JPH0460038B2 - - Google Patents

Info

Publication number
JPH0460038B2
JPH0460038B2 JP58101525A JP10152583A JPH0460038B2 JP H0460038 B2 JPH0460038 B2 JP H0460038B2 JP 58101525 A JP58101525 A JP 58101525A JP 10152583 A JP10152583 A JP 10152583A JP H0460038 B2 JPH0460038 B2 JP H0460038B2
Authority
JP
Japan
Prior art keywords
metal
present
layer
recording layer
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58101525A
Other languages
Japanese (ja)
Other versions
JPS59225997A (en
Inventor
Shinichi Nishi
Takuo Sato
Fumio Shimada
Nensho Takahashi
Noboru Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP58101525A priority Critical patent/JPS59225997A/en
Publication of JPS59225997A publication Critical patent/JPS59225997A/en
Publication of JPH0460038B2 publication Critical patent/JPH0460038B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/249Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24304Metals or metalloids group 2 or 12 elements (e.g. Be, Ca, Mg, Zn, Cd)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/2431Metals or metalloids group 13 elements (B, Al, Ga, In)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、レーザビーム等の高密度エネルギー
ビームを照射することによつて情報の記録再生を
行なう光学的情報記録媒体に関する。特に情報の
長期保存に適した光学的情報記録媒体に関する。 (従来技術) 音声、映像等の情報をビツト(凹部)又はブロ
ツク(凸部)の形状、寸法或は、光学的反射率等
の変化として光学的に記録し、また光学的に取出
して音声、映像信号に変換して再生する方式に用
いられる光学的情報記録媒体の記録層としては、
従来から種々の組成が知られているが、その1つ
としては、Te,Bi,Se等の半金属、またはその
酸化物、Se−Te−As,Te−As等のカルコゲン
化合物から成る薄膜がある。 前記薄膜は、微視的には微粒子構造をとつてお
り、該記録層に含有される化合物の酸化劣化によ
る記録情報の再生時の誤まり率が増大したり、使
用化合物の安全性に対する信頼度が薄いという欠
点を有している。 その他、金属微粒子構造を有する光学情報記録
媒体用記録層として重合体からなるバインダー中
に金属またはその酸化物の微粒子を分散させた記
録層があり(特開昭57−12425号、同57−24290
号、同57−39989号、同55−108995号、同56−
33995号、同56−49296号、同56−49297号、同56
−10491号公報)、本発明者等も、透明支持体を通
して光学的な記録・再生を行なうのに適切な記録
媒体を特願昭57−43305号等によつて提案した。 しかし、前記金属微粒子構造を有する光学的情
報記録媒体用の記録層は、数年ないし10年の長期
保存の場合、または高温や多湿等の条件下で保存
した場合に、金属微粒子の酸化または水酸化等に
より、物性の変化、特に反射率、吸収率等の光学
的物性の変化を生じることが知られている。 また、光学的特性の他に、熱伝導性や物理的強
度等の変化も併せて起こることもあり、レーザ記
録感度の低下や再生信号SN比の低下や、ビツト
誤り率の増大を引き起こし、実用上重大な欠点と
なつている。 (発明の目的) そこで、本発明の目的は、支持体上に設けられ
た記録層をレーザ光等の高密度エネルギービーム
による情報の記録・再生層とする光学的記録媒体
において、かかる従来技術の欠点を改善し長期保
存が可能で、記録・再生特性が良好な光学的情報
記録媒体を提供することにある。 本発明の他の目的は、支持体を通しての記録お
よび再生ビームに対する吸収率および反射率が共
に大きな記録層を有する記録媒体を提供すること
にある。 本発明の他の目的は、均一性および安定性に優
れた記録層を有する光学的記録媒体を提供するこ
とにある。 (発明の構成) 上記目的を達成する本発明は、支持体上に設け
られた反射性記録層に高密度エネルギービームを
照射して情報の記録及び再生を行なう光学的情報
記録媒体において、前記記録層が反射性金属微粒
子を含有して成り、かつ該金属微粒子の表面が、
25℃の水に対する溶解度が1g/以下である水
不溶性の金属錯体によつて被覆されていることを
特徴として構成される。 本発明において、水不溶性の金属錯体を生成す
る化合物としては、微粒子構造を有する金属のイ
オンに対して配位能を有する化合物(配位子)が
用いられる。特に (1) 前記金属との錯体の全安定度定数(K)が大きく (2) 前記金属錯体が電気的に中性で且つ金属の配
位座数を満した、分子内錯塩を構成することが
でき、かつ (3) 分子内に疎水基、例えばアリール基、複素環
基、アルキル基を錯体構成に立体障害を起さぬ
部位に有する配位子が好ましい。 ここで、錯体の安定性を示す全安定度定数を
K、Mを金属、Lを配位子とすれば、Kは以下に
示す錯化平衡式の平衡定数である。 Mm++XL〓-MLx (m-x) K=〔MLx (m-x)〕/〔Mm+〕〔L〓-x ここで全安定度定数Kの常用対数は、25℃にお
いて5.0以上であることが好ましい。5.0未満で
は、生成した金属錯体の解離で生じた金属イオン
が更に酸化反応に関与して、記録層の劣化を引き
起こし実用上好ましくない。 本発明で言う水不溶性とは、記録層中の金属微
粒子の表面に形成された錯体が疎水性、または水
不溶性を有することにより金属微粒子内部の酸化
劣化を防止する錯体被覆を水に対して保持する程
度を言い、一般的に25℃での水への溶解度が1
g/以下であることを言う。 本発明に於て好適な金属錯体を生成する化合物
は、ドナー原子として配位力の強い酸素(O)、窒素
(N)、硫黄(S)を配位基に有する配位子であり、共鳴
効果による安定性或はキレート効果即ちキレート
環特に5員〜6員環の形成及びキレート環数によ
る安定性、配位すべき金属イオンのイオン半径、
配位結合の方向性に基因する立体障害のない生成
錯体の安定性等の効果を少くとも1つ以上備え、
且つ水不溶性の要件として電気的に中性でありま
た金属イオンの配位座数を満し経時に於て配位水
の配位等の危険のない錯体を与える配位子群であ
つて、この中から各金属イオンに対しては夫々に
適した配位子が選ばれる。 即ち本発明に於ては、一般にドナー原子として
前記O,N及びS原子を配位基に有し、該O,N
及びSの中から重複を許してキレート環を形成す
るに好都合な距離に2個以上の該ドナー原子があ
り且つ立体障害を起さぬ位置に疎水性基を有する
多座配位子がのぞましく、また金属イオンの配位
座数が一般に偶数であることから特に2座配位子
が有用である。但し必要に応じ奇数座配位子を利
用することは差支えない。 前記重複を許したO,N及びSから2つを取る
組合せは、明らかにO−O,O−N,O−S,N
−N,N−S及びS−Sである。 本発明に於て好ましく用いられる配位子は具体
的には、N−N型としては例えばα−オキシム、
ビピリジン、フエニレンジアミン、N−O型とし
ては例えばオキシン、オキシム、キナルジン酸、
キノリン−8−カルボン酸、ニトロソナフトー
ル、O−O型としては例えばクロペン、サリチル
酸、ヒドロキシナフトアルデヒド、N−S型とし
ては例えばチオオキシン、チオ尿素、S−S型と
しては例えばメルカプトベンゾチアゾール、ビス
ムチオード等が挙げられ、S−O型としては例え
ば3−メルカプト−4−ヒドロキシトルエン等が
挙げられる。 本発明の配位能を有する化合物を記録層に含有
させる方法としては、記録層を有する媒体を前記
化合物の10-4Mないし10-1Mの濃度の溶液へ浸漬
し、その後必要に応じてリンス液(又は水洗液)
へ浸漬する方法がある。その他、金属微粒子が塗
布により得られる場合には前記化合物を塗布液中
へ添加する方法や、前記化合物の共蒸着によつて
も得られる。 一方、電子対のアクセプターとしての金属イオ
ンも金属錯体の安定度に影響する。遷移金属がド
ナー原子から電子対を受け取つて安定な配位結合
を生ずる傾向が強いことが知られており、更に長
周期型元素周期表に於て、a族1周期、a族
2及び3周期、a〜b族、b族3〜6周
期、b族4〜6周期、b族4〜6周期に配列
された金属元素に一般にキレートを生成し、また
a族2〜7周期、a族4〜7周期に配列され
た元素は稍々キレート生成に困難があることが知
られている。 前記キレート生成金属元素に於てはイオン半径
と電荷の組合せによる錯体形成に対する静電効
果、直線型、四面体型、八面体型等各結合形式に
よる配位結合方向による特定配位子に対する忌避
があり、またルイス(Lewis)の定義によるH+
Be2+,Al3+等の硬い酸、Ag+,Hg2+,Tl3+等の
軟かい酸或はFe2+,Ni2+,Zn2+等の中間の酸に
よつて配位子の種類による配位安定性の相異があ
る。 本発明に於ては前記金属元素の中から、記録適
性、配位安定性或はコスト、資源量等の実用性の
面から本発明に使用する金属元素を選出するもの
である。 本発明の記録層に含有される微粒子構造の金属
として好ましく用いられるものにBe,Mg,Sc,
Y,Sm,Th,Ti,Zr,Hf,V,Nb,Ta,Cr,
Mo,W,Mn,Re,Fe,Co,Ni,Ru,Rh,
Pd,Ir,Pt,Ag,Au,Zn,Cd,Hg,Al,Ga,
In,Tl,Si,Ge,Sn,Pb,As,Sb,Bi,Se,
Teがあり、単独で用いてもよく、二つ以上の組
合せ又は合金として用いてもよい。 本発明の記録層を設ける方法としては、蒸着、
スパツタリング、イオンプレーテイング、CVD
電気メツキ、無電解メツキ、前記金属分散液の塗
布、前記金属化合物粒子の分散層の写真的現像等
の種種の方法を用いることができる。以上の方法
により、記録層は上記の金属と以下で述べる化合
物の積層あるいは混合層として設けることができ
る。これらの記録層の厚さは、材料によつて異な
るが50〜5000Åが一般的に好ましい。 本発明の配位能を有する化合物と金属微粒子の
好ましい組合せの代表例を、表1に示した。
