JPH0459892A - Combustion improver for solid fuel - Google Patents

Combustion improver for solid fuel

Info

Publication number
JPH0459892A
JPH0459892A JP17019490A JP17019490A JPH0459892A JP H0459892 A JPH0459892 A JP H0459892A JP 17019490 A JP17019490 A JP 17019490A JP 17019490 A JP17019490 A JP 17019490A JP H0459892 A JPH0459892 A JP H0459892A
Authority
JP
Japan
Prior art keywords
combustion
ferric oxide
axis diameter
combustion improver
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17019490A
Other languages
Japanese (ja)
Other versions
JP2511179B2 (en
Inventor
Hiroshi Fujita
浩 藤田
Tetsuya Imai
哲也 今井
Shigeru Nojima
繁 野島
Tomoyuki Imai
知之 今井
Shigehisa Yamamoto
恵久 山本
Nanao Horiishi
七生 堀石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Toda Kogyo Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Toda Kogyo Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17019490A priority Critical patent/JP2511179B2/en
Publication of JPH0459892A publication Critical patent/JPH0459892A/en
Application granted granted Critical
Publication of JP2511179B2 publication Critical patent/JP2511179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To provide a combustion improver for solid fuel such as coal and petroleum coke, composed of hydrated ferric oxide particles having the shape of bamboo grass leaf with ultrafine stripe structure and effective in suppressing the generation of unburnt material and improving the dust collection efficiency. CONSTITUTION:The objective combustion improver is composed of hydrated ferric oxide particles having an ultrafine stripe structure and exhibiting the shape of bamboo grass leaf having a major diameter of 0.2-1.0mum and an aspect ratio (major diameter/minor diameter) of 3-10. The particle can be produced by mixing an aqueous solution of a ferrous salt with >=1 equivalent (based on the ferrous salt) of an alkali metal carbonate to obtain FeCO3 and oxidizing the FeCO3 by introducing an oxygen-containing gas into the aqueous solution containing FeCO3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は石炭、石油コークスなどの固体燃料に使用する
助燃剤に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a combustion improver for use in solid fuels such as coal and petroleum coke.

〔従来の技術〕[Conventional technology]

近年、石油代替燃料として石炭、石油コークスなど固体
燃料が多く使用されるようになってきた。しかし石炭、
石油コークスは重油などの液体燃料と比べて揮発分が少
ないため燃焼性が悪く、ボイラ燃料としては微粉砕して
使用されている。それでも未燃分は数%〜十数%に達す
るため、特に揮発分の少ない石油コークスボイラでは重
油又はガス混焼の手段がとられているが運転上のわずら
れしさがあり、またコークスより付加価値の高□い燃料
を使用するため経済的に不満足の状況にある。
In recent years, solid fuels such as coal and petroleum coke have come into widespread use as alternative fuels to petroleum. But coal,
Petroleum coke has less volatile content than liquid fuels such as heavy oil, so it has poor combustibility, so it is used in finely ground form as boiler fuel. Even so, the unburned content reaches several to ten-odd percent, so in petroleum coke boilers with particularly low volatile content, methods of co-firing heavy oil or gas are used, but this is cumbersome to operate, and The situation is economically unsatisfactory because high-value fuel is used.

助燃用の重油、ガスの使用量を減らす方法の一つに助燃
剤の適用があり、未燃分の抑制に効果があるのは周知の
通りである。助燃剤として古くから用いられているもの
に、Cu 、 Co 、 Ni。
One of the ways to reduce the amount of fuel oil and gas used for combustion support is to apply combustion improvers, and it is well known that they are effective in suppressing unburned substances. Cu, Co, and Ni have long been used as combustion improvers.

Mn、Peなどの重金属、及びに、Naなどのアルカリ
金属化合物、Ca、Baなどのアルカリ土類金属化合物
があるが、最近では特に安価で、かつ、脱硝触媒の活性
に対し、影響が少ないことから鉄系の助燃剤が注目され
市販されている。
There are heavy metals such as Mn and Pe, alkali metal compounds such as Na, and alkaline earth metal compounds such as Ca and Ba, but these days they are particularly inexpensive and have little effect on the activity of the denitrification catalyst. Since then, iron-based combustion improvers have attracted attention and are now commercially available.

鉄系助燃剤には、油溶性、及び水溶性の2種類がある。There are two types of iron-based combustion improvers: oil-soluble and water-soluble.

