JPH0458808B2 - - Google Patents

Info

Publication number
JPH0458808B2
JPH0458808B2 JP12515486A JP12515486A JPH0458808B2 JP H0458808 B2 JPH0458808 B2 JP H0458808B2 JP 12515486 A JP12515486 A JP 12515486A JP 12515486 A JP12515486 A JP 12515486A JP H0458808 B2 JPH0458808 B2 JP H0458808B2
Authority
JP
Japan
Prior art keywords
formula
group
aromatic
represented
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12515486A
Other languages
Japanese (ja)
Other versions
JPS62283127A (en
Inventor
Yoshio Imai
Masaaki Kakimoto
Yoshuki Ooishi
Yutaka Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP12515486A priority Critical patent/JPS62283127A/en
Priority to GB08712400A priority patent/GB2191496A/en
Priority to US07/054,965 priority patent/US4820793A/en
Priority to IT20732/87A priority patent/IT1205115B/en
Priority to FR878707596A priority patent/FR2599370B1/en
Priority to DE19873718212 priority patent/DE3718212A1/en
Publication of JPS62283127A publication Critical patent/JPS62283127A/en
Publication of JPH0458808B2 publication Critical patent/JPH0458808B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明は、芳銙族ポリベンズオキサゟヌル暹脂
の新芏な補造方法に関する。䞀般に芳銙族ポリベ
ンズオキサゟヌル暹脂は、優れた耐熱性、機械的
匷床、電気的特性を持぀こずが知られおいる。 䞀般に高分子暹脂の性質を決定する䞊で、分子
量の䞎える圱響は重芁である。重合床が䜎く、分
子量が小さい堎合は、粘性や柔軟性が䞍充分ずな
り、膜、繊維、成圢品に加工するこずが困難であ
る。たた、加工しおも、匷床や耐熱性等に充分な
性質が埗られない。䞀方、分子量が倚きすぎる堎
合は、暹脂の流動性が悪くなり、加工時の障害ず
なる。 〔埓来の技術〕 ポリベンズオキサゟヌル暹脂は䞀般にゞアミン
化合物ずゞカルボン酞ゞハラむドの反応により埗
らえるポリアミド暹脂を脱氎環化反応させお埗ら
れ、その重合床はポリアミド暹脂の重合床に支配
される。この重合床は原料のゞアミン化合物ず、
ゞカルボン酞ゞハラむドの仕蟌量によ぀お制埡さ
れる。これらの反応成分を等モル量䜿甚するず、
高分子量の芳銙族ポリベンズオキサゟヌル暹脂を
制埡するこずができる。しかしながら、このよう
な分子量の制埡は、原料である反応成分の反応性
が充分高い堎合にのみ可胜であり、反応性が悪い
堎合には、分子量の䜎い反応生成物しか埗られな
い。 埓来、本発明の目的物である芳銙族のポリベン
ズオキゟヌル暹脂はその反応成分であるゞアミン
化合物の反応性が悪いために、高分子量の重合䜓
を埗るこずが困難であ぀た。本発明者らは、充分
に高分子量で、優れた性質を発揮する芳銙族ポリ
ベンズオキサゟヌル暹脂を埗るべく鋭意努力した
結果、本発明をなすに至぀た。 〔問題点を解決するための具䜓的な手段〕 すなわち本発明は、 䞀般匏 匏䞭、は䟡の芳銙族基、は䟡の有機
基、は〜200の敎数を瀺す。 で衚される芳銙族ポリベンズオキサゟヌル暹脂を
補造するに圓り、 䞀般匏 匏䞭、R1は䟡の有機珪玠基、R2は氎玠、た
たは䟡の有機珪玠基、は䟡の有機基を瀺
す。 で衚わされる芳銙族ゞアミンず、 䞀般匏 匏䞭、は䟡の芳銙族基、はハロゲンを瀺
す。 で衚される芳銙族ゞカルボン酞ゞハラむドを有機
溶媒䞭で反応させお、 䞀般匏 匏䞭、は䟡の芳銙族基、は䟡の有機
基、は〜200の敎数を瀺す。 で衚わされ芳銙族ポリアミド暹脂を補造し、しか
る埌に、圓該ポリアミド暹脂を脱氎環化反応させ
るこずを特城ずする芳銙族ポリベンズオキサゟヌ
ル暹脂の補造方法である。 䞊蚘䞀般匏で衚わされる芳銙族ポリアミ
ド暹脂は、䞊蚘䞀般匏で衚わされる芳銙族
ゞアミンず、䞊蚘䞀般匏で衚わされるゞカ
ルボン酞ゞハラむドずの反応によ぀お補造され
る。䞀般匏で衚される芳銙族ゞアミンずし
おは、匏䞭で衚される䟡の有機基ずしお、単
結晶、アルキレン基、ハロゲン化アルキレン基、
スルホン基、スルフむド基、アミノ基、カルボニ
ル基、゚ヌテル基等があげられるが、より具䜓的
に䟋瀺するず、ビス−トリメチルシリルアミ
ノ−−トリメチルシロキシプニルメタン、
−プニル−1.1−ビス−トリメチルアミ
ノ−−トリメチルシロキシプニル゚タン、
2.2−ビス−トリメチルアミノ−−トリメ
チルシロキシプニルプロパン、2.2−ビス
−トリメチルシリルアミノ−−トリメチル