(Industrial Application Field) The present invention relates to an optical information recording medium on which information is recorded and reproduced by irradiation with a high-density energy beam such as a laser beam. In particular, the present invention relates to an optical information recording medium suitable for long-term storage of information. (Prior art) Information such as audio and video is optically recorded as changes in the shape, dimensions, optical reflectance, etc. of bits (concave parts) or blocks (convex parts), and is also optically extracted to record audio, video, etc. The recording layer of the optical information recording medium used in the method of converting into a video signal and playing it back is as follows.
Various compositions have been known, one of which is a thin film made of metalloids such as Te, Bi, Se, or their oxides, or chalcogen compounds such as Se-Te-As and Te-As. be. Microscopically, the thin film has a fine particle structure, and the error rate during reproduction of recorded information increases due to oxidative deterioration of the compounds contained in the recording layer, and the reliability of the safety of the compounds used increases. It has the disadvantage of being thin. In addition, there are recording layers for optical information recording media having a metal fine particle structure in which fine particles of a metal or its oxide are dispersed in a binder made of a polymer (Japanese Patent Application Laid-open Nos. 57-12425 and 57-24290).
No. 57-39989, No. 55-108995, No. 56-
No. 33995, No. 56-49296, No. 56-49297, No. 56
The present inventors also proposed a recording medium suitable for optical recording and reproduction through a transparent support in Japanese Patent Application No. 57-43305. However, when the recording layer for an optical information recording medium having a metal fine particle structure is stored for a long period of time, from several years to ten years, or when stored under conditions such as high temperature or high humidity, the metal fine particles may be oxidized or hydrated. It is known that oxidation causes changes in physical properties, particularly optical properties such as reflectance and absorption. In addition to optical properties, changes in thermal conductivity, physical strength, etc. may also occur, resulting in a decrease in laser recording sensitivity, a decrease in the signal-to-noise ratio of the reproduced signal, and an increase in the bit error rate. This is a serious drawback. (Object of the Invention) Therefore, the object of the present invention is to provide an optical recording medium in which a recording layer provided on a support is used as a layer for recording and reproducing information using a high-density energy beam such as a laser beam. The object of the present invention is to provide an optical information recording medium that can improve the drawbacks, can be stored for a long period of time, and has good recording and reproducing characteristics. Another object of the present invention is to provide a recording medium having a recording layer that has a high absorption rate and a high reflection rate for recording and reproducing beams through a support. Another object of the present invention is to provide an optical recording medium having a recording layer with excellent uniformity and stability. (Structure of the Invention) The present invention achieves the above object in an optical information recording medium that records and reproduces information by irradiating a reflective recording layer provided on a support with a high-density energy beam. The layer contains reflective metal particles, and the surface of the metal particles is
It is characterized in that it is coated with a water-insoluble metal complex whose solubility in water at 25°C is 1 g/or less. In the present invention, a compound (ligand) having the ability to coordinate with a metal ion having a fine particle structure is used as a compound that generates a water-insoluble metal complex. In particular, (1) the total stability constant (K) of the complex with the metal is large, and (2) the metal complex constitutes an intramolecular complex salt that is electrically neutral and satisfies the number of coordination sites of the metal. (3) Ligands having a hydrophobic group, such as an aryl group, a heterocyclic group, or an alkyl group in the molecule at a site that does not cause steric hindrance to the complex structure, are preferred. Here, if the total stability constant indicating the stability of the complex is K, M is the metal, and L is the ligand, then K is the equilibrium constant of the complexation equilibrium equation shown below. ML _ _ _ _ _ _ _ _ _ _ It is preferable that the value is 5.0 or more. If it is less than 5.0, the metal ions generated by the dissociation of the generated metal complex will further participate in the oxidation reaction, causing deterioration of the recording layer, which is not practical. Water insolubility in the present invention means that the complex formed on the surface of the metal fine particles in the recording layer has hydrophobicity or water insolubility, so that the complex coating that prevents oxidative deterioration inside the metal fine particles is retained against water. Generally speaking, the solubility in water at 25℃ is 1.
