JPH0459008A - Production of filter material for molten metal - Google Patents

Production of filter material for molten metal

Info

Publication number
JPH0459008A
JPH0459008A JP2164472A JP16447290A JPH0459008A JP H0459008 A JPH0459008 A JP H0459008A JP 2164472 A JP2164472 A JP 2164472A JP 16447290 A JP16447290 A JP 16447290A JP H0459008 A JPH0459008 A JP H0459008A
Authority
JP
Japan
Prior art keywords
mold
aggregate particles
molten metal
binder
inorganic binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2164472A
Other languages
Japanese (ja)
Inventor
Osamu Yamakawa
治 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N G K ADRECH KK
NGK Insulators Ltd
NGK Adrec Co Ltd
Original Assignee
N G K ADRECH KK
NGK Insulators Ltd
NGK Adrec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N G K ADRECH KK, NGK Insulators Ltd, NGK Adrec Co Ltd filed Critical N G K ADRECH KK
Priority to JP2164472A priority Critical patent/JPH0459008A/en
Publication of JPH0459008A publication Critical patent/JPH0459008A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Filtering Materials (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To produce a filter material having a specified void volume and uniform distribution and density of pores by filling a mold with aggregate particles and an inorg. binder not kneaded but individually poured into the mold, removing sludge, drying, releasing, and then calcining the obtd. molded body. CONSTITUTION:In the production process of the filter material for molten metal, comprising aggregate particles and an inorg. binder, a mold of specified shape is filled with the aggregate particles. Then a slurry of the inorg. binder is poured into the mold. Then sludge is removed from the material, and the material is dried and released. The obtd. molded body is then calcinated. By this method, a small amt. of the binder is enough, which is rather expensive compared to the aggregate, and the filter material having a specified void volume and uniform distribution and density of pores can be produced by a simple process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属溶湯中から固形不純物を濾過除去するため
の金属溶湯用濾材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a filter medium for molten metal for filtering and removing solid impurities from molten metal.

〔従来の技術] 金属の薄板や箔は、金属溶湯をインプラ1〜に鋳造し、
これを圧延して製造される。このとき金属溶湯に含まれ
る金属酸化物や耐火物の微小破片等の固形不純物がイン
ボッl中に混入すると、薄板や箔等を製造する圧延過程
てピンボールや表面欠陥が発生ずることがある。これを
防くため、金属溶湯中から固形不純物を除去することが
行われている。
[Prior art] Metal thin plates and foils are produced by casting molten metal into implants 1 and 2.
It is manufactured by rolling this. At this time, if solid impurities such as metal oxides and minute fragments of refractories contained in the molten metal are mixed into the ingot, pinballs and surface defects may occur during the rolling process for manufacturing thin plates, foils, etc. To prevent this, solid impurities are removed from the molten metal.

この固形不純物除去のために、従来、ガラスクロス、ア
ルミナボール、セラミックフオーム等が金属溶湯用濾過
フィルターとして使用されていた。
To remove these solid impurities, glass cloth, alumina balls, ceramic foam, etc. have conventionally been used as filters for molten metal.

しかし、ガラスクロスは早期に目詰まりを起ごしやすく
、アルミナホールは一旦捕獲した不純物が再流出し易く
濾過精度か劣り、またセラミックフオームは気孔径が大
きく微細な不純物が十分に除去できない欠点があった。
However, glass cloth tends to get clogged early, alumina holes have poor filtration accuracy as impurities once captured tend to leak out again, and ceramic foam has large pores and cannot sufficiently remove fine impurities. there were.

そのため、最近ではアルミナ等の骨材粒子を無機質結合
材により結合させて骨材粒子間に無数の微細連続気孔を
有する多孔質セラミックを中空パイブ状に形成した金属
溶湯濾過フィルターが用いられている。
Therefore, in recent years, molten metal filtration filters have been used in which aggregate particles such as alumina are bonded together using an inorganic binder to form a hollow pipe-shaped porous ceramic having numerous fine continuous pores between the aggregate particles.