シロキシプニルヘキサフルオロプロパン、
−プニル−1.1−ビス−トリメチルシリル
アミノ−−トリメチルシロキシプニルトリ
フルオロ゚タン、−トリフルオロメチル−1.1
−ビス−トリメチルシリルアミノ−−トリ
メチルシロキシ゚タン、〔4.4′−ビストリメ
チルシリルアミノ−3.3′−ビストリメチルシ
ロキシ〕ビプニル、〔3.3′−ビストリメチル
シリルアミノ−4.4′−ビストリメチルシロキ
シ〕ビプニル、ビス−トリメチルシリル
アミノ−−トリメチルシロキシプニルスル
ホン、ビス−トリメチルシリルアミノ−−
トリメチルシロキシプニルスルフむド、ビス
−トリメチルシリルアミノ−−トリメチル
シロキシプニル゚ヌテル、ビス−トリメ
チルシリルアミノ−−トリメチルシロキシプ
ニルケトン、ビス−トリメチルシリルアミ
ノ−−トリメチルシロキシプニルアミン等
が有効である。 䞀般匏で衚される芳銙族ゞカルボン酞ゞ
ハラむドずしおは、䟋えばむ゜フタル酞ゞクロリ
ド、テレフタル酞ゞクロリド、4′−ビプニ
ルゞカルボン酞ゞクロリド、ビプニル゚ヌテル
4′−ゞカルボン酞ゞクロリド、ベンゟプノ
ン−4.4′−ゞカルボン酞ゞクロリド、ベンゟスル
ホン−4′−ゞカルボン酞ゞクロリド、む゜プ
ロピリデンビプニル−4.4′−ゞカルボン酞ゞク
ロリド、ヘキサフルオロむ゜プロピリデンビプ
ニル−4′−ゞカルボン酞ゞクロリド等を䟋瀺
できる。これらは単独でも、皮類以䞊を混合し
お甚いおもよい。 この方法においお、䞀般匏で衚されるポ
リベンズオキサゟヌル暹脂の分子量は、䞀般匏
で衚されるゞアミン化合物ず、䞀般匏
で衚されるゞカルボン酞ゞハラむドの仕蟌量によ
぀お制限され、これらの反応成分を等モル量䜿甚
するず高分子量の芳銙族ポリベンズオキサゟヌル
暹脂を補造するこずができる。 本発明における䞀般匏で衚される芳銙族
ゞアミン化合物ず䞀般匏で衚されるゞカル
ボン酞ゞハラむドずの反応は、有機溶媒䞭、実質
䞊無氎の条件䞋で、−10℃から溶媒の還流枩床で
数分から数時間反応させお行われる。 この方法に䜿甚できる有機溶媒は、䞀般に公知
の非氎系有機溶媒を広範囲に甚いるこずができ
る。具䜓的には、−ゞメチルホルムアミ
ド、−ゞメチルアセトアミド、−メチル
−−ピロリドン、ピリゞン等のアミド系溶媒、
ゞメチルスルホキシド、テトラメチルスルホン等
のむオり系溶媒、ベンれン、トル゚ン、アニ゜ヌ
ル、ゞプニル゚ヌテル、ニトロベンれン、ベン
ゟニトリル、クレゟヌル、プノヌル等のベンれ
ン系溶媒、クロロホルム、トリクロル゚タン、四
塩化炭玠等のハロゲン化炭化氎玠氎玠等を䟋瀺で
きるが、これに限定されるものではない。 䞀般匏で衚わされるポリアミド暹脂から
䞀般匏で衚わされるポリベンズオキサゟヌ
ル暹脂の補造は、脱氎剀の存圚䞋、もしくは、非
存圚䞋で数秒から数十時間、100〜500℃で加熱す
るこずによ぀お行なわれる。ポリリン酞などの脱
氎剀の存圚䞋では、より䜎枩で反応を行なうこず
ができる。たた、枛圧䞋で加熱する方法によ぀お
反応枩床を䞋げるこずもできる。この反応は、䞀
般匏で衚わされるポリアミド暹脂を膜や、
繊維状に成圢した埌に反応させるこずも可胜であ
る。 以䞋、本発明を実斜䟋によ぀お曎に詳现に説明
する。 実斜䟋  容量50mlの䞉぀口フラスコに、−ビス
−トリメチルシリルアミノ−−トリメチルシロ
キシプニルヘキサフルオロプロパン1.638
2.5mol、ゞメチルアセトアミドmlを採り、
窒玠ガス雰囲気䞋で撹拌溶解した。この溶液をド
ラむアむス−アセトン济で凍結した埌、む゜フタ
ル酞ゞクロリド0.5082.5mlを添加した。氷
冷济に替えお、時間ゆ぀くり撹拌した埌、溶液
を氎䞭に投入し、ポリドアミド暹脂の沈柱を埗
た。生成暹脂の固有粘土は0.640.5dLゞメチ
ルセトアミド、30℃であ぀た。 赀倖線吞収スペクトルおよび元玠分析の結果匏 の構造であるこずを確認した。 赀倖線吞収スペクトル 1600cm-1− 1650cm-1 元玠分析    蚈算倀(%) 55.66 2.84 5.64 実枬倀(%) 55.44 2.68 5.88 次いで、このポリアミド暹脂を−メチル−
−ピロリドンに溶解し、ガラス板䞊に展開しおフ
むルムを成圢した。このフむルムを窒玠ガス雰囲
気䞋、280〜300℃で10時間加熱凊理し、透明で匷
じんなフむルムを埗た。赀倖線吞収スペクトル、
および元玠分析の結果、次匏で衚れるポリベンズ
オキサゟヌル暹脂であるこずを確認した。 赀倖線吞収ス゚クトル 1620cm-1 元玠分析    蚈算倀(%) 60.01 2.19 6.08 実枬倀(%) 59.94 2.03 6.17 実斜䟋  実斜䟋−ず同じ方法で、2.2−ビス
−トリメチルシリルアミノ−−トリメチルシロ
キシプニルヘキサフルオロプロパン1.38
2.5molず、テレフタル酞クロリド0.508
2.5molを反応させ、ポリアミド暹脂を埗
た。 生成暹脂の固有粘土は、0.650.5dLゞメチ
ルアセトアミド、30℃であ぀た。 元玠分析、赀倖線吞収スペクトル分析の結果を
第衚に瀺した。 以䞋、実匏䟋、比范䟋の分析結果を合わせお第
衚に瀺した。 この結果より、䞋蚘の構造であるこずを確認し
た。 このポリアミド暹脂を実斜䟋ず同じ方法
で凊理し、透明で匷じんなフむルムを埗た。この
ものは次匏で衚されるポリベンズオキサゟヌル暹
脂であ぀た。 実斜䟋  実斜䟋−ず同じ方法で、−ビス
−トリメチルシリルアミノ−−トリメチル
シロキシプニルヘキサフルオロプロパン
1.6382.2molず、む゜フタル酞クロリド
0.2541.25molずテレフタル酞クロリド
0.2541.25molを反応させ、ポリアミド暹
脂を埗た。 生成暹脂の固有粘床は0.860.5dLゞメチル
アセトアミド、30℃であ぀た。分析の結果、次