g/ or less. In the present invention, compounds that form metal complexes suitable for the present invention include oxygen (O), nitrogen, which has a strong coordination force as a donor atom.
(N), sulfur (S) as a coordination group, and has stability due to resonance effect or chelation effect, that is, the formation of chelate rings, especially 5- to 6-membered rings, stability due to the number of chelate rings, and stability due to the number of chelate rings. The ionic radius of the metal ion to be
It has at least one effect such as stability of the resulting complex without steric hindrance due to the directionality of the coordination bond,
A group of ligands that is electrically neutral as a requirement for water insolubility, satisfies the number of coordination sites of metal ions, and forms a complex without the risk of coordination of coordinating water over time, From among these, a suitable ligand is selected for each metal ion. That is, in the present invention, the coordination group generally has the O, N and S atoms as donor atoms, and the O, N
and S, there are two or more donor atoms at a convenient distance to form a chelate ring by allowing overlap, and a polydentate ligand having a hydrophobic group at a position that does not cause steric hindrance. In particular, bidentate ligands are particularly useful since the number of coordination sites of metal ions is generally an even number. However, it is acceptable to use odd-dentate ligands if necessary. The combination that takes two from O, N and S that allow duplication is obviously O-O, O-N, O-S, N
-N, N-S and SS. Specifically, the ligands preferably used in the present invention are N-N type, such as α-oxime,
Bipyridine, phenylenediamine, N-O type examples include oxine, oxime, quinaldic acid,
Quinoline-8-carboxylic acid, nitrosonaphthol, O-O type examples include clopene, salicylic acid, hydroxynaphthaldehyde, N-S type examples include thioxin, thiourea, S-S type examples include mercaptobenzothiazole, bismuthiode, etc. Examples of the SO type include 3-mercapto-4-hydroxytoluene. As a method for incorporating the compound having coordination ability of the present invention into the recording layer, a medium having the recording layer is immersed in a solution of the compound at a concentration of 10 -4 M to 10 -1 M, and then, if necessary, Rinse liquid (or washing liquid)
There is a method of immersing it in water. In addition, when the metal fine particles are obtained by coating, they can also be obtained by adding the above compound into the coating solution, or by co-evaporation of the above compound. On the other hand, metal ions as electron pair acceptors also affect the stability of metal complexes. It is known that transition metals have a strong tendency to receive electron pairs from donor atoms to form stable coordination bonds. , groups a to b, groups b 3 to 6 periods, group b 4 to 6 periods, group b 4 to 6 periods generally form chelates, and group a 2 to 7 periods, group a 4 periods. It is known that elements arranged in ~7 periods have some difficulty in chelate formation. In the above-mentioned chelate-forming metal elements, there is an electrostatic effect on complex formation due to the combination of ionic radius and charge, and repulsion against specific ligands due to the direction of coordinate bonding due to various bond types such as linear, tetrahedral, and octahedral types. , and H + according to Lewis's definition,
Coordination by hard acids such as Be 2+ , Al 3+ , soft acids such as Ag + , Hg 2+ , Tl 3+ , or intermediate acids such as Fe 2+ , Ni 2+ , Zn 2+ There are differences in coordination stability depending on the type of child. In the present invention, the metal elements to be used in the present invention are selected from among the above-mentioned metal elements in terms of recording suitability, coordination stability, cost, and practicality such as resource amount. Preferably used metals with a fine particle structure contained in the recording layer of the present invention include Be, Mg, Sc,
Y, Sm, Th, Ti, Zr, Hf, V, Nb, Ta, Cr,
Mo, W, Mn, Re, Fe, Co, Ni, Ru, Rh,
Pd, Ir, Pt, Ag, Au, Zn, Cd, Hg, Al, Ga,
In, Tl, Si, Ge, Sn, Pb, As, Sb, Bi, Se,
Te may be used alone or in combination or as an alloy of two or more. Methods for providing the recording layer of the present invention include vapor deposition,
Sputtering, ion plating, CVD
Various methods can be used, such as electroplating, electroless plating, coating of the metal dispersion, and photographic development of the dispersed layer of metal compound particles. By the above method, the recording layer can be provided as a laminated layer or a mixed layer of the above metal and the compound described below. The thickness of these recording layers varies depending on the material, but is generally preferably 50 to 5000 Å. Table 1 shows representative examples of preferred combinations of the compound having coordination ability of the present invention and metal fine particles.