この金属溶湯濾過フィルターは、例えば特開昭48−6
91.2号公報や特公昭52−22327号公報等に記
載されるように、一般にアルミナ等の骨材粒子と無機質
結合材原料とを混練した後、中空パイプ状に成形し、所
定温度で焼成して冷却することにより、ガラス化した無
機質結合材により骨材粒子が互いに結合させられ、骨材
粒子間に無数の微細連続気孔が形成された多孔質焼成体
である。また、このフィルター成形は、油圧プレス等の
プレス成形や搗き固め成形で行い、所定の空隙率を得る
ため骨材粒子の充填性を調節して行うのが通常であった
。また、得られる多孔質体の細孔分布や密度を均一とす
るためにも各種の提案がなされている。
This molten metal filtration filter is, for example, JP-A No. 48-6
As described in Publication No. 91.2 and Japanese Patent Publication No. 52-22327, etc., aggregate particles such as alumina and an inorganic binder raw material are generally kneaded, then formed into a hollow pipe shape and fired at a predetermined temperature. By cooling the aggregate particles, the aggregate particles are bonded to each other by the vitrified inorganic binding material, resulting in a porous fired body in which countless fine continuous pores are formed between the aggregate particles. Further, this filter molding is usually performed by press molding using a hydraulic press or the like, or by compaction molding, and the filling properties of the aggregate particles are adjusted to obtain a predetermined porosity. Furthermore, various proposals have been made to make the pore distribution and density of the obtained porous body uniform.

[発明が解決しようとする課題] しかしながら、骨材粒子と無機質結合材とを混練して成
形型に充填して成形する方法においては、混練をいかに
十分に行ったとしても、所定の孔径の細孔を均一に分散
させることは難しかった。
[Problems to be Solved by the Invention] However, in the method of kneading aggregate particles and an inorganic binder and filling the mixture into a mold, no matter how thorough the kneading is, fine pores with a predetermined pore size cannot be formed. It was difficult to evenly distribute the pores.

また、出願人は先に骨材粒子形状の濾材に及ぼず影響に
ついて検討し、所定の空隙率で均一な細孔を有する濾材
を得るため、はぼ球状の骨材粒子の使用を提案した(特
願平2−83248号)が、特に上記提案の球状骨材粒
子と無機質結合材とを有機バインダー及び水とにより従
来通りに混練、成形して得た濾材は細孔分布が不均一で
あったり、強度的にもバラツキが生じ、また過大の無機
質結合材が必要となったりした。
In addition, the applicant previously investigated the influence of aggregate particle-shaped filter media, and proposed the use of spherical aggregate particles in order to obtain a filter media with uniform pores at a predetermined porosity ( Japanese Patent Application No. 2-83248) discloses that a filter medium obtained by conventionally kneading and molding the above-proposed spherical aggregate particles and an inorganic binder with an organic binder and water has a non-uniform pore distribution. In addition, variations in strength occurred, and an excessive amount of inorganic binder was required.

そこで、発明者らは、従来法の混練工程の見直しと、特
に上記提案の球状粒子骨材を用いる金属溶湯用濾材の製
造において、骨材に比し高価な結合材が少量で済み、且
つ簡便な操作で所定の空隙率で、均一な細孔分布及び密
度を有する濾材を製造する方法について鋭意検討した結
果、本発明に至った。
Therefore, the inventors reviewed the kneading process of the conventional method, and in particular, in manufacturing a filter medium for molten metal using the spherical particle aggregate proposed above, the inventors found that a small amount of expensive binder is required compared to aggregate, and it is simple. As a result of extensive research into a method for manufacturing a filter medium having a uniform pore distribution and density with a predetermined porosity using a specific operation, the present invention was achieved.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、骨材粒子と無機質結合材とからなる金
属溶湯用濾材の製造方法において、所定形状の成形型に
骨材粒子を充填し、次いで無機質結合材のスラリーを流
入し、その後排泥、乾燥、離型して得た成形体を焼成す
ることを特徴とする金属溶湯用濾材の製造方法が提供さ
れる。
According to the present invention, in a method for manufacturing a filter medium for molten metal made of aggregate particles and an inorganic binder, a mold having a predetermined shape is filled with aggregate particles, then a slurry of an inorganic binder is poured into the mold, and then the slurry is discharged. A method for manufacturing a filter medium for molten metal is provided, which comprises firing a molded body obtained by muddying, drying, and releasing the mold.