油溶性の代表的なものにナフテン酸鉄、オクチル酸鉄な
どがあり、重油などの液体燃料に混合して使用している
。一方、水溶性のものは石炭、コークスなどの固体燃料
に含浸して使用している。
Typical oil-soluble substances include iron naphthenate and iron octylate, which are used by mixing them with liquid fuels such as heavy oil. On the other hand, water-soluble ones are used by impregnating solid fuels such as coal and coke.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

石炭、コークスなどの燃焼助剤の使用に当って重油混焼
の場合は油溶性助燃剤を重油に添加する方法が採られて
いるが、ガス混焼の場合は、ガスへの添加が困難である
たぬ、通常水溶性助燃剤を石炭、コークスに含浸、混合
して使用している。しかし、鉄系水溶性助燃剤では次の
ような問題があり、実用化を阻害している。
When using combustion aids such as coal and coke, when co-firing heavy oil, the method is to add an oil-soluble combustion aid to the heavy oil, but when co-firing gas, it is difficult to add it to the gas. Usually, water-soluble combustion improvers are impregnated and mixed with coal or coke. However, iron-based water-soluble combustion improvers have the following problems, which hinder their practical application.

(1)助燃剤原料の鉄塩、即ち硫酸鉄、塩化鉄、硝酸鉄
、酢酸鉄などは何れも水溶液にすると加水分解してpH
3以下の酸性となり、装置材料を腐食する。
(1) When iron salts used as raw materials for combustion improvers, such as iron sulfate, iron chloride, iron nitrate, and iron acetate, are made into aqueous solutions, they hydrolyze to pH
Becomes acidic below 3 and corrodes equipment materials.

(2)  アルカリを加えて中和すると、水酸化鉄の沈
澱を生じポンプによる定量供給が困難である。
(2) When neutralized by adding alkali, iron hydroxide precipitates, making it difficult to supply a fixed amount using a pump.

(3)塩化鉄は燃焼によってHCI 、 C12などの
腐食性ガスを発生し、又硝酸鉄はNOx 、硫酸鉄はS
O□生成原因となる。
(3) Iron chloride generates corrosive gases such as HCI and C12 when burned, iron nitrate generates NOx, and iron sulfate generates S
Causes O□ generation.

(4)溶解度の関係で、大量の水が必要であり助燃剤の
タンク容量が大きくなる。
(4) Due to solubility, a large amount of water is required, which increases the tank capacity of the combustion improver.

また、鉄系油溶性助燃剤では、そのもの自体が高価であ
る上に、重油に混合した際に屡々スラッジを生成し、重
油ラインのストレーナ又は重油バーナの閉鎖などボイラ
運転上致命的なトラブルを発生するケースがある。上記
のような問題回避のため鉄系助燃剤を粉末状で注入する
試みがなされ、この助燃剤として本発明者等は先に酸化
鉄及び/又は酸化鉄とアルカリ金属化合物あるいはアル
カリ土類金属化合物の混合物粉末を使用する方法を見出
して提供している。
In addition, iron-based oil-soluble combustion improvers are not only expensive themselves, but also often generate sludge when mixed with heavy oil, which can cause fatal troubles in boiler operation, such as the closure of heavy oil line strainers or heavy oil burners. There are cases where In order to avoid the above-mentioned problems, attempts have been made to inject iron-based combustion improvers in powder form, and the present inventors have previously developed iron oxides and/or iron oxides and alkali metal compounds or alkaline earth metal compounds as combustion improvers. We have discovered and provided a method for using the powder mixture.

(特開昭62−190288号公報) 本発明はこの先に提案した発明を更に発展させ助燃剤と
しての酸化鉄に改良を加え、高効率な助燃剤を提供しよ
うとするものである。
(Japanese Unexamined Patent Publication No. 62-190288) The present invention further develops the previously proposed invention, improves iron oxide as a combustion improver, and provides a highly efficient combustion improver.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは上記目的に沿って、より高効率な助燃剤を
得るべく、種々検討した結果、笹の葉状の超微細構造を
有する含水酸化第二鉄粒子が固体燃料の助燃剤として極
めて優れることを見出し本発明を完成するに至った。
In line with the above objectives, the present inventors conducted various studies in order to obtain a more efficient combustion improver, and as a result, it was found that hydrated ferric oxide particles having a bamboo leaf-like ultrafine structure are extremely excellent as a combustion improver for solid fuels. This discovery led to the completion of the present invention.