【表】【table】

【表】 勿論本発明は前記代表例に限定されるものでは
ない。 本発明において好ましく用いられる支持体は、
トリ酢酸セルロース、ポリエチレンテレフタレー
ト、ポリメチルメタクリレート、ポリカーボネー
ト、セラミツク、ポリイミド樹脂、ガラス、金属
等があげられ、これら支持体は特に下引処理され
ていることが必ずしも必要ではないが、下引処理
されているものが好ましい。この場合の下引処理
剤としては、例えばシランカツプリング剤、ケイ
酸塩及びチタンカツプリング剤等を用いることが
でき、特に米国特許3661584号に記載されている
シランカツプリング剤が好ましい。 また、コロナ放電処理、プラズマ放電処理、イ
オンボンバードメントなどの表面処理が接着性改
良のために支持体上になされていてもよい。また
記録および再生位置の正確な設定のための案内溝
(微細なレリーフ状)を有する支持体も同様に用
いることができる。 更に支持体の表面性向上に支持体と記録層との
接着性向上のため下引き層を設けても良い。 本発明の記録層は、前記金属微粒子のバインダ
ーとして、金属酸化物、金属フツ化物等の金属ハ
ロゲン化物、金属窒化物、金属硫化物等の無機化
合物または色素、顔料、天然高分子、合成高分子
等の有機化合物を用いることができる。 本発明において用い得る色素としては熱安定性
に優れ劣化しにくいものが好ましく、アゾ系、ア
ントラキノン系、インジゴイド系、フタロシアニ
ン系、トリフエニルメタン系を含むカルボニウム
系、キノンイミン系、メチン系、キノリン系、ニ
トロ系、ニトロソ系、ベンゾキノン系等がある。
また無機系着色顔料として、コバルト系、マンガ
ン系、クロム系、カドミウム系、鉄系の各顔料及
び群青、紺青等も用いられる。 本発明において用いられる有機高分子として
は、ゼラチン、カゼイン、セルロース等の天然有
機高分子、及びポリアクリルアミド、ポリアクリ
ル酸等の水溶性樹脂やイオン性樹脂が好ましい。
写真工業用の高純度ゼラチンが最も好ましい。ま
た、スチレン樹脂、アクリル樹脂、塩化ビニル−
酢酸ビニル共重合体、酢酸ビニル−メチルメタク
リレート共重合体、スチレン−ブタジエン共重合
体、ビニルトルエン−ブタジエン共重合体、ポリ
カーボネート樹脂、ポリウレタン樹脂、フエノー
ル樹脂、エポキシ樹脂、ポリウレタン樹脂、フエ
ノール樹脂、エポキシ樹脂、メラミン樹脂又はフ
ラン樹脂等の樹脂を単独もしくは2種以上を併用
して用いることができる。 これら有機化合物は、熱安定性に優れている場
合には前記金属との共蒸着等により、その他の場
合には、前記有機物の溶液または分散液中に前記
金属を溶解、混合、分散した後、塗布法によりバ
インダーとして記録層に含有させることができ
る。 塗布方法はワイヤーバー塗布、スピンナー塗
布、デイツプ塗布、エアーナイフ塗布、ビード塗
布、カーテン塗布等を用いることができる。 本発明において用いられる金属酸化物として
は、Al2O3,InO,In2O,In2O3,SiO,SiO2
GeO,SnO,PbO,TiO2,ZrO2,V2O5,MoO,
WO3等が用いられ、金属フツ化物としては、
TiF4,VF5,MoF4,RhF3,MgF2,CaF2等が用
いられ、金属窒化物としてはMg3N2,Ca3N2
Sr3N2等が用いられ、金属硫化物としては、CrS,
MoS2,ZnS,In2S3,GeS,SnS,PbS,As2S3
Sb2S3等が用いられる。これら無機化合物は、前
記金属との共蒸着や多元スパツタ、イオンプレー
テイング等の種々の方法によりバインダーとして
記録層に含有させることができる。 本発明における光学的情報記録媒体は、金属微
粒子及び水不溶性の金属錯体を生成する化合物を
含有する記録層の他にも、必要に応じて、金属か
らなる反射層または該記録層と該反射層との間に
設けられた熱絶縁層を有していても良い。 また、前述の層の上に、保護層を設けることは
記録材料としての耐久性、機械的強度、経時安定
性の改善に有効な方法であることは自明である。
保護層としては無機物質又は有機物質のいずれで
も良いが、使用する高エネルギー密度の光ビーム
に対して透過性であること、機械的強度が大であ
ること、記録層と反応しにくいこと、被膜性の良
いこと、製造が容易なこと等が要求される。 本発明に用いられる保護層としては、無機物質
あるいは有機物質のいづれでもよいが、無機の保
護層としては、Al2O3,SiO2,SiO,MgO,
ZnO,TiO2,ZrO2,MgF2,CuF2等の透明な物
質が望ましい。これらは真空蒸着、スパツタリン
グ、イオンプレーテイング等の反応性蒸着等で形
成される。 また有機物質を保護層として用いることは優れ
た方法である。かかる保護層として用いられる樹
脂は種々のものが可能であるが例えばポリスチレ
ン、スチレン−無水マレイン酸樹脂のごときスチ
レン系樹脂、ポリ酢酸ビニル、ポリビニルアルコ
ール、ブチラール、ポリビニルホルマールの如き
酢酸ビニル系樹脂、ポリメタクリル酸イソブチ
ル、ポリメタクリル酸メチルのごときメタクリル
酸エステル系樹脂、ポリダイアセトンアクリルア
ミド、ポリアクリルアミドのごときアミド系樹
脂、エチルセルロース、酢酸ラク酸セルロース、
硝酸セルロース、ジアセチルセルロースのごとき
セルロース系樹脂、ポリ塩化ビニル、塩素化ポリ
エチレンのごときポリハロゲン化オレフイン、フ
エノール樹脂、可溶性ポリエステル、可溶性ナイ
ロン、ゼラチン等及びこれらの共重合物等から選
ばれる。これ等は単独使用若しくは2種以上の混
合使用が可能である。又これらの樹脂は種々の溶
剤に溶かして既知の塗布方法により塗布すること
が出来る。 また支持体として透明基板を用いる場合にはエ
アーサンドイツチ構造等により支持体自身を保護
層として用いることも可能である。 本発明において情報を記録するために用いるこ
とができる高密度エネルギービームとしては、例
えばキセノンランプ、水銀ランプ、アーク灯、レ
ーザ等を用いることができ、このうちレーザが高
密度記録ができる点で好ましい。レーザ光として
は、連続波発振のものでもパルス発振のものでも
用いることができる。使用できるレーザは、具体
的にはルビーレーザ(波長6943Å)、アルゴンイ
オンレーザ(波長4880Å,5145Å)、ガラスレー
ザ(波長1.06μm)、ヘリウム−ネオンレーザ(波
長6328Å)、クリプトンイオンレーザ(波長6471
Å)、ヘリウム−カドミウムレーザ(波長4416Å,
3250Å)、色素レーザ、半導体レーザ等を挙げる
ことができる。 本発明光学的情報記録媒体に記録するための高
密度エネルギービーム及び再生するための高密度
エネルギービームは、同一種類であつても異なる
種類であつてもよく、透明支持体を通して照射す
ることが好ましいが、透明支持体とは反対側の記
録層表面側に直接照射するようにしてもよい。 (実施例) 以下本発明の実施例について説明するが、これ
により本発明が限定されるものではない。 実施例 1 厚さ1.2mmのポリメチルメタクリレート上にTe
を800Åの膜厚となる様に蒸着し、3−フエニル
−5−メルカプト−1,3,4−チオジアゾール
−2−チオンの0.001Mのメタノール溶液に浸漬
し真空乾燥した後エアーサンドイツチ構造で封入
した。830nmにおいて45%であつた反射率が50℃
80RH%の強制劣化試験1ケ月で42%へと変化し
た。 比較例 1 実施例1において浸漬処理を省いた試料は、同
様の強制劣化試験で反射率が12%まで低下し、実
用に供し得なかつた。 実施例 2 物理現像核であるコロイド状銀粒子のゼラチン
分散水溶液は、硝酸銀をデキストリンにより還元
することによつて得られ、銀のゼラチンに対する
重量比は32%であり、コロイド粒子の粒径は約
150Åであつた。この溶液を、シランカツプリン
グ剤を用いて下引加工を施した平滑性に優れたガ
ラス板上に、ワイヤーパーを用いて乾燥後の膜厚
が300Åになるように塗布し、ほぼ無色透明な物
理現像核層を設けた。この物理現像核層上に、金
属化合物として微粒子沃臭化銀ゼラチン乳剤(沃
化銀3モル%、平均粒子サイズ0.05μ)を塗布銀