本発明は、従来から通常行われていた混練工程を経るこ
となく原料骨材粒子と無機質結合材とを混練せずに、別
々に成形型に導入するもので金属溶湯用濾材の製造方法
としては全く新規なものである。また、高価な無機質結
合+4の使用が必要最低限でよく、更に搗き固め等の加
圧操作で骨材粒子の充填性を調節して空隙率を制御する
ことなく、所定の空隙率で均一な細孔分布が得られ極め
て有用な製造方法である。
The present invention is a method for manufacturing a filter medium for molten metal, in which raw material aggregate particles and inorganic binder are introduced into a mold separately without kneading them through the conventional kneading process. This is completely new. In addition, the use of expensive inorganic bond +4 is kept to the minimum necessary, and furthermore, it is possible to maintain a uniform porosity with a predetermined porosity without controlling the porosity by adjusting the filling properties of aggregate particles through pressurization operations such as pounding. This is an extremely useful manufacturing method as it provides a good pore distribution.

以下、本発明について更に詳しく説明する。The present invention will be explained in more detail below.

本発明で用いる骨材粒子原料としては、金属溶湯と反応
せず、適切な粒度のものを容易に入手できるものであれ
ば、特にその種類を限定するものではないが、例えばア
ルミナ質、炭化珪素、窒化珪素及びジルコニア質等のセ
ラミック骨材が上記の条件を満足するため好ましい。
The raw material for aggregate particles used in the present invention is not particularly limited in type, as long as it does not react with molten metal and is easily available with an appropriate particle size, but examples include alumina, silicon carbide, etc. , silicon nitride, zirconia, and other ceramic aggregates are preferred because they satisfy the above conditions.

本発明の骨材粒子は、平均粒子径が約0.3〜3゜0m
mで且つ、形状指数が100〜130の範囲のほぼ球状
のものが好ましい。
The aggregate particles of the present invention have an average particle diameter of about 0.3 to 3.0 m.
A substantially spherical shape having a shape index of 100 to 130 is preferable.

なお、形状指数は下記のように定義される。即ち、第2
図に示す骨材の投影図において、その最大直径をM、該
最大直径Mに直交する径をB、投影面積をA、円周長さ
をPとしたとき、形状指数(SF)は次式で表される。
Note that the shape index is defined as follows. That is, the second
In the projected diagram of the aggregate shown in the figure, when its maximum diameter is M, the diameter perpendicular to the maximum diameter M is B, the projected area is A, and the circumference length is P, the shape index (SF) is calculated by the following formula. It is expressed as

SF= (SF、+SF2+5Fff)/ 3ここで、 SF、 −(π/ 4) x(M2/A、) y< 1
. O03F2=(1/ 4π)X(P2/A)xlo
SF= (SF, +SF2+5Fff)/3 where: SF, -(π/4) x (M2/A,) y< 1
.. O03F2=(1/4π)X(P2/A)xlo
.

SF、=(M/ B)xlOO である。SF, =(M/B)xlOO It is.

因みに、真珠の形状指数は100となる。上記の形状指
数100〜130の範囲の骨材を、金属溶湯フィルター
に用いた場合には均一な気孔径を有する多孔質体が得る
ことができ、金属溶湯中の不純物の捕集積度が向上する
ため好ましい。
Incidentally, the shape index of a pearl is 100. When the above-mentioned aggregate with a shape index in the range of 100 to 130 is used in a molten metal filter, a porous body having a uniform pore size can be obtained, and the degree of collection of impurities in the molten metal is improved. Therefore, it is preferable.