匏の構造であ぀た。 このポリアミド暹脂実斜䟋−ず同じ方法
で凊理し、透明で匷じんなフむルムを埗た。この
ものは、次匏で衚されるポリベンズオキサゟヌル
暹脂であ぀た。 実斜䟋  実斜䟋−ず同じ方法で、2.2−ビス
−トリメチルシリルアミノ−−メチルシロキシ
プニルヘキサフルオロプロパン1.6382.5
molず、ビプニル゚ヌテル−4.4′−ゞカル
ボン酞ゞクロリド0.7372.5molを反応さ
せ、ポリアミド暹脂を埗た。 生成暹脂の固有粘床は0.470.5dLゞメチル
アトアミド、30℃であ぀た。分析の結果、次匏
の構造であるこずを確認した。 このポリアミド暹脂実斜䟋−ず同じ方法
で凊理し、透明で匷じんなフむルムを埗た。この
ものは次匏で衚されるポリベンズオキサゟヌル暹
脂であ぀た。 実斜䟋  実斜䟋−ず同じ方法で、2.2−ビス
−トリメチルシリルアミノ−−トリメチルシロ
キシプニルヘキサフルオロペロパン1.638
2.5molず2.6−サフタレンゞカルボン酞ゞク
ロリド0.6332.5molを反応させ、ポリア
ミド暹脂を埗た。生成暹脂の固有粘床は0.600.5
dLゞメチルアセトアミド、30℃であ぀た。
分析の結果、次匏の構造であるこずを確認した。 このポリアミド暹脂を実斜䟋−ず同じ方
法で凊理し、透明で匷じんなフむルムを埗た。こ
のものは次匏で衚されるポリベンズオキサゟヌル
暹脂であ぀た。 実斜䟋  実斜䟋−ず同じ方法で、2.2−ビス
−トリメチルシリルアミノ−−トリメチルシロ
キシプニルヘキサフルオロプロパン1.638
2.2molず、ヘキサフルオロむ゜プロピリデ
ンビプニル−4.4′−ゞカルボン酞ゞクロリド
1.0732.5molを反応させ、ポリアミド暹
脂を埗た。生成暹脂の固有粘床は0.400.5dL
ゞメチルアセトアミド、30℃であ぀た。分析の
結果、次匏の構造であるこずを確認した。 このポリアミド暹脂を実斜䟋−ず同じ方
法で凊理し、透明で匷じんなフむルムを埗た。こ
のものは次匏で衚されるポリベンズオキサゟヌル
暹脂であ぀た。 実斜䟋  実斜䟋−ず同じ方法で、2.2−ビス
−トリメチルシリルアミノ−−トリメチルシロ
キシプニルプロパン1.3682.2molず、
む゜フタル酞クロリド0.5082.5molを反
応させ、ポリアミド暹脂を埗た。生成暹脂の固有
粘床は0.550.5dLゞメチルアセトアミド、30
℃であ぀た。分析の結果、次匏の構造であるこ
ずを確認した。 このポリアミド暹脂を実斜䟋−ず同じ方
法で凊理し、透明な匷じんなフむルムを埗た。こ
のものは次匏で衚わせるポリベンズオキサゟヌル
暹脂であ぀た。 実斜䟋  実斜䟋−ず同じ方法で、4.4′−ビスト
リメチルシリルアミノ−3.3′−ビストリメチ
ルシロキシビプニル1.2622.5molず
む゜フタル酞クロリド0.5082.5molを反
応させ、ポリアミド暹脂を埗た。生成暹脂の固有
粘床は0.500.5dLゞメチルアセトアミド、30
℃であ぀た。分析の結果、次匏の構造であるこ
ずを確認した。 このポリアミダ暹脂を実斜䟋−ず同じ方
法で凊理し、透明で匷じんなフむルムを埗た。こ
のものは次匏で衚されるポリベンズオキサゟヌル
暹脂であ぀た。 比范䟋  実斜䟋−ず同じ条件で、2.2−ビス
−アミノ−−ヒドロキシプニルヘキサフル
オロプロパン0.9152.5molずむ゜フタル
酞クロリド0.5082.5molを反応させ、ポ
リアミド暹脂を埗た。生成物は、実斜䟋−
で補造したポリアミド暹脂ず同じ構造であ぀た。
生成ポリアミド暹脂の固有粘床は、0.080.5
dLゞメチルアセトアミド、30℃であ぀た。こ
のポリアミド暹脂を実斜䟋−ず同じ方法で
凊理したがフむルムは埗られず、粉末状のポリベ
ンズオキサゟヌルしか埗られなか぀た。
[Industrial Application Field] The present invention relates to a novel method for producing aromatic polybenzoxazole resin. Generally, aromatic polybenzoxazole resins are known to have excellent heat resistance, mechanical strength, and electrical properties. In general, the influence of molecular weight is important in determining the properties of polymer resins. If the degree of polymerization is low and the molecular weight is small, the viscosity and flexibility will be insufficient, making it difficult to process into membranes, fibers, and molded products. Moreover, even if processed, sufficient properties such as strength and heat resistance cannot be obtained. On the other hand, if the molecular weight is too high, the fluidity of the resin will be poor, which will cause problems during processing. [Prior Art] Polybenzoxazole resins are generally obtained by subjecting a polyamide resin obtained by the reaction of a diamine compound and a dicarboxylic acid dihalide to a cyclodehydration reaction, and the degree of polymerization thereof is controlled by the degree of polymerization of the polyamide resin. This degree of polymerization is based on the raw material diamine compound,