すなわち本発明はスジ状の超微細構造を有してなる長軸
径0.2〜1.0μmで軸比(長軸径/短軸径)3〜1
0の笹の葉状を呈した含水酸化第二鉄粒子粉末からなる
固体燃料用助燃剤である。
That is, the present invention has a striped ultrafine structure, has a major axis diameter of 0.2 to 1.0 μm, and has an axial ratio (major axis diameter/minor axis diameter) of 3 to 1.
This is a combustion improver for solid fuels made of hydrated ferric oxide particles in the shape of a bamboo leaf.

〔作用〕[Effect]

本発明のスジ状の超微細構造を有している長軸径0.2
〜1.0μmで軸比(長軸径/短軸径)3〜10の笹の
葉状を呈した含水酸化第二鉄粒子粉末は、粒子自体が微
細であるため固体燃料上で高分散接触し炭素の酸化が効
率よく行われる。
Long axis diameter 0.2 having the striped ultrafine structure of the present invention
Hydrous ferric oxide particles with a bamboo leaf shape of ~1.0 μm and an axial ratio (major axis diameter/minor axis diameter) of 3 to 10 have a highly dispersed contact with the solid fuel because the particles themselves are fine. Carbon oxidation is performed efficiently.

すなわち、この特徴は本発明で特定される含水酸化第二
鉄粒子粉末がスジ状の超微細構造を有している長軸径0
.2〜1.0μmで軸比(長軸径/短軸径) 3〜10
の笹の葉状を呈した粒子であることから比表面積が極め
て大きく、更に笹の葉状を呈して丸味を帯びていること
から粒子と粒子がくっついていて重なり合うことが少な
いため空隙率が大きく、燃焼に必要な酸素との接触効率
が大きいことに起因する。
In other words, this feature is due to the fact that the hydrous ferric oxide particles specified in the present invention have a striped ultrafine structure with a major axis diameter of 0.
.. 2 to 1.0 μm and axial ratio (major axis diameter/short axis diameter) 3 to 10
Because the particles are shaped like bamboo leaves, they have an extremely large specific surface area, and because they are shaped like bamboo leaves and are rounded, the particles stick together and rarely overlap, resulting in a high porosity and a high porosity. This is due to the high contact efficiency with oxygen required for

本発明に使用する含水酸化第二鉄微粒子粉末のスジ状の
超微細構造を有している長軸径を0.2〜1.0μmと
特定し、かつ軸比(長軸径/短軸径)3〜lOと特定し
たのは、長軸径1.0μmを超える粒子では比表面積が
小さくなり不適当であり、長軸径0.2μm未満の粒子
ではあまりに微細なため粒子間の凝集が生じて好ましく
ないからである。
The major axis diameter of the hydrous ferric oxide fine particles used in the present invention, which has a streak-like ultrafine structure, is specified as 0.2 to 1.0 μm, and the axial ratio (major axis diameter/minor axis diameter) is specified as 0.2 to 1.0 μm. ) 3 to 1O is specified because particles with a major axis diameter of more than 1.0 μm will have a small specific surface area, which is inappropriate, and particles with a major axis diameter of less than 0.2 μm are too fine, resulting in agglomeration between particles. This is because it is not desirable.

また、軸比3未満の粒子ではスジ状の超微細構造を有し
ている笹の葉状を呈するという粒子の特徴が小さくなり
、軸比10を超える粒子では針状の形状に近くなり好ま
しくないからである。
In addition, particles with an axial ratio of less than 3 will have a smaller bamboo leaf-like characteristic with a striped ultrafine structure, while particles with an axial ratio of more than 10 will have an undesirable shape that approaches a needle-like shape. It is.

次に、本発明に使用する含水酸化第二鉄粒子粉末の製法
について説明するが、このものは下記のような製法によ
って容易に得られる。
Next, a method for manufacturing the hydrous ferric oxide particles used in the present invention will be described, which can be easily obtained by the following manufacturing method.