量3g/m2となるように塗布して、試料を得た。 この試料を露光することなく下記組成の現像液
にて温度30℃、1分間の現像を行なつた後、
Na2SO4の20%水溶液に1分間浸漬し、37℃の温
水で水洗して乳剤層をはく離除去した。 (現像液) フエニドン 1.0g 無水亜硫酸ソーダ 65.0g ハイドロキノン 12.0g KOH 15.0g KBr 0.5g チオ硫酸ソーダ 5.0g 水を加えて1にする。 その結果、ガラス基板を通しての記録媒体の反
射率は830nmにおいて46%であつた。 前記試料を1−フエニル−5−メルカプト−
1H−テトラゾールの0.002Mの水溶液に30秒間浸
漬し、水洗、乾燥した。この時反射率に変化はな
い。これを50℃80RH%で1ケ月間の強制劣化試
験を行なつたが、反射率の減少は見られなかつ
た。 比較例 2 実施例2において浸漬処理を省いて強制劣化試
験を行なつたところ、反射率が41%にまで低下し
て劣化した。 (発明の効果) 前記記録媒体の経時安定性が従来のものより著
しく向上した。また光学的情報記録媒体の作成に
於て素材的制約が大幅に軽減され、且つ該媒体の
品質保持の困難を軽減した。
[Table] Of course, the present invention is not limited to the above representative examples. The support preferably used in the present invention is
Examples include cellulose triacetate, polyethylene terephthalate, polymethyl methacrylate, polycarbonate, ceramics, polyimide resins, glass, metals, etc. These supports do not necessarily have to be subbed-treated; Preferably. As the subbing treatment agent in this case, for example, a silane coupling agent, a silicate coupling agent, a titanium coupling agent, etc. can be used, and the silane coupling agent described in US Pat. No. 3,661,584 is particularly preferred. Further, surface treatments such as corona discharge treatment, plasma discharge treatment, and ion bombardment may be performed on the support to improve adhesion. Further, a support having guide grooves (fine relief shapes) for accurately setting recording and reproducing positions can also be used. Furthermore, an undercoat layer may be provided to improve the surface properties of the support and the adhesion between the support and the recording layer. In the recording layer of the present invention, as a binder for the metal fine particles, inorganic compounds such as metal oxides, metal halides such as metal fluorides, metal nitrides, metal sulfides, dyes, pigments, natural polymers, synthetic polymers, etc. Organic compounds such as can be used. The dyes that can be used in the present invention are preferably ones that have excellent thermal stability and are resistant to deterioration, such as azo, anthraquinone, indigoid, phthalocyanine, carbonium-based pigments including triphenylmethane, quinoneimine-based, methine-based, quinoline-based, There are nitro series, nitroso series, benzoquinone series, etc.
Further, as inorganic coloring pigments, cobalt-based, manganese-based, chromium-based, cadmium-based, iron-based pigments, ultramarine blue, navy blue, etc. are also used. As the organic polymer used in the present invention, natural organic polymers such as gelatin, casein, and cellulose, and water-soluble resins and ionic resins such as polyacrylamide and polyacrylic acid are preferable.
High purity gelatin for the photographic industry is most preferred. In addition, styrene resin, acrylic resin, vinyl chloride
Vinyl acetate copolymer, vinyl acetate-methyl methacrylate copolymer, styrene-butadiene copolymer, vinyltoluene-butadiene copolymer, polycarbonate resin, polyurethane resin, phenol resin, epoxy resin, polyurethane resin, phenol resin, epoxy resin , melamine resin, furan resin, or the like can be used alone or in combination of two or more. If these organic compounds have excellent thermal stability, they may be co-deposited with the metal, or in other cases, after dissolving, mixing, or dispersing the metal in a solution or dispersion of the organic substance, It can be included as a binder in the recording layer by a coating method. As the coating method, wire bar coating, spinner coating, dip coating, air knife coating, bead coating, curtain coating, etc. can be used. The metal oxides used in the present invention include Al 2 O 3 , InO, In 2 O, In 2 O 3 , SiO, SiO 2 ,