It is controlled by the amount of dicarboxylic acid dihalide charged. Using equimolar amounts of these reaction components,
High molecular weight aromatic polybenzoxazole resins can be controlled. However, such control of the molecular weight is possible only when the reactivity of the reaction component as a raw material is sufficiently high; if the reactivity is poor, only a reaction product with a low molecular weight can be obtained. Conventionally, it has been difficult to obtain a high molecular weight polymer of the aromatic polybenzoxole resin, which is the object of the present invention, due to the poor reactivity of the diamine compound, which is a reactive component thereof. The present inventors have made earnest efforts to obtain an aromatic polybenzoxazole resin that has a sufficiently high molecular weight and exhibits excellent properties, and as a result, the present invention has been accomplished. [Specific means for solving the problem] That is, the present invention provides the following: (In the formula, R is a divalent aromatic group, X is a divalent organic group, and n is an integer of 1 to 200.) In producing the aromatic polybenzoxazole resin represented by the general formula (In the formula, R 1 is a monovalent organosilicon group, R 2 is hydrogen or a monovalent organosilicon group, and X is a divalent organic group.) An aromatic diamine represented by the general formula (In the formula, R is a divalent aromatic group and Y is a halogen.) By reacting the aromatic dicarboxylic acid dihalide represented by the formula in an organic solvent, the general formula (In the formula, R is a divalent aromatic group, X is a divalent organic group, and n is an integer of 1 to 200.) This is a method for producing an aromatic polybenzoxazole resin, which is characterized by carrying out a dehydration cyclization reaction. The aromatic polyamide resin represented by the above general formula () is produced by a reaction between an aromatic diamine represented by the above general formula () and a dicarboxylic acid dihalide represented by the above general formula (). As the aromatic diamine represented by the general formula (), the divalent organic group represented by X in the formula includes a single crystal, an alkylene group, a halogenated alkylene group,