即ち、第一鉄塩水溶液に第一鉄塩に対して1当量以上の
炭酸アルカリを加えて反応させてFe[”Dsを得、得
られたFeCD5を含む水溶液中に酸素含有ガスを通気
して酸化反応することにより得られる。上記製造法にお
いて、第一鉄塩水溶液としては硫酸第一鉄水溶液、塩化
第−鉄水溶液等が用いられる。第一鉄塩水溶液に炭酸ア
ルカリを加えpecksを得る場合、炭酸アルカリに水
酸化アルカリを併用してもよい。炭酸アルカリとしては
炭酸ナトリウム、炭酸カリウム、炭酸水素アンモニウム
等を単独で、又はこれらと水酸化アルカリを併用して使
用す、る場合は水酸化アルカリとして水酸化ナトリウム
、水酸化カリウム、水酸化アンモニウム等が用いられる
That is, an alkali carbonate of 1 equivalent or more relative to the ferrous salt is added to a ferrous salt aqueous solution and reacted to obtain Fe["Ds, and an oxygen-containing gas is bubbled through the obtained FeCD5-containing aqueous solution. Obtained by oxidation reaction. In the above production method, the ferrous salt aqueous solution is a ferrous sulfate aqueous solution, ferrous chloride aqueous solution, etc. When adding an alkali carbonate to the ferrous salt aqueous solution to obtain pecks , alkali hydroxide may be used in combination with alkali carbonate.As the alkali carbonate, sodium carbonate, potassium carbonate, ammonium hydrogen carbonate, etc. may be used alone or in combination with alkali hydroxide. Sodium hydroxide, potassium hydroxide, ammonium hydroxide, etc. are used as the alkali.

また場合により非酸化性雰囲気下で熟成した後、酸化反
応を行うようにしてもよい。
Further, in some cases, the oxidation reaction may be carried out after aging in a non-oxidizing atmosphere.

酸化反応時の溶液のpHは7〜11である。pH7未満
、又はpH11を超える場合には、笹の葉状を呈した含
水酸化第二鉄粒子を得ることはできない。また、酸化反
応時の温度が30℃未満では笹の葉状を呈した含水酸化
第二鉄粒子を得ることができず、80℃を超える場合に
は粒状の黒色性でんが混在してくるので、酸化反応時の
温度は30〜80℃に設定すべきである。酸化手段は酸
素含有ガス(例えば空気)を液中に通気することにより
行い、また当該通気ガスや機械的操作等により攪拌しな
がら行うのが好ましい。酸化反応生成物は水洗して副生
塩類を洗浄除去して含水酸化第二鉄粒子を得る。
The pH of the solution during the oxidation reaction is 7-11. If the pH is less than 7 or more than 11, it is impossible to obtain hydrated ferric oxide particles having a bamboo leaf shape. In addition, if the temperature during the oxidation reaction is less than 30°C, it will not be possible to obtain hydrated ferric oxide particles with a bamboo leaf shape, and if it exceeds 80°C, granular black starch will be mixed in. The temperature during the oxidation reaction should be set at 30-80°C. The oxidation means is carried out by passing an oxygen-containing gas (for example, air) into the liquid, and is preferably carried out while stirring using the ventilation gas or mechanical operation. The oxidation reaction product is washed with water to remove by-product salts and obtain hydrous ferric oxide particles.

このようにして得られる含水酸化第二鉄粒子は一旦乾燥
して粉体で固体燃料と混合し、用いてもよく、又、乾燥
せずスラリー状で用いることもできる。
The hydrated ferric oxide particles thus obtained may be dried and used as a powder and mixed with a solid fuel, or may be used in the form of a slurry without being dried.

〔実施例〕〔Example〕

以下、実施例により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

〔実施例1〕 反応容器中に3.53 mol/1のNa2CL水溶液
201を入れ、次いで1mol#のFe50*水溶液3
01を添加、混合し、温度40℃においてFeCO3を
得た。得られたPeCLを含む水溶液中に温度40℃に
おいて毎分1501の空気を4時間通気して酸化反応を
行い、黄褐色沈澱粒子を生成させた。なお空気通気中の
反応溶液のpl(は9.6であった。
[Example 1] A 3.53 mol/1 Na2CL aqueous solution 201 was placed in a reaction vessel, and then a 1 mol# Fe50* aqueous solution 3 was added.
01 was added and mixed to obtain FeCO3 at a temperature of 40°C. An oxidation reaction was carried out by passing air at a rate of 150 l/min into the resulting aqueous solution containing PeCL at a temperature of 40° C. for 4 hours to generate yellowish brown precipitated particles. Note that the PL of the reaction solution during air ventilation was 9.6.