本発明の無機質結合材としては、金属と反応しないもの
であれは、その種類は限定されず、例えばシリカ(S+
Oz) 、アルミリ−(Δ1.203 ) 、カルシア
(Cab)、マグネシア(MgO)及び酸化ホ【コン(
B20、)等の酸化物からなる組成を有するものが用い
られる。無機質結合相は、約200μm以下の微粉末と
して用いるのが好ましい。
The type of inorganic binder used in the present invention is not limited as long as it does not react with metal. For example, silica (S+
Oz), aluminum (Δ1.203), calcia (Cab), magnesia (MgO), and oxidized carbon (
A material having a composition consisting of an oxide such as B20, ) is used. The inorganic binder phase is preferably used as a fine powder of about 200 μm or less.

本発明の製造方法は、一般的には第1図に示した製造工
程に従って行われ、以下に第1図に沿って説明する。
The manufacturing method of the present invention is generally carried out according to the manufacturing process shown in FIG. 1, and will be explained below with reference to FIG.

第1に、]−記のようにして得られた骨材粒子を所定形
状の成形型に充填する。この場合、骨材粒子の充填中或
いは充填後に、成形型を振動させて骨材粒子の充填を全
体に均一にしてもよい。
First, the aggregate particles obtained as described above are filled into a mold having a predetermined shape. In this case, the mold may be vibrated during or after filling with aggregate particles to uniformly fill the entire mold with aggregate particles.

一方、無機質結合材は、カルホギシルメチルセルロース
(CMC)等の有機バインターと適量の水とでスラリー
状にする。
On the other hand, the inorganic binder is made into a slurry with an organic binder such as carphogycyl methyl cellulose (CMC) and an appropriate amount of water.

次に、骨材粒子を充填した成形型に、無機質結合材スラ
リーを流入する。無機質結合材スラリを流入時に、骨材
粒子充填工程と同様に成形型を振動させてもよいし、ま
た流入後に振動してもよ本発明において、成形型の振動
は、骨材粒子の充填性即ら濾材の空隙率、密度等をi1
5整することかでき、従来行われている搗き固め成形よ
り簡便で目、つ均一・空隙率で、均一な細孔分布を得る
ことができる。振動方法は、特に限定されない。また、
高気孔率の多孔質体または発泡の均一・性を必要としな
いような場合は、成形型を振動させる必要がなく、成形
型に無機質結合材スラリーを流入した後、数分〜数時間
静置するたけてもよい。更にまた上記成形型の振動処理
とスラリー流入後静置処理との画処理を併用してもよい
Next, the inorganic binder slurry is poured into a mold filled with aggregate particles. When the inorganic binder slurry is introduced, the mold may be vibrated in the same manner as in the aggregate particle filling process, or it may be vibrated after the inorganic binder slurry is introduced. That is, the porosity, density, etc. of the filter medium are i1
It is possible to obtain a uniform pore distribution with a uniform porosity and a simpler method than the conventional pounding and hardening method. The vibration method is not particularly limited. Also,
For porous materials with high porosity or when uniformity and foaming properties are not required, there is no need to vibrate the mold, and after pouring the inorganic binder slurry into the mold, it is allowed to stand still for several minutes to several hours. You can take it. Furthermore, the image processing of the vibration processing of the mold and the static processing after slurry inflow may be used in combination.

無機質結合材スラリーを流入後、過剰のスラリを排泥す
る。無機質スラリーの流入と排泥の処理工程は、骨材粒
子の表面に所望の結合材厚さを得るまで適宜繰り返して
行うこともてきる。
After injecting the inorganic binder slurry, excess slurry is removed. The inorganic slurry inflow and sludge removal treatment steps may be repeated as appropriate until a desired thickness of binder is obtained on the surface of the aggregate particles.