Examples include sulfone group, sulfide group, amino group, carbonyl group, ether group, etc., but more specific examples include bis(3-trimethylsilylamino-4-trimethylsiloxyphenyl)methane,
1-phenyl-1,1-bis(3-trimethylamino-4-trimethylsiloxyphenyl)ethane,
2.2-bis(3-trimethylamino-4-trimethylsiloxyphenyl)propane, 2.2-bis(3-trimethylsilylamino-4-trimethylsiloxyphenyl)hexafluoropropane, 1
-Phenyl-1.1-bis(3-trimethylsilylamino-4-trimethylsiloxyphenyl)trifluoroethane, 1-trifluoromethyl-1.1
-bis(3-trimethylsilylamino-4-trimethylsiloxy)ethane, [4.4'-bis(trimethylsilylamino)-3.3'-bis(trimethylsiloxy)]biphenyl, [3.3'-bis(trimethylsilylamino)-4.4'-bis (trimethylsiloxy)] biphenyl, bis(3-trimethylsilylamino-4-trimethylsiloxyphenyl)sulfone, bis(3-trimethylsilylamino-4-
trimethylsiloxyphenyl) sulfide, bis(3-trimethylsilylamino-4-trimethylsiloxyphenyl) ether, bis(3-trimethylsilylamino-4-trimethylsiloxyphenyl)ketone, bis(3-trimethylsilylamino-4-trimethylsiloxy) (phenyl)amine etc. are effective. Examples of the aromatic dicarboxylic acid dihalide represented by the general formula () include isophthalic acid dichloride, terephthalic acid dichloride, 4,4'-biphenyl dicarboxylic acid dichloride, biphenyl ether 4,4'-dicarboxylic acid dichloride, and benzophenone dichloride. Examples include 4,4'-dicarboxylic acid dichloride, benzosulfone-4,4'-dicarboxylic acid dichloride, isopropylidene biphenyl-4,4'-dicarboxylic acid dichloride, hexafluoroisopropylidene biphenyl-4,4'-dicarboxylic acid dichloride, etc. . These may be used alone or in combination of two or more. In this method, the molecular weight of the polybenzoxazole resin represented by the general formula () is the same as that of the diamine compound represented by the general formula ().
It is limited by the amount of the dicarboxylic acid dihalide represented by: If equimolar amounts of these reaction components are used, a high molecular weight aromatic polybenzoxazole resin can be produced. In the present invention, the reaction between the aromatic diamine compound represented by the general formula () and the dicarboxylic acid dihalide represented by the general formula () is carried out in an organic solvent under substantially anhydrous conditions from -10°C to 50°C. The reaction is carried out at reflux temperature for several minutes to several hours. As the organic solvent that can be used in this method, a wide variety of generally known non-aqueous organic solvents can be used. Specifically, amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, and pyridine;