生成した黄褐色性でん粒子を常温により、濾別、水洗、
乾燥粉砕して黄褐色粒子粉末(a)2.61kgを得た
The generated yellow-brown starch particles are filtered and washed with water at room temperature.
It was dried and ground to obtain 2.61 kg of yellowish brown particle powder (a).

得られた黄褐色粒子粉末はXa−折の結果、含水酸化第
二゛鉄であることが確認できた。又、□ この微粉末は第1命に示す電子顕微、鏡写真(倍率15
.0000倍)の通り平均値で長軸径0.25μm1軸
比(長軸径/短軸径)8、比表面積106m″/gめス
ジ状の超微細構造を有している笹の葉状を呈した含水酸
化第二鉄粒子からなっていることが確認できた。
As a result of Xa-fraction, it was confirmed that the obtained yellowish brown particles were hydrated ferric oxide. In addition, □ This fine powder was examined using an electron microscope and a mirror photograph (magnification 15) as shown in the first order.
.. 0,000 times), the average value of the long axis diameter is 0.25 μm, the uniaxial ratio (major axis diameter/short axis diameter) is 8, and the specific surface area is 106 m''/g. It was confirmed that the particles were composed of hydrated ferric oxide particles.

〔比較例〕 反応容器中に0.68 mol/1のFeS’Oa水溶
液801を入れ、次いで4.’3−2 mo1/’Jの
Na1l水溶液101を添加、混合し、続いて・温度4
0℃において13 ’0 ”’1:、/ m inの割
合で電気を通気しながら4時間反・応を行い黄−色性□
でん粒□子、を、生成、 、・′4′ させた。なお空気通気中の′反・応溶液のp″Hは5.
8〜4.0であった。 ′・        1生成し
た黄褐色性でん粒子を常法により、濾別、水洗、乾燥粉
砕して黄褐色粒子粉末(ハ)1.83kgを得た。X線
回折の結果この粒子粉末は含水酸化第二鉄であることが
確認できたが、その結晶は゛第2図に示す電子顕微鏡写
真(倍率100000倍)の通り平均値で長軸径0.3
μm、軸比(長軸径/短軸径)10の針状構造を有した
含水酸化第二鉄であることが確認された。また比表面積
を測定したところ95mF/gであった。
[Comparative Example] 0.68 mol/1 FeS'Oa aqueous solution 801 was placed in a reaction vessel, and then 4. '3-2 mo1/'J Na1L aqueous solution 101 was added and mixed, and then temperature 4
The reaction was carried out at 0℃ for 4 hours while passing electricity at a rate of 13'0'''1:,/min, and the yellow color □
Starch grains were produced, ,・'4'. Note that the p″H of the reaction solution during air ventilation is 5.
It was 8-4.0. '.1 The yellow-brown starch particles produced were filtered, washed with water, and dried and ground to obtain 1.83 kg of yellow-brown starch powder (c). As a result of X-ray diffraction, it was confirmed that the powder particles were hydrated ferric oxide, and the crystals had an average major axis diameter of 0.3 as shown in the electron micrograph shown in Figure 2 (magnification: 100,000 times).
It was confirmed that it was hydrated ferric oxide having a needle-like structure with an axial ratio (major axis diameter/minor axis diameter) of 10 μm. Further, when the specific surface area was measured, it was 95 mF/g.

〔実施例2〕 実施例1で得た笹の葉状の超微細構造をもつ含水酸化第
二鉄(a)と比較例で得た針状構造の含水酸化第二鉄(
6)及び一般に試薬として市販されている酸化第二鉄(
FeJs)の各々を石油コークス微粉に100 ppm
添加し、燃焼実験による評価を行った。
[Example 2] Hydrous ferric oxide (a) with a bamboo leaf-like ultrafine structure obtained in Example 1 and hydrous ferric oxide (a) with a needle-like structure obtained in Comparative Example
6) and ferric oxide (which is generally commercially available as a reagent)
100 ppm of each of FeJs) was added to petroleum coke fine powder.
was added and evaluated through combustion experiments.