GeO, SnO, PbO, TiO 2 , ZrO 2 , V 2 O 5 , MoO,
WO 3 etc. are used, and metal fluorides include:
TiF 4 , VF 5 , MoF 4 , RhF 3 , MgF 2 , CaF 2 , etc. are used, and metal nitrides include Mg 3 N 2 , Ca 3 N 2 ,
Sr 3 N 2 etc. are used, and the metal sulfides include CrS,
MoS 2 , ZnS, In 2 S 3 , GeS, SnS, PbS, As 2 S 3 ,
Sb 2 S 3 etc. are used. These inorganic compounds can be incorporated into the recording layer as a binder by various methods such as co-evaporation with the metal, multi-element sputtering, and ion plating. In addition to the recording layer containing fine metal particles and a compound that forms a water-insoluble metal complex, the optical information recording medium of the present invention may optionally include a reflective layer made of a metal, or a recording layer and a reflective layer. It may also have a thermal insulating layer provided between it. Furthermore, it is obvious that providing a protective layer on the above-mentioned layer is an effective method for improving the durability, mechanical strength, and stability over time of a recording material.
The protective layer may be made of either an inorganic or organic material, but it must be transparent to the high energy density light beam used, have high mechanical strength, be difficult to react with the recording layer, and be coated. It is required to have good properties and be easy to manufacture. The protective layer used in the present invention may be made of either an inorganic substance or an organic substance, but examples of the inorganic protective layer include Al 2 O 3 , SiO 2 , SiO, MgO,
Transparent substances such as ZnO, TiO 2 , ZrO 2 , MgF 2 and CuF 2 are desirable. These are formed by reactive deposition such as vacuum deposition, sputtering, and ion plating. It is also an excellent method to use organic substances as a protective layer. Various resins can be used as the protective layer, including styrene resins such as polystyrene, styrene-maleic anhydride resin, vinyl acetate resins such as polyvinyl acetate, polyvinyl alcohol, butyral, and polyvinyl formal, and polyvinyl acetate resins such as polyvinyl acetate, polyvinyl alcohol, butyral, and polyvinyl formal. Methacrylate ester resins such as isobutyl methacrylate and polymethyl methacrylate, amide resins such as polydiacetone acrylamide and polyacrylamide, ethyl cellulose, cellulose acetate lactate,
It is selected from cellulose resins such as cellulose nitrate and diacetyl cellulose, polyvinyl chloride, polyhalogenated olefins such as chlorinated polyethylene, phenolic resins, soluble polyesters, soluble nylons, gelatin, etc., and copolymers thereof. These can be used alone or in combination of two or more. Further, these resins can be dissolved in various solvents and applied by known coating methods. Further, when a transparent substrate is used as a support, the support itself can be used as a protective layer by using an air sandwich structure or the like. As the high-density energy beam that can be used to record information in the present invention, for example, a xenon lamp, a mercury lamp, an arc lamp, a laser, etc. can be used, and among these, a laser is preferable because it can perform high-density recording. . As the laser light, either continuous wave oscillation or pulse oscillation can be used. Lasers that can be used include ruby laser (wavelength: 6943 Å), argon ion laser (wavelength: 4880 Å, 5145 Å), glass laser (wavelength: 1.06 μm), helium-neon laser (wavelength: 6328 Å), and krypton ion laser (wavelength: 6471 Å).