Sulfur-based solvents such as dimethyl sulfoxide and tetramethylsulfone, benzene-based solvents such as benzene, toluene, anisole, diphenyl ether, nitrobenzene, benzonitrile, cresol, and phenol, and halogenated hydrocarbons such as chloroform, trichloroethane, carbon tetrachloride, etc. Examples include hydrogen, but are not limited thereto. The polybenzoxazole resin represented by the general formula () is produced from the polyamide resin represented by the general formula () by heating at 100 to 500°C for several seconds to several tens of hours in the presence or absence of a dehydrating agent. It is done by In the presence of a dehydrating agent such as polyphosphoric acid, the reaction can be carried out at lower temperatures. The reaction temperature can also be lowered by heating under reduced pressure. This reaction is carried out by forming a polyamide resin represented by the general formula () into a membrane,
It is also possible to react after forming into a fiber. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 2,2-bis (3
-trimethylsilylamino-4-trimethylsiloxyphenyl)hexafluoropropane 1.638g
(2.5 mmol) and 5 ml of dimethylacetamide,
The mixture was stirred and dissolved under a nitrogen gas atmosphere. After freezing this solution in a dry ice-acetone bath, 0.508 g (2.5 ml) of isophthaloyl dichloride was added. After changing to an ice bath and stirring slowly for 5 hours, the solution was poured into water to obtain a polyamide resin precipitate. The inherent clay of the resulting resin was 0.64 {0.5 g/dL dimethylcetamide, 30°C). Infrared absorption spectrum and elemental analysis result formula It was confirmed that the structure was Infrared absorption spectrum 1600cm -1 (NH) 1650cm -1 (C=O) Elemental analysis C H N Calculated value (%) 55.66 2.84 5.64 Actual value (%) 55.44 2.68 5.88 Next, this polyamide resin was treated with N-methyl- 2
- It was dissolved in pyrrolidone and spread on a glass plate to form a film. This film was heat-treated at 280 to 300°C for 10 hours in a nitrogen gas atmosphere to obtain a transparent and strong film. infrared absorption spectrum,
As a result of elemental analysis, it was confirmed that it was a polybenzoxazole resin represented by the following formula. Infrared absorption spectre 1620 cm -1 (C=N) Elemental analysis C H N Calculated value (%) 60.01 2.19 6.08 Actual value (%) 59.94 2.03 6.17 Example 2 In the same manner as (Example-1), 2.2-bis( 3
-trimethylsilylamino-4-trimethylsiloxyphenyl)hexafluoropropane 1.38g
(2.5 mmol) and 0.508 g of terephthalic acid chloride
(2.5 mmol) was reacted to obtain a polyamide resin. The inherent clay of the resulting resin was 0.65 (0.5 g/dL dimethylacetamide, 30°C). The results of elemental analysis and infrared absorption spectrum analysis are shown in Table 1. (Hereinafter, the analysis results of the practical examples and comparative examples are shown in Table 1.) From these results, it was confirmed that the structure was as shown below. This polyamide resin was treated in the same manner as in Example 1 to obtain a transparent and strong film. This material was a polybenzoxazole resin represented by the following formula. Example 3 In the same manner as in (Example-1), 2,2-bis(3-trimethylsilylamino-4-trimethylsiloxyphenyl)hexafluoropropane
1.638g (2.2mmol) and isophthalic acid chloride
0.254g (1.25mmol) and terephthalic acid chloride
0.254g (1.25mmol) was reacted to obtain a polyamide resin. The intrinsic viscosity of the resulting resin was 0.86 (0.5 g/dL dimethylacetamide, 30°C). As a result of the analysis, the structure was as shown in the following formula. A transparent and strong film was obtained by processing in the same manner as this polyamide resin (Example 1). This material was a polybenzoxazole resin represented by the following formula. Example 4 In the same manner as in (Example-1), 2.2-bis(3
-trimethylsilylamino-4-methylsiloxyphenyl)hexafluoropropane 1.638 g (2.5
mmol) and 0.737 g (2.5 mmol) of biphenyl ether-4.4'-dicarboxylic acid dichloride to obtain a polyamide resin. The intrinsic viscosity of the resulting resin was 0.47 (0.5 g/dL dimethylatomamide, 30°C). As a result of the analysis, it was confirmed that the structure was as shown in the following formula. A transparent and strong film was obtained by processing in the same manner as this polyamide resin (Example 1). This material was a polybenzoxazole resin represented by the following formula. Example 5 2.2-bis(3
-trimethylsilylamino-4-trimethylsiloxyphenyl)hexafluoroperopane 1.638g
(2.5 mmol) and 0.633 g (2.5 mmol) of 2.6-saphthalene dicarboxylic acid dichloride were reacted to obtain a polyamide resin. The intrinsic viscosity of the resulting resin is 0.60 (0.5
g/dL dimethylacetamide, 30°C).