排泥後、乾燥させ、離型し、必要に応じ更に乾燥後、焼
成して、金属溶湯用濾材の多孔質体を得ることができる
。焼成は、通常1200〜1450°Cて行うが、使用
する骨材粒子原料や無機質結合材組成により適宜選択す
ればよい。
After removing the mud, it is dried, released from the mold, and if necessary, further dried and fired to obtain a porous body for a filter medium for molten metal. Firing is usually carried out at a temperature of 1200 to 1450°C, which may be selected as appropriate depending on the raw material of the aggregate particles used and the composition of the inorganic binder.

なお、成形型からの離型を円滑に行うために、ラテツク
ス、カーボン粉等の適当な離型剤を成形型に塗布して用
いてもよい。
In order to smoothly release the mold from the mold, a suitable mold release agent such as latex or carbon powder may be applied to the mold.

〔実施例〕〔Example〕

以下、本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

但し、本発明は下記実施例により制限されるものでない
However, the present invention is not limited to the following examples.

なお、以下の実施例にて製造した多孔質焼成体の金属溶
湯用濾材としての評価は、下記の方法Gこて行った。
The porous fired bodies produced in the following examples were evaluated as filter media for molten metal using Method G below.

(1)発泡性評価 第3図に示した発泡性テスト装置の概要断面図において
、底部にエアー吹込め口3、また中間にデス1〜用焼成
体を固定する支持具2を設置した容器lの水中に、各実
施例で作製した多孔質焼成体10を支持具2で固定して
、底部から50r/分で空気を吹き込み、焼成体IOか
らの発泡状態を観察した。第4図に示した発泡性評価基
準に基つき、発泡状態によりA、 −Dのランク付をし
た。
(1) Foamability Evaluation In the schematic cross-sectional view of the foamability test device shown in Figure 3, a container l is equipped with an air inlet 3 at the bottom and a support 2 for fixing the fired body for the dess 1 ~ in the middle. The porous fired body 10 produced in each example was fixed in water with a support 2, air was blown from the bottom at 50 r/min, and the state of foaming from the fired body IO was observed. Based on the foamability evaluation criteria shown in FIG. 4, the foaming state was ranked as A or -D.

即ち、Aば焼成体全面から均一に絶えまなく発泡し、B
は焼成体のほぼ全面から発泡するが多少の抜けがあり、
Cは発泡に抜けが目立ぢ、Dは発泡がまばらである。
That is, A: foaming occurs uniformly and continuously from the entire surface of the fired body;
Foaming occurs from almost the entire surface of the fired product, but there are some gaps.
In case C, foaming was noticeable, and in case D, foaming was sparse.

(2)空隙率 、JIS2205−74の煮沸法による見掛り気孔率を
空隙率とした。
(2) Porosity: The apparent porosity determined by the boiling method according to JIS2205-74 was defined as the porosity.

(3)最大気孔径 水銀圧入法にて測定した。(3) Maximum pore diameter Measured by mercury intrusion method.

(4)通気量 マーセンガレ(Massengale)の通気量測定装
置に基づき作製した装置にて差圧14mm水柱で測定し
た。
(4) Aeration Amount Measured at a differential pressure of 14 mm in water column using a device manufactured based on Massengale's air aeration measurement device.

(5)抗折強度 支点間距離を250mmとして3点曲げ試験により曲げ
強度を測定した。各焼結体の20枚について測定して平
均値と標準偏差σを求めた。
(5) Bending strength The bending strength was measured by a three-point bending test with a distance between fulcrums of 250 mm. Measurements were made for 20 pieces of each sintered body, and the average value and standard deviation σ were determined.

(6)通湯量及びボロン()3)除去率JIS1050
のアルミニウム溶湯を通湯させ、その単位面積当たりの
通湯量を求めた。また、B除去率は通湯前後のアルミニ
ウムに含有されるBの分析値から求めた。
(6) Water flow rate and boron ()3) Removal rate JIS1050
The amount of molten aluminum per unit area was determined. In addition, the B removal rate was determined from the analytical value of B contained in aluminum before and after passing through the hot water.

