valve body 25 is then opened when the pressure inside the oil chamber C exceeds a predetermined high pressure Pc, and the inner cylinder 5 is connected to the outer cylinder. 1, the shock can be effectively absorbed by the shock absorber while the inner cylinder 5 is stroked in the direction of the arrow X, a sufficient stroke amount of the inner cylinder 5 can be secured, and safety in the event of a collision can be greatly improved. It has the effect of

次に、第2図は本発明の第2の実施例を示し、本実施例
では前記第1の実施例と同一の構成要素に同一の符号を
付し、その説明を省略するものとするに、本実施例の特
徴は、フランジ部31Aが内筒5の端面とピストン21
との間に挟持され、内筒5およびピストン21に固着さ
れたホルダ31を有底筒状に形成し、該ホルダ31内に
プラグ32を介して加圧ガスを封入することにより、圧
力弁33の弁体34をこのガス圧で常時閉弁方向に付勢
する構成としたことにある。
Next, FIG. 2 shows a second embodiment of the present invention. In this embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and their explanations will be omitted. The feature of this embodiment is that the flange portion 31A is connected to the end surface of the inner cylinder 5 and the piston 21.
The holder 31 which is sandwiched between the inner cylinder 5 and the piston 21 is formed into a bottomed cylindrical shape, and pressurized gas is sealed in the holder 31 via the plug 32. The valve body 34 is always biased in the valve closing direction by this gas pressure.

ここで、圧力弁33の弁体34は、ホルダ31内に摺動
可能に挿嵌され、該ホルダ31の底部との間でガス室E
を画成した有蓋筒状の大径部34Aと、該大径部34A
の端面から軸方向に突設され、ピストン21の摺動穴2
1.、 A内に摺動可能に挿嵌された小径弁部34Bと
からなり、該小径弁部34Bには第1の実施例で述べた
弁体25と同様に、有底穴34Cおよび各オリフィス穴
34Dが形成されたいる。また、ホルダ31のフランジ
部31Aには複数の油室31Bが軸方向に穿設され、ガ
ス室E内に封入した加圧ガスは、例えば第1の実施例で
用いた弁ばね26と同様の付勢力fをもって弁体34を
閉弁方向に付勢している。
Here, the valve body 34 of the pressure valve 33 is slidably inserted into the holder 31 and is connected to the bottom of the holder 31 in the gas chamber E.
a large-diameter portion 34A in the form of a covered cylinder defining a large-diameter portion 34A;
The sliding hole 2 of the piston 21 protrudes from the end surface of the piston 21 in the axial direction.
1. , and a small diameter valve part 34B slidably inserted into A, and the small diameter valve part 34B has a bottomed hole 34C and each orifice hole, similar to the valve body 25 described in the first embodiment. 34D is formed. In addition, a plurality of oil chambers 31B are axially bored in the flange portion 31A of the holder 31, and the pressurized gas sealed in the gas chamber E is supplied with the same pressure as the valve spring 26 used in the first embodiment. The valve body 34 is urged in the valve closing direction with the urging force f.

かくして、このように構成される本実施例でも、圧力弁
33を弁体34およびガス室E等によって構成でき、前
記第1の実施例とほぼ同様の作用効果を得ることができ
る。そして、ガス室E内に封入する加圧ガスの封入量を
変えることにより付勢力fを調整できる。
Thus, in this embodiment configured as described above, the pressure valve 33 can be configured by the valve body 34, the gas chamber E, etc., and substantially the same effects as in the first embodiment can be obtained. The biasing force f can be adjusted by changing the amount of pressurized gas sealed in the gas chamber E.

次に、第3図は本発明の第3の実施例を示し、本実施例
の特徴は、前記第1.第2の実施例で内筒5に設けたフ
リーピストン8.ガス室A、ピストン(仕切壁)21.
圧力弁24 (33)等を、これとは逆に外筒に設ける
ようにしたことにある。なお、本実施例では第1.第2
の実施例と同一の構成要素にr′」を付して、その説明
を省略するものとする。
Next, FIG. 3 shows a third embodiment of the present invention, and this embodiment is characterized by the above-mentioned first embodiment. Free piston 8 provided in the inner cylinder 5 in the second embodiment. Gas chamber A, piston (partition wall) 21.
The pressure valve 24 (33) and the like are provided in the outer cylinder, contrary to this. Note that in this embodiment, the first. Second
Components that are the same as those in the embodiment will be denoted by "r'" and their explanation will be omitted.