第3図に燃焼実験装置の概念図を示す。第3図において
、1は電気加熱燃焼炉、2は石炭又はコークス微粉フィ
ーダ、3は燃焼用−次空気、4は燃焼用二次空気、5は
燃焼灰捕集用サイクロン、6は排ガス吸引ファン、7は
煙突、8は排ガス計測ライン、9は燃焼用バーナーを示
す。
Figure 3 shows a conceptual diagram of the combustion experiment equipment. In Fig. 3, 1 is an electrically heated combustion furnace, 2 is a coal or coke powder feeder, 3 is secondary air for combustion, 4 is secondary air for combustion, 5 is a cyclone for collecting combustion ash, and 6 is an exhaust gas suction fan. , 7 is a chimney, 8 is an exhaust gas measurement line, and 9 is a combustion burner.

吸引ファン6を作動させ微粉砕した石油コークスを定量
フィーダ2より落下させ、燃焼用−次空気3と共に予め
所定温度に加熱した電気炉1内に燃焼用バーナ9で噴霧
する。同時に燃焼用二次空気4を炉1内に導入し燃焼排
ガス中の過剰02を2〜6%の範囲に調節する。
The suction fan 6 is activated to cause finely pulverized petroleum coke to fall from the quantitative feeder 2, and is sprayed by the combustion burner 9 into the electric furnace 1 which has been heated to a predetermined temperature together with the secondary combustion air 3. At the same time, secondary combustion air 4 is introduced into the furnace 1 to adjust excess O2 in the combustion exhaust gas to a range of 2 to 6%.

燃焼排ガス中00.が所定濃度にコントロールされたな
らば、排ガス計測ライン8から排ガスの一定量をサンプ
リングし、円形濾紙法で煤塵濃度の測定と未燃カーボン
を分析した。
00 in combustion exhaust gas. Once the concentration was controlled to a predetermined level, a certain amount of the exhaust gas was sampled from the exhaust gas measurement line 8, and the soot dust concentration was measured and unburned carbon was analyzed using the circular filter paper method.

燃焼実験は次の条件で行った。The combustion experiment was conducted under the following conditions.

電気炉内設定温度   1300℃ 燃焼量        2kg/h 1次空気温度     常温 2次空気温度     250℃ 過剰0,2〜6% 第1表に過剰024%で燃焼させた時の排ガス中未燃カ
ーボン量を測定し、助燃剤無添加を100とした場合の
未燃カーボン量比で示した。
Set temperature in electric furnace 1300℃ Combustion amount 2kg/h Primary air temperature Room temperature secondary air temperature 250℃ Excess 0.2~6% Table 1 shows the amount of unburned carbon in the exhaust gas when burned at an excess of 0.24%. It was measured and expressed as the unburned carbon amount ratio when no combustion improver was added as 100.

第  1 表 〔実施例3〕 実施例2と同じ装置、同じ条件で石炭微粉に笹の葉状含
水酸化第二鉄(a)と針状含水酸化第二鉄(社)及び市
販の酸化第二鉄(Fe203)を200 ppm添加し
、過剰02を2.4.6%と変えて燃焼した結果を第4
図に示した。この結果、笹の葉状含水酸化第二鉄粒子を
添加したものは燃焼灰中の未燃カーボンが少な(助燃剤
として効果があることが判った。
Table 1 [Example 3] Bamboo leaf-shaped hydrated ferric oxide (a), needle-shaped hydrated ferric oxide (Co., Ltd.), and commercially available ferric oxide were added to fine coal powder using the same equipment and under the same conditions as in Example 2. The results of combustion by adding 200 ppm of (Fe203) and changing the excess 02 to 2.4.6% are shown in the fourth column.
Shown in the figure. As a result, it was found that the mixture containing bamboo leaf-shaped hydrated ferric oxide particles contained less unburned carbon in the combustion ash (it was found to be effective as a combustion improver).