実施例1 第1表に示した各形状指数で、粒子径が0.85〜1.
2 mmのアルミナ質骨材粒子を、厚さ30mm、横3
00 mm、高さ300 mmの直方体のアクリル製成
形型に充填した。この成形型には、その−1一部に充填
・流入口と空気抜きとを、また底部6、二排泥口を配置
した。
Example 1 With each shape index shown in Table 1, the particle size was 0.85 to 1.
2 mm alumina aggregate particles were placed in a 30 mm thick, 3 mm width
It was filled into a rectangular parallelepiped acrylic mold with a diameter of 0.00 mm and a height of 300 mm. This mold was provided with a filling/inflow port and an air vent in part 1, and two mud removal ports in the bottom part 6.

一方、組成比1’1120330重量%、Bz(h 3
5重品%、Ca4120重量%、MgO]−00重量の
無機質結合材を200メツシマ、以下に粉砕し、CMC
をバイングーとして使用し、無機質結合材と水の比を1
0:1.5重量比乙こなるようQこ水を加えトロンメル
(アルミナ質内張)でスラリーを調製した。
On the other hand, the composition ratio is 1'1120330% by weight, Bz(h3
5% by weight, 120% by weight of Ca, MgO]-00% by weight of the inorganic binder was crushed to 200% by weight or less, and CMC
was used as bangu, and the ratio of inorganic binder to water was 1.
Water was added to achieve a weight ratio of 0:1.5, and a slurry was prepared using a trommel (alumina lining).

調製したスラリーを、−に記のアルミナ質骨材粒子を充
填した成形型に流入し、成形型を20秒間微振動させた
後、排泥した。なお、同一の形状指数のアルミナ質骨材
粒子を用いた場合、成形型の微振動を調節することによ
り骨相粒子の充填率を変化させて第1表に示した空隙率
となるように調整した。
The prepared slurry was poured into a mold filled with the alumina aggregate particles described in -, and after the mold was slightly vibrated for 20 seconds, the slurry was drained. In addition, when using alumina aggregate particles with the same shape index, the filling rate of the bone phase particles was changed by adjusting the microvibration of the mold, and the porosity was adjusted to the porosity shown in Table 1. .

排泥後、室温にて10時間、50°Cで5時間乾燥した
後、離型した。離型後、105°Cにて12時間本乾燥
した。その後、1350°Cで焼成し板状の多孔質焼成
体を得た。
After removing the mud, it was dried at room temperature for 10 hours and at 50°C for 5 hours, and then released from the mold. After releasing the mold, it was dried for 12 hours at 105°C. Thereafter, it was fired at 1350°C to obtain a plate-shaped porous fired body.

得られた多孔質焼成体について、各金属溶湯用濾材とし
ての評価試験を行った。その結果を第1表に示した。
Evaluation tests were conducted on the obtained porous fired bodies as filter media for various molten metals. The results are shown in Table 1.

(以下、余白) 実施例2 第2表に示した各形状指数で平均粒子径0.71胴のア
ルミナ質骨材粒子を、厚さ20mmの円筒成形体用の上
部に充填・流入口と空気抜きとを、底部に排泥口を配置
した外径100胴、内径60■、高さ870mmの二重
筒状ステンレス製成形型にエアーバイブレータ−で衝撃
を加えながら充填した。
(Hereinafter, blank space) Example 2 Alumina aggregate particles with an average particle diameter of 0.71 for each shape index shown in Table 2 were filled into the upper part of a cylindrical molded body with a thickness of 20 mm, and the inlet and air were vented. was filled into a double cylindrical stainless steel mold with an outer diameter of 100 cm, an inner diameter of 60 cm, and a height of 870 mm, with a mud draining port arranged at the bottom, while applying impact with an air vibrator.