ここで、外筒1′は内側筒IA′と外側筒IB’ とか
ら2重構造に形成され、この外筒1′内に環状のフリー
ピストン8′を摺動可能に設け、このフリーピストン8
′の内筒5′側とは反対側(外側)に環状のガス室A′
を形成し、外筒1′のガス室A′とは反対側(内側)に
油室B′C′を画成し、外筒1′の一端側に取付ブラケ
ット3′と一体の仕切壁21′およびホルダ31′を設
けて前記油室B’ 、C’を、仕切壁21′ と前記フ
リーピストン8′ との間に画成される第1の油室B′
と、前記仕切壁21′と外筒1′の一部および内筒5′
の蓋部5C’ とにより画成される第2の油室C′とに
画成し、前記仕切壁21′に前記第2の実施例とほぼ同
様な圧力弁33′を設ける。そして、この圧力弁33′
は衝撃を受けて前記第2の油室C′内の圧力が所定の高
圧Pcを越えたときに開弁して、外筒1′内に内筒5′
が所定の減衰力をもってストロークすることを許すよう
に仕切壁21′の摺動穴21A′内等に配設している。
Here, the outer cylinder 1' is formed into a double structure consisting of an inner cylinder IA' and an outer cylinder IB', and an annular free piston 8' is slidably provided in this outer cylinder 1'.
There is an annular gas chamber A' on the opposite side (outside) from the inner cylinder 5' side of '.
An oil chamber B'C' is defined on the opposite side (inside) of the gas chamber A' of the outer cylinder 1', and a partition wall 21 integral with the mounting bracket 3' is formed on one end side of the outer cylinder 1'. ' and a holder 31' are provided to convert the oil chambers B' and C' into a first oil chamber B' defined between the partition wall 21' and the free piston 8'.
and the partition wall 21', a part of the outer cylinder 1', and the inner cylinder 5'.
A pressure valve 33' similar to that of the second embodiment is provided on the partition wall 21'. And this pressure valve 33'
opens when the pressure in the second oil chamber C' exceeds a predetermined high pressure Pc due to an impact, and the inner cylinder 5' is inserted into the outer cylinder 1'.
It is arranged in the sliding hole 21A' of the partition wall 21' so as to allow the stroke with a predetermined damping force.

か(してこのように構成される本実施例でも、前記各実
施例とほぼ同様の作用、効果を得ることができる。
(Thus, this embodiment configured in this manner can also obtain substantially the same functions and effects as those of the above-mentioned embodiments.

なお、前記各実施例では、ピストン21または仕切壁2
1′に環状突部21B (21B’ )を設け、該環状
突部21B (21B′)に弁体25(34,34’ 
)の大径部24A (34A。
In addition, in each of the above embodiments, the piston 21 or the partition wall 2
1' is provided with an annular protrusion 21B (21B'), and a valve body 25 (34, 34') is provided on the annular protrusion 21B (21B').
) large diameter portion 24A (34A.

34A”)端面を当接させるものとして述べたが、これ
に替えて、大径部25A (34A。
34A"), but instead of this, the large diameter portion 25A (34A") is brought into contact with the end surface.

34A’)の端面に環状突部21B (21B′)と同
等のものを設け、さらに各油溝21C(21C′)と同
様の油溝を形成するようにしてもよい。
34A') may be provided with an annular protrusion 21B (21B') and an oil groove similar to each oil groove 21C (21C').

〔発明の効果〕〔Effect of the invention〕

以上詳述した通り本発明によれば、仕切壁によって画成
した各油室間を連通ずる油通路の途中に圧力弁を設け、
フリーピストンとは反対側に位置する油室内の圧力が所
定の高圧を越えるまでは圧力弁を閉弁させ、各油室間を
遮断する構成としたから、衝撃緩和材と併用した場合で
も、この緩和材が衝突エネルギーを吸収する初期段階で
内筒が外筒内へとストロークするのを抑えることができ
、その後十分なストローク量を確保して衝撃を効果的に
緩衝することができ、衝突時の安全性を大幅に向上でき
る等、種々の効果を奏する6
As detailed above, according to the present invention, a pressure valve is provided in the middle of an oil passage communicating between each oil chamber defined by a partition wall,
The pressure valve is closed until the pressure in the oil chamber located on the opposite side of the free piston exceeds a predetermined high pressure, and the oil chambers are shut off, so even when used together with shock absorbing material, this It is possible to suppress the stroke of the inner cylinder into the outer cylinder at the initial stage when the cushioning material absorbs the collision energy, and after that, it is possible to ensure a sufficient stroke amount to effectively buffer the impact, and in the event of a collision. It has various effects, such as greatly improving the safety of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示すバンパ用緩衝器の
縦断面図、第2図は第2の実施例を示すバンパ用緩衝器
の要部縦断面図、第3図は第3の実施例を示すバンバ用
緩衝器の縦断面図、第4図は従来技術を示すバンバ用緩
衝器の縦断面図である。 1.1′・・・外筒、5.5″・・・内筒、8.8′・
・・フリーピストン、21・・・ピストン(仕切壁)、
21′・・・仕切壁、21A、2LA’・・・摺動穴、
22.31.31’・・・ホルダ、24,33゜33′
・・・圧力弁、25,34.34″・・・弁体、25A
、34A、34A’・・・大径部、25B。 34B、34B”・・・小径弁部、25C,34C。 34C′・・・有底穴、25D、34D、34D’・・
・オリフィス孔、26・・・弁ばね、27.27’・・
・ディスクバルブ、A、A’ 、E、E’・・・ガス室
、B、B’ 、C,C’・・・油室。
FIG. 1 is a longitudinal sectional view of a bumper shock absorber showing a first embodiment of the present invention, FIG. 2 is a longitudinal sectional view of main parts of a bumper shock absorber showing a second embodiment, and FIG. FIG. 4 is a vertical cross-sectional view of a bumper shock absorber showing a conventional technique. 1.1'...Outer cylinder, 5.5''...Inner cylinder, 8.8'.
...Free piston, 21...Piston (partition wall),
21'...Partition wall, 21A, 2LA'...Sliding hole,
22.31.31'...Holder, 24,33°33'
...Pressure valve, 25, 34.34''...Valve body, 25A
, 34A, 34A'...large diameter portion, 25B. 34B, 34B"...Small diameter valve part, 25C, 34C. 34C'...Bottomed hole, 25D, 34D, 34D'...
・Orifice hole, 26...Valve spring, 27.27'...
・Disc valve, A, A', E, E'...gas chamber, B, B', C, C'...oil chamber.