〔発明の効果〕〔Effect of the invention〕

本発明の助燃剤は石炭や石油コークスなどの固体燃料に
使用すると未燃分の発生を抑制し同時に集じん効率を向
上させ得る効果がある。
When the combustion improver of the present invention is used for solid fuels such as coal and petroleum coke, it has the effect of suppressing the generation of unburned matter and improving dust collection efficiency at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で使用する笹の葉状含水酸化。 第二鉄粒子の結晶形態を示す電顕写真(倍率1 jo 
000倍)、第2図は針状含水酸化第二鉄粒子の結晶形
態を示す電顕写真(倍率10000倍)、第3図は本発
明の効果を確認するために使用した燃焼実験装置の概念
図、第4図は本発明の一実施例による効果を立証するた
めの結果を示すグラフである。
Figure 1 shows the hydrous oxidation of a bamboo leaf used in the present invention. Electron micrograph showing the crystal morphology of ferric particles (magnification: 1 jo
2 is an electron micrograph showing the crystal morphology of acicular hydrated ferric oxide particles (10,000 times magnification), and FIG. 3 is the concept of the combustion experiment apparatus used to confirm the effects of the present invention. 4 are graphs showing results for proving the effects of an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] スジ状の超微細構造を有してなる長軸径0.2〜1.0
μmで軸比(長軸径/短軸径)3〜10の笹の葉状を呈
した含水酸化第二鉄粒子からなることを特徴とする固体
燃料用助燃剤。
Long axis diameter 0.2 to 1.0 with a striped ultrafine structure
A combustion improver for solid fuel, characterized by comprising hydrous ferric oxide particles having a bamboo leaf shape and an axial ratio (major axis diameter/minor axis diameter) of 3 to 10 in μm.
JP17019490A 1990-06-29 1990-06-29 Solid fuel combustion improver Expired - Fee Related JP2511179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17019490A JP2511179B2 (en) 1990-06-29 1990-06-29 Solid fuel combustion improver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17019490A JP2511179B2 (en) 1990-06-29 1990-06-29 Solid fuel combustion improver

Publications (2)

Publication Number Publication Date
JPH0459892A true JPH0459892A (en) 1992-02-26
JP2511179B2 JP2511179B2 (en) 1996-06-26

Family

ID=15900420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17019490A Expired - Fee Related JP2511179B2 (en) 1990-06-29 1990-06-29 Solid fuel combustion improver

Country Status (1)

Country Link
JP (1) JP2511179B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468344A (en) * 2013-08-27 2013-12-25 广州高成环保科技有限公司 Oxygen producer for increasing coal burn-off rate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103396859A (en) * 2013-04-23 2013-11-20 安徽新力电业科技咨询有限责任公司 Combustion aid for reducing ignition point of fire coal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468344A (en) * 2013-08-27 2013-12-25 广州高成环保科技有限公司 Oxygen producer for increasing coal burn-off rate
CN103468344B (en) * 2013-08-27 2015-01-28 广州高成环保科技有限公司 Oxygen producer for increasing coal burn-off rate

Also Published As

Publication number Publication date
JP2511179B2 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
US10479951B2 (en) Catalyst for desulfurization, method of preparing the same, and desulfurization method using the same
AU2005201468B2 (en) Additive-induced control of NOx emissions in a coal burning utility furnace
US4752302A (en) Method and composition for improving flame combustion of liquid carbonaceous fuels
CN105567365B (en) Modified coal and its manufacturing method
WO2017069223A1 (en) Method for producing vanadium electrolytic solution for redox flow cell
CN102191110A (en) Fire coal combustion improver
JPH0459892A (en) Combustion improver for solid fuel
CN109072110A (en) The application of vanadium corrosion inhibitor in gas turbine
JPS5824478B2 (en) How to burn fuel
JPS5828319B2 (en) How to suppress harmful components
JPS62190288A (en) Method for burning solid fuel
WO2010084318A2 (en) Solid fuel combustion process
US5487762A (en) Method of minimizing deposits when firing tire derived fuels
JP2005043043A (en) Method for lowering amount of carbon in fly ash from combustion of coal by manganese additive to coal
CA1245449A (en) Composition and a method of capturing sulphur
CN111004660B (en) High-temperature in-situ combustion-supporting method for fire coal
JPH0633373B2 (en) Iron oxide for fuel additive and method of using the same
JPH0699698B2 (en) Solid fuel combustion method
Somasundaram et al. Suppression of soot in the combustion of residual furnace oil using organometallic additives
JPH0579117B2 (en)
JPH08218081A (en) Desulfurizing agent for suppressing deposition of carbon
JPH0560517B2 (en)
JPH03252311A (en) Production of active magnesium hydroxide
CN113926304B (en) Low-temperature mercury-removing adsorbent for coal-fired flue gas
KR19990079234A (en) Additives of emulsion fuel oil

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees