JPH0459660A - Production of silicon nitride ceramics - Google Patents

Production of silicon nitride ceramics

Info

Publication number
JPH0459660A
JPH0459660A JP2172013A JP17201390A JPH0459660A JP H0459660 A JPH0459660 A JP H0459660A JP 2172013 A JP2172013 A JP 2172013A JP 17201390 A JP17201390 A JP 17201390A JP H0459660 A JPH0459660 A JP H0459660A
Authority
JP
Japan
Prior art keywords
powder
silicon nitride
nitride ceramics
sintering
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2172013A
Other languages
Japanese (ja)
Inventor
Munetaka Takeuchi
竹内 宗孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2172013A priority Critical patent/JPH0459660A/en
Publication of JPH0459660A publication Critical patent/JPH0459660A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To sinter a formed Si3N4(without deteriorating the surface smoothness by embedding a formed Si3N4 article in graphite powder used as a stuffing powder and baking the article at a high temperature. CONSTITUTION:A formed article made of silicon nitride powder added with a sintering assistant is embedded in graphite powder and baked in an inert atmosphere to obtain a sintered product.

Description

【発明の詳細な説明】 〔概要〕 窒化硅素系セラミックスの製造方法に関し、強度が高く
、高温での強度劣化の少ない焼結体を得ることを目的と
し、 焼結助剤を添加し、窒化硅素粉末からなる成形体をクラ
ファイト粉末中に埋没し、不活性雰囲気中で焼成して焼
結体を得ることを特徴として窒化硅素セラミックスの製
造方法を構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for producing silicon nitride ceramics, the purpose is to obtain a sintered body with high strength and less deterioration in strength at high temperatures. The method for manufacturing silicon nitride ceramics is characterized in that a molded body made of powder is buried in graphite powder and fired in an inert atmosphere to obtain a sintered body.

〔産業上の利用分野〕[Industrial application field]

本発明は窒化硅素(以下5iJ4)セラミックスの製造
方法に関する。
The present invention relates to a method for manufacturing silicon nitride (hereinafter referred to as 5iJ4) ceramics.

Si3N4は1000°Cを越す高温におても高い強度
を示し、軽量であって耐薬品性、耐摩耗性および熱衝撃
性に優れた材料として知られている。
Si3N4 is known as a material that exhibits high strength even at high temperatures exceeding 1000°C, is lightweight, and has excellent chemical resistance, abrasion resistance, and thermal shock resistance.

すなわち、Si、N4は高温においても安定であって、
比重は3.185と軽(、モース硬度は9と高く、高温
の融解金属にも侵されないなどの特徴をもっている。
That is, Si and N4 are stable even at high temperatures,
It has a light specific gravity of 3.185, a high Mohs hardness of 9, and is uncorrupted by high-temperature molten metal.

そのため、高温での耐蝕性が必要な坩堝やノズルなどの
構成材として適し、また、電子機器用としては軽量で且
つ摩耗が少ないことからプリンタなどの摺動部材として
適している。
Therefore, it is suitable as a constituent material for crucibles, nozzles, etc. that require corrosion resistance at high temperatures, and it is suitable for electronic equipment as a sliding member for printers and the like because it is lightweight and has little wear.

〔従来の技術〕[Conventional technology]

Si3N4の焼結温度は約1700°Cであり、180
0℃付近から徐々に解離する性質をもっている。
The sintering temperature of Si3N4 is about 1700°C, and 180°C
It has the property of gradually dissociating from around 0°C.

また、Si、N4は共有結合しているため焼結性は低い
Further, since Si and N4 are covalently bonded, sinterability is low.

そこで、緻密な焼結体を得るには513N4粉に焼結助
剤を添加して焼成を行う必要があり、アルミナ(A12
03)やマグネシア(MgO)などの添加が行われてい
た。
Therefore, in order to obtain a dense sintered body, it is necessary to add a sintering agent to the 513N4 powder and perform firing, and alumina (A12
03) and magnesia (MgO).

然し、これらの焼結助剤を添加して焼結を行うと、粒界
にガラス相が生じ、このために高温において強度が低下
すると云う問題がある。
However, when sintering is performed with the addition of these sintering aids, a glass phase is generated at the grain boundaries, which causes a problem in that the strength decreases at high temperatures.

そこで、粒界のガラス化を防ぐ方法として、焼結助剤と
してイツトリア(Y2O2)とAl220:lの混合物
を用い、窒化アルミニウム(AffN)粉末中に埋めて
焼成する方法が開発された。
Therefore, as a method for preventing vitrification of grain boundaries, a method was developed in which a mixture of yttria (Y2O2) and Al220:l is used as a sintering aid, and the mixture is buried in aluminum nitride (AffN) powder and fired.

(助剤については、特公昭48−7486.49−21
091など、詰粉については、特公昭56−0387.
56−0388など、何れも東方) 然し、AAN粉末を用いて焼結を行うと、製品の表面に
AI!N粉末が付着して表面の平滑性が失われると云う
問題がある。
(For auxiliary agents, please refer to Special Publication No. 48-7486.49-21
For powder stuffing such as 091, Tokuko Sho 56-0387.
56-0388, etc.) However, when sintering is performed using AAN powder, AI! There is a problem that the surface smoothness is lost due to N powder adhesion.

特に、射出成形法で作った複雑な形状をした成形品につ
いては、表面に付着したA7N粉末の除去には非常に工
数を要し、また、焼結処理によりAIN粉末が相互に固
まっていることから、製品の取り出しにも時間を必要と
すると云う問題があった。
In particular, for molded products with complex shapes made by injection molding, it takes a lot of man-hours to remove the A7N powder adhering to the surface, and the AIN powder is solidified together due to the sintering process. Therefore, there was a problem in that it took time to take out the product.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

結晶化した粒界を有するSi、N4セラミックス焼結体
の製造に当たって、表面の平滑性を損なうことなく効率
よく焼結する方法を開発することが課題である。
In producing Si, N4 ceramic sintered bodies having crystallized grain boundaries, it is a challenge to develop a method for efficiently sintering without impairing surface smoothness.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は焼結助剤を添加した5iJ4粉末からなる
成形体をグラファイト粉末中に埋没し、不活性雰囲気中
で焼成して焼結体を得ることを特徴として5jsN4セ
ラミツクスの製造方法を構成することにより解決するこ
とができる。
The above-mentioned problem constitutes a method for producing 5jsN4 ceramics, which is characterized by embedding a compact made of 5iJ4 powder to which a sintering aid has been added in graphite powder and firing it in an inert atmosphere to obtain a sintered body. This can be solved by

〔作用〕[Effect]

本発明はSi、N4成形体を埋没して高温焼成する粉体
(詰め粉)としてAβN粉体の代わりにグラファイト粉
末を用いるものである。
The present invention uses graphite powder instead of AβN powder as the powder (stuffing powder) in which the Si, N4 molded body is buried and fired at high temperature.

すなわち、グラファイトは融点が3500°C以上。In other words, graphite has a melting point of 3500°C or higher.

沸点は4827°Cと元素の中では最も高く、不活性ガ
ス雰囲気中で加熱する場合は最も安定な材料である。
Its boiling point is 4827°C, the highest among the elements, and it is the most stable material when heated in an inert gas atmosphere.

また、グラファイト粉末自体に辷り性をもつと云う特徴
がある。
In addition, graphite powder itself has the characteristic of having stickiness.

そこで、本発明はグラファイト粉末を詰め粉として使用
することにより、焼結体の表面に詰め粉が付着すると云
う問題点をなくするものである。
Therefore, the present invention uses graphite powder as the filling powder to eliminate the problem of the packing powder adhering to the surface of the sintered body.

これを焼結炉に入れ、N2雰囲気中てN2圧を100気
圧として1700°Cで5時間焼成した。
This was placed in a sintering furnace and fired at 1700°C for 5 hours in a N2 atmosphere with a N2 pressure of 100 atm.

冷却した後、坩堝を炉外に取り出し、焼結体をピンセッ
トで摘みあげたところ、グラファイト粉末は全く付着し
ておらず、表面平滑性も良好であった。
After cooling, the crucible was taken out of the furnace and the sintered body was picked up with tweezers, and it was found that no graphite powder had adhered to it at all, and the surface had good smoothness.

また、焼結体のX線回折を行ったところ、β−3iJ4
のピーク以外にも結晶粒界が結晶質になっていることを
示すピークも観察できた。
In addition, when X-ray diffraction of the sintered body was performed, β-3iJ4
In addition to this peak, a peak indicating that the grain boundaries were crystalline was also observed.

〔実施例〕〔Example〕

セラミックスの成分として、 本体  :  513N4粉末 ・・・86重量部、焼
結助剤:Aj’20+粉末・・・4重量部、//   
:Y 203粉末 ・・・10重量部、からなる板状の
成形体を圧粉プレスにより形成した。
As components of the ceramics: Main body: 513N4 powder...86 parts by weight, Sintering aid: Aj'20+ powder...4 parts by weight, //
:Y203 powder: A plate-shaped molded body consisting of 10 parts by weight was formed using a powder press.

次に、グラファイト製の坩堝を平均粒径が5μmのグラ
ファイト粉末で満たし、この中心に板状の成形体を埋没
した。
Next, a graphite crucible was filled with graphite powder having an average particle size of 5 μm, and a plate-shaped molded body was embedded in the center of the crucible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高温強度に優れ、また表面平滑性に優
れた5isN4セラミツクスを効率が良く、また短縮し
た工程で製造することができる。
According to the present invention, 5isN4 ceramics having excellent high-temperature strength and surface smoothness can be manufactured efficiently and in a shortened process.

Claims (1)

【特許請求の範囲】[Claims] 焼結助剤を添加し、窒化硅素粉末からなる成形体をグラ
ファイト粉末中に埋没し、不活性雰囲気中で焼成して焼
結体を得ることを特徴とする窒化硅素セラミックスの製
造方法。
A method for producing silicon nitride ceramics, which comprises adding a sintering aid, embedding a molded body made of silicon nitride powder in graphite powder, and firing it in an inert atmosphere to obtain a sintered body.
JP2172013A 1990-06-29 1990-06-29 Production of silicon nitride ceramics Pending JPH0459660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2172013A JPH0459660A (en) 1990-06-29 1990-06-29 Production of silicon nitride ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2172013A JPH0459660A (en) 1990-06-29 1990-06-29 Production of silicon nitride ceramics

Publications (1)

Publication Number Publication Date
JPH0459660A true JPH0459660A (en) 1992-02-26

Family

ID=15933912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2172013A Pending JPH0459660A (en) 1990-06-29 1990-06-29 Production of silicon nitride ceramics

Country Status (1)

Country Link
JP (1) JPH0459660A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352395A (en) * 1992-07-17 1994-10-04 Phillips Petroleum Company Carbon and ceramic-containing layers for use in sintering of silicon nitride article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352395A (en) * 1992-07-17 1994-10-04 Phillips Petroleum Company Carbon and ceramic-containing layers for use in sintering of silicon nitride article

Similar Documents

Publication Publication Date Title
JPS6313955B2 (en)
EP0180230B1 (en) Zircon-cordierite composite ceramic
US4952535A (en) Aluminum nitride bodies and method
JP4422044B2 (en) Refractory
JPH0459660A (en) Production of silicon nitride ceramics
JPS6050750B2 (en) Silicon nitride composite sintered body
US5352643A (en) High strength alumina and process for producing same
JPH06100306A (en) Sialon crystal particle and sintered compact of complex ceramics
JP2002220282A (en) Aluminum nitride sintered compact and method of manufacture
JPS63285175A (en) Production of ceramic sintered material
JPH025711B2 (en)
JPS602661A (en) Roll for heat treatment furnace
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JP2642561B2 (en) Carbon jig for firing Si-SiC
JPH03177361A (en) Production of beta-sialon-boron nitride-based conjugate sintered compact
JPS6236087A (en) Granular sic-dispersed metal silicon heat-resistant material
JP2758313B2 (en) Sporing-resistant shelf
JPS5855110B2 (en) Manufacturing method of carbide heat-resistant ceramics
JP2916934B2 (en) Method for producing sialon-based sintered body
JP2000007428A (en) Zirconyl phosphate-base composite material and precision apparatus using the same
JP3677360B2 (en) Method for producing silicon nitride sintered body
JPH0745341B2 (en) Method for manufacturing silicon nitride-bonded silicon carbide refractory
JP4907791B2 (en) Low thermal expansion ceramics and method for producing the same
JP3137737B2 (en) Si-SiC shelf
JPH07206522A (en) Bn-aln-based complex sintered compact and its production