Claims (1)

【特許請求の範囲】[Claims] 外筒と、一端側が該外筒内に挿入され、他端側が該外筒
外に突出した内筒と、該内筒または外筒に摺動可能に挿
嵌され、ガス室と油室とを画成するフリーピストンと、
前記内筒または外筒に設けられ、該フリーピストンによ
って画成された油室を2つの油室に画成する仕切壁と、
該仕切壁によって画成された各油室間を連通する油通路
と、該油通路の途中に設けられ、常時は閉弁して該油通
路を遮断し、前記各油室のうち前記フリーピストン側と
は反対側に位置する油室の圧力が所定の高圧を越えたと
きに開弁して該油通路による前記各油室間の連通を許す
圧力弁とから構成してなる油圧緩衝器。
an outer cylinder, an inner cylinder whose one end side is inserted into the outer cylinder and whose other end side projects outside the outer cylinder; and an inner cylinder which is slidably fitted into the inner cylinder or the outer cylinder, and which connects the gas chamber and the oil chamber. a free piston defining a
a partition wall provided in the inner cylinder or the outer cylinder and defining an oil chamber defined by the free piston into two oil chambers;
An oil passage that communicates between the oil chambers defined by the partition wall, and a valve provided in the middle of the oil passage, which is normally closed to block the oil passage, and which is connected to the free piston of each oil chamber. A hydraulic shock absorber comprising a pressure valve that opens when the pressure in an oil chamber located on the opposite side exceeds a predetermined high pressure to allow communication between the oil chambers through the oil passage.
JP16957590A 1990-06-27 1990-06-27 Hydraulic buffer Pending JPH0460226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16957590A JPH0460226A (en) 1990-06-27 1990-06-27 Hydraulic buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16957590A JPH0460226A (en) 1990-06-27 1990-06-27 Hydraulic buffer

Publications (1)

Publication Number Publication Date
JPH0460226A true JPH0460226A (en) 1992-02-26

Family

ID=15889023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16957590A Pending JPH0460226A (en) 1990-06-27 1990-06-27 Hydraulic buffer

Country Status (1)

Country Link
JP (1) JPH0460226A (en)

Similar Documents

Publication Publication Date Title
WO2015029984A1 (en) Hydraulic shock-absorbing device
JP4455728B2 (en) Hydraulic shock absorber
WO2011078317A1 (en) Shock absorber
WO1995000382A1 (en) Energy absorbers
JPH08261268A (en) Hydraulic shock absorber
JP2000018308A (en) Hydraulic shock absorber
JP2007071313A (en) Vibration isolator
JP6063312B2 (en) Shock absorber
JPH02278026A (en) Hydraulic shock absorber
US2396227A (en) Shock absorber
US20200088261A1 (en) Valve structure of shock absorber
JPH0460226A (en) Hydraulic buffer
JP4723958B2 (en) Vibration isolator
JP2017032060A (en) Shock absorber
KR102568588B1 (en) cylinder device
JP7254039B2 (en) buffer
US11339848B2 (en) Shock absorber with a hydrostopper
JP7275061B2 (en) Cylinder device
JP4962188B2 (en) Liquid pressure spring and manufacturing method thereof
JPH03265728A (en) Hydraulic damper
US6364075B1 (en) Frequency dependent damper
JP7486452B2 (en) Cylinder Unit
JPH0960680A (en) Hydraulic shock absorber
JPH03199732A (en) Valve device of hydraulic shock absorber
JP2000009170A (en) Hydraulic shock absorber