), helium-cadmium laser (wavelength 4416Å,
3250 Å), dye lasers, semiconductor lasers, etc. The high-density energy beam for recording on the optical information recording medium of the present invention and the high-density energy beam for reproducing may be of the same type or different types, and are preferably irradiated through a transparent support. However, it is also possible to directly irradiate the recording layer surface side opposite to the transparent support. (Example) Examples of the present invention will be described below, but the present invention is not limited thereto. Example 1 Te on polymethyl methacrylate with a thickness of 1.2 mm
was deposited to a film thickness of 800 Å, immersed in a 0.001M methanol solution of 3-phenyl-5-mercapto-1,3,4-thiodiazole-2-thione, dried in vacuum, and then deposited in an air sandwich structure. Enclosed. Reflectance at 830nm was 45% at 50℃
After one month of forced deterioration test at 80RH%, it changed to 42%. Comparative Example 1 In the sample in which the immersion treatment was omitted in Example 1, the reflectance decreased to 12% in the same forced deterioration test, and it could not be put to practical use. Example 2 An aqueous gelatin dispersion solution of colloidal silver particles serving as physical development nuclei was obtained by reducing silver nitrate with dextrin, the weight ratio of silver to gelatin was 32%, and the particle size of the colloidal particles was approximately
It was 150Å. This solution was applied to a smooth glass plate that had been undercoated with a silane coupling agent using a wire parser so that the film thickness after drying was 300 Å. A physical development nucleus layer was provided. On this physical development nucleus layer, a fine grain silver iodobromide gelatin emulsion (silver iodide 3 mol%, average grain size 0.05μ) as a metal compound was coated at a coated silver amount of 3 g/m 2 , and a sample was prepared. Obtained. After developing this sample for 1 minute at a temperature of 30°C with a developer of the following composition without exposing it to light,
The emulsion layer was peeled off by immersing it in a 20% aqueous solution of Na 2 SO 4 for 1 minute and washing with warm water at 37°C. (Developer) Phenidone 1.0g Anhydrous sodium sulfite 65.0g Hydroquinone 12.0g KOH 15.0g KBr 0.5g Sodium thiosulfate 5.0g Add water to make 1. As a result, the reflectance of the recording medium through the glass substrate was 46% at 830 nm. The sample was converted into 1-phenyl-5-mercapto-
It was immersed in a 0.002M aqueous solution of 1H-tetrazole for 30 seconds, washed with water, and dried. At this time, there is no change in reflectance. A forced deterioration test was conducted for one month at 50°C and 80RH%, but no decrease in reflectance was observed. Comparative Example 2 When a forced deterioration test was conducted in Example 2 by omitting the immersion treatment, the reflectance decreased to 41% and deteriorated. (Effects of the Invention) The stability over time of the recording medium was significantly improved compared to the conventional one. In addition, material constraints in the production of optical information recording media have been significantly reduced, and the difficulty in maintaining the quality of the media has also been reduced.

Claims (1)

【特許請求の範囲】[Claims] 1 支持体上に設けられた反射性記録層に高密度
エネルギービームを照射して情報の記録再生を行
なう光学的情報記録媒体において、前記反射性記
録層が、反射性金属微粒子を含有して成り、かつ
該金属微粒子の表面が、25℃の水に対する溶解度
が1g/以下である水不溶性の金属錯体によつ
て被覆されていることを特徴とする光学的情報記
録媒体。
1. An optical information recording medium in which information is recorded and reproduced by irradiating a reflective recording layer provided on a support with a high-density energy beam, wherein the reflective recording layer contains reflective metal fine particles. , and the surface of the metal fine particles is coated with a water-insoluble metal complex having a solubility in water at 25° C. of 1 g/or less.
JP58101525A 1983-06-07 1983-06-07 Optical information recording medium Granted JPS59225997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58101525A JPS59225997A (en) 1983-06-07 1983-06-07 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58101525A JPS59225997A (en) 1983-06-07 1983-06-07 Optical information recording medium

Publications (2)

Publication Number Publication Date
JPS59225997A JPS59225997A (en) 1984-12-19
JPH0460038B2 true JPH0460038B2 (en) 1992-09-24

Family

ID=14302895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58101525A Granted JPS59225997A (en) 1983-06-07 1983-06-07 Optical information recording medium

Country Status (1)

Country Link
JP (1) JPS59225997A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2237072A1 (en) 2009-04-01 2010-10-06 Sony Corporation Signal processing apparatus, information processing apparatus, signal processing method, data display method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2011590A1 (en) * 1989-03-07 1990-09-07 Koji Tsuzukiyama Optical recording media

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212640A (en) * 1981-06-23 1982-12-27 Ricoh Co Ltd Optical information recording medium
JPS5837852A (en) * 1981-08-01 1983-03-05 Ricoh Co Ltd Optical information recording medium
JPS5837853A (en) * 1981-08-01 1983-03-05 Ricoh Co Ltd Optical information recording medium
JPS5837851A (en) * 1981-08-01 1983-03-05 Ricoh Co Ltd Optical information recording medium
JPS5842488A (en) * 1981-09-08 1983-03-11 Ricoh Co Ltd Optical information recording medium
JPS5849295A (en) * 1981-09-17 1983-03-23 Konishiroku Photo Ind Co Ltd Optical data recording medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212640A (en) * 1981-06-23 1982-12-27 Ricoh Co Ltd Optical information recording medium
JPS5837852A (en) * 1981-08-01 1983-03-05 Ricoh Co Ltd Optical information recording medium
JPS5837853A (en) * 1981-08-01 1983-03-05 Ricoh Co Ltd Optical information recording medium
JPS5837851A (en) * 1981-08-01 1983-03-05 Ricoh Co Ltd Optical information recording medium
JPS5842488A (en) * 1981-09-08 1983-03-11 Ricoh Co Ltd Optical information recording medium
JPS5849295A (en) * 1981-09-17 1983-03-23 Konishiroku Photo Ind Co Ltd Optical data recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2237072A1 (en) 2009-04-01 2010-10-06 Sony Corporation Signal processing apparatus, information processing apparatus, signal processing method, data display method, and program

Also Published As

Publication number Publication date
JPS59225997A (en) 1984-12-19

Similar Documents

Publication Publication Date Title
US4278756A (en) Reflective data storage medium made by silver diffusion transfer
WO1991018950A1 (en) Dye composition and optical recording medium
US4298684A (en) Reflective data storage medium made by silver diffusion transfer in silver-halide emulsion incorporating nuclei
JPS6290291A (en) Optical recording medium
JP2521702B2 (en) Optical information recording medium
JPH0460038B2 (en)
JPH0312646A (en) Novel dyestuff recording material
JPH0764992B2 (en) Metal-containing indoaniline compounds
JPH0472710B2 (en)
JPS6357290A (en) Optical recording medium
JPH03296739A (en) Novel dyestuff recording material
JPH02141284A (en) Novel optical recording material
JPS58224791A (en) Optical information recording medium
JPS6122988A (en) Light information recording medium
JPS59225996A (en) Optical imformation recording medium
JP2686984B2 (en) New optical recording material
CN101389487B (en) Optical recording medium and method for manufacturing the same
JPH036553A (en) New recording material
JPS60105592A (en) Optical information recording medium and preparation thereof
JPH0352139B2 (en)
JPS6137490A (en) Optical information recording medium and its preparation
JP2727464B2 (en) Metal-containing indophenol compound and optical recording medium using the compound
JPH0276884A (en) Metal-contailing pyridophenothiazone compound
JPS59168944A (en) Optical information recording medium and its production
JPH04338588A (en) Reflective dye recording material