なお、エアーバイブレータ−による衝撃を調節してアル
ミナ質骨材粒子の充填率を調節し、第2表に示した空隙
率となるようにした。
Note that the impact from the air vibrator was adjusted to adjust the filling rate of the alumina aggregate particles so that the porosity was as shown in Table 2.

一方、組成比Al2O325重量%、B2O345重量
%、Ca020重量%、MgO10重景%で重量ット化
した無機質結合材を200メツシユ以下に粉砕し、CM
Cをバインダーとして使用し、実施例1と同様に水を加
えトロンメルでスラリーを調製した。
On the other hand, an inorganic binder made into a mass with a composition ratio of 25% by weight of Al2O3, 45% by weight of B2O3, 20% by weight of Ca, and 10% by weight of MgO is pulverized to 200 mesh or less, and CM
C was used as a binder, water was added in the same manner as in Example 1, and a slurry was prepared using a trommel.

調製したスラリーを、上記のアルミナ質骨材粒子を充填
した成形型に流入し、30分静置後排泥した。このスラ
リー流入、静置、排泥の操作を10回繰り返した後、5
0°Cで10時間乾燥した後、離型した。離型後、10
5°Cにて10時間本乾燥した。その後、1300°C
で焼成し中空パイプ状の多孔質焼成体を得た。
The prepared slurry was poured into a mold filled with the above alumina aggregate particles, left to stand for 30 minutes, and then drained. After repeating this operation of slurry inflow, standing still, and mud removal 10 times,
After drying at 0°C for 10 hours, the mold was released. After demolding, 10
Main drying was performed at 5°C for 10 hours. Then 1300°C
A hollow pipe-shaped porous fired body was obtained.

得られた中空パイプ状多孔質焼成体について、各金属溶
湯用濾材としての評価試験を行った。その結果を第2表
に示した。
Evaluation tests were conducted on the obtained hollow pipe-shaped porous fired bodies as filter media for various molten metals. The results are shown in Table 2.

(以下、余白) 上記実施例の結果から、本発明の方法で製造した多孔質
焼成体は、曲げ強度のバラツキも小さく、発泡性も良好
で均一な細孔分布を有することが分かる。また、成形型
の振動や無機質結合材スラリーの流入量を調節すること
により所定の充填率に調節することもでき、更に金属溶
湯用濾材として十分な空隙率及びi!!過性能を有する
多孔質焼成体が得られることが分かる。
(Hereinafter, blank spaces) From the results of the above examples, it can be seen that the porous fired body produced by the method of the present invention has small variations in bending strength, good foamability, and a uniform pore distribution. In addition, by adjusting the vibration of the mold and the inflow amount of the inorganic binder slurry, it is possible to adjust the filling rate to a predetermined value, and the porosity and i! ! It can be seen that a porous fired body having superior performance can be obtained.

〔発明の効果] 本発明の金属溶湯用濾材の製造方法は、骨材粒子と無機
質結合材とを混練することなく、それぞれ別々に成形型
に充填、流入することにより、所定の均一な孔径で均一
な細孔分布を有する多孔質焼成体の金属溶湯用濾材を得
ることができる。また、骨材粒子の充填率を成形型の振
動や無機質結合材スラリーの流入回数等により調節して
所定の空隙率を得ることができる。更に、本発明は混練
操作が不要となると共に、無機質結合材は必要最低限で
調節でき、操作が簡便で工業上極めて有用である。
[Effects of the Invention] The method for manufacturing a filter medium for molten metal of the present invention is to fill and flow aggregate particles and inorganic binder into a mold separately without kneading them, thereby forming a filter medium with a predetermined uniform pore size. A filter medium for molten metal of a porous fired body having a uniform pore distribution can be obtained. Furthermore, a predetermined porosity can be obtained by adjusting the filling rate of the aggregate particles by controlling the vibration of the mold, the number of times the inorganic binder slurry flows in, and the like. Furthermore, the present invention does not require a kneading operation, and the amount of inorganic binder can be adjusted to the minimum necessary level, making the operation simple and extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の製造工程図である。 第2図は本発明における骨材粒子の形状指数を算出する
際に用いる骨十オの投影説明図である。第3図は本発明
の金属溶湯用濾材の発泡性テスト装置の概要断面図であ
り、第4同は発泡性テストの発泡状態を示した発泡性評
価基準図である。
FIG. 1 is a manufacturing process diagram of an embodiment of the present invention. FIG. 2 is a projection explanatory view of bones used in calculating the shape index of aggregate particles in the present invention. FIG. 3 is a schematic cross-sectional view of the foamability test device for filter media for molten metal of the present invention, and FIG. 4 is a foamability evaluation standard diagram showing the foaming state in the foamability test.

Claims (3)

【特許請求の範囲】[Claims] (1)骨材粒子と無機質結合材とからなる金属溶湯用濾
材の製造方法において、所定形状の成形型に骨材粒子を
充填し、次いで無機質結合材のスラリーを流入し、その
後排泥、乾燥、離型して得た成形体を焼成することを特
徴とする金属溶湯用濾材の製造方法。
(1) In a method for producing a filter medium for molten metal consisting of aggregate particles and an inorganic binder, aggregate particles are filled into a mold with a predetermined shape, and then a slurry of the inorganic binder is poured into the mold, followed by draining and drying. A method for producing a filter medium for molten metal, which comprises firing a molded body obtained by demolding.
(2)前記スラリーの流入前、流入中、または/及び流
入後に該成形型を振動する請求項(1)記載の金属溶湯
用濾材の製造方法。
(2) The method for producing a filter medium for molten metal according to claim (1), wherein the mold is vibrated before, during, and/or after the slurry flows in.
(3)該骨材粒子の形状指数が100〜130である請
求項(1)または(2)記載の金属溶湯用濾材の製造方
法。
(3) The method for producing a filter medium for molten metal according to claim (1) or (2), wherein the aggregate particles have a shape index of 100 to 130.
JP2164472A 1990-06-22 1990-06-22 Production of filter material for molten metal Pending JPH0459008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2164472A JPH0459008A (en) 1990-06-22 1990-06-22 Production of filter material for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2164472A JPH0459008A (en) 1990-06-22 1990-06-22 Production of filter material for molten metal

Publications (1)

Publication Number Publication Date
JPH0459008A true JPH0459008A (en) 1992-02-25

Family

ID=15793830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2164472A Pending JPH0459008A (en) 1990-06-22 1990-06-22 Production of filter material for molten metal

Country Status (1)

Country Link
JP (1) JPH0459008A (en)

Similar Documents

Publication Publication Date Title
CA1059535A (en) Ceramic foam filter
US3893917A (en) Molten metal filter
US4056586A (en) Method of preparing molten metal filter
US4935178A (en) Method of making refractory fiber products
JPH0431728B2 (en)
JP4176278B2 (en) Ceramic porous body and method for producing the same
JP2002129204A (en) Method for manufacturing porous metal
CN108439987A (en) A kind of method that 3D moldings prepare the controllable silicon carbide ceramics in aperture
EP0174529B1 (en) Method for manufacturing a ceramic body having a permeable porous structure
JPH0459008A (en) Production of filter material for molten metal
GB1596446A (en) Manufacture of ceramic foams
JP2849167B2 (en) Manufacturing method of filter media for molten metal
JP2983416B2 (en) Mold structure
JPH04236727A (en) Filter medium for molten metal
SU1470423A1 (en) Method of investment-pattern casting
Ozer et al. Cellular aluminium foam metal production with space holder particles
JPH11291213A (en) Method for forming castable refractory block
RU2208001C1 (en) Method of manufacturing hollow ceramic filter element
JP2801948B2 (en) Filter media for molten metal
JPH0222129B2 (en)
JPH0376201B2 (en)
JPH03281742A (en) Filter material for metallic molten metal
JP3122250B2 (en) Casting method of ceramic powder
JPH09301785A (en) Ceramic porous body and its production
JPH0148224B2 (en)