As a result of the analysis, it was confirmed that the structure was as shown in the following formula. This polyamide resin was treated in the same manner as in Example 1 to obtain a transparent and strong film. This material was a polybenzoxazole resin represented by the following formula. Example 6 In the same manner as (Example-1), 2.2-bis(3
-trimethylsilylamino-4-trimethylsiloxyphenyl)hexafluoropropane 1.638g
(2.2 mmol) and hexafluoroisopropylidene biphenyl-4.4'-dicarboxylic acid dichloride
1.073g (2.5mmol) was reacted to obtain a polyamide resin. The intrinsic viscosity of the produced resin is 0.40 (0.5g/dL
dimethylacetamide (30°C). As a result of the analysis, it was confirmed that the structure was as shown in the following formula. This polyamide resin was treated in the same manner as in Example 1 to obtain a transparent and strong film. This material was a polybenzoxazole resin represented by the following formula. Example 7 In the same manner as (Example-1), 2.2-bis(3
-trimethylsilylamino-4-trimethylsiloxyphenyl)propane 1.368 g (2.2 mmol),
0.508 g (2.5 mmol) of isophthalic acid chloride was reacted to obtain a polyamide resin. The intrinsic viscosity of the resulting resin is 0.55 (0.5 g/dL dimethylacetamide, 30
℃). As a result of the analysis, it was confirmed that the structure was as shown in the following formula. This polyamide resin was treated in the same manner as in Example 1 to obtain a transparent and strong film. This product was a polybenzoxazole resin represented by the following formula. Example 8 In the same manner as in Example 1, 1.262 g (2.5 mmol) of 4.4'-bis(trimethylsilylamino)-3.3'-bis(trimethylsiloxy)biphenyl and 0.508 g (2.5 mmol) of isophthalic acid chloride were reacted. A polyamide resin was obtained. The intrinsic viscosity of the resulting resin is 0.50 (0.5 g/dL dimethylacetamide, 30
℃). As a result of the analysis, it was confirmed that the structure was as shown in the following formula. This polyamide resin was treated in the same manner as in Example 1 to obtain a transparent and strong film. This material was a polybenzoxazole resin represented by the following formula. Comparative Example 1 Under the same conditions as (Example-1), 2.2-bis(3
0.915 g (2.5 mmol) of -amino-4-hydroxyphenyl)hexafluoropropane and 0.508 g (2.5 mmol) of isophthalic acid chloride were reacted to obtain a polyamide resin. The product is (Example-1)
It had the same structure as the polyamide resin manufactured by.
The intrinsic viscosity of the polyamide resin produced is 0.08 (0.5g/
dL dimethylacetamide, 30°C). This polyamide resin was treated in the same manner as in Example 1, but no film was obtained, and only powdered polybenzoxazole was obtained.

【衚】【table】

【衚】 本発明の効果 本発明は、䞀般匏で衚される芳銙族ポリ
ベンズオキサゟヌル暹脂の有利な補造方法を提䟛
するものである。この暹脂は耐熱性、耐候性、機
械匷床、電気的特性等の諞性質が良奜であり、優
れた工業的材料であるこずが知られおいる。埓
来、高分子量の暹脂を補造するこずが困難であ぀
た。これに察し、本発明は、充分に高分子量の圓
該暹脂を補造するための有利な方法を提䟛するも
のであり、工業的䟡倀が高い。
[Table] [Effects of the present invention] The present invention provides an advantageous method for producing an aromatic polybenzoxazole resin represented by the general formula (). This resin has good properties such as heat resistance, weather resistance, mechanical strength, and electrical properties, and is known to be an excellent industrial material. Conventionally, it has been difficult to produce high molecular weight resins. In contrast, the present invention provides an advantageous method for producing the resin with a sufficiently high molecular weight, and has high industrial value.

Claims (1)

【特蚱請求の範囲】  䞀般匏 匏䞭、は䟡の芳銙族基、は䟡の有機
基、は〜200の敎数を瀺す。 で衚される芳銙族ポリベンズオキサゟヌル暹脂を
補造するに圓り、 䞀般匏 匏䞭、R1は䟡の有機珪玠基、R2は氎玠たた
は䟡の有機珪玠基、は䟡の有機基を瀺す。 で衚わされる芳銙族ゞアミンず、 䞀般匏 匏䞭、は䟡の芳銙族基、はハロゲンを瀺
す。 で衚される芳銙族ゞカルボン酞ゞハラむドを有機
溶媒䞭で反応させお、 䞀般匏 匏䞭、は䟡の芳銙族基、は䟡の有機
基、は〜200の敎数を瀺す。 で衚わされる芳銙族ポリアミド暹脂を補造し、し
かる埌に、圓該ポリアミド暹脂を脱氎環化反応さ
せるこずを特城ずするポリベンズオキサゟヌル暹
脂の補造方法。
[Claims] 1. General formula (In the formula, R is a divalent aromatic group, X is a divalent organic group, and n is an integer of 1 to 200.) In producing the aromatic polybenzoxazole resin represented by the general formula (In the formula, R 1 is a monovalent organosilicon group, R 2 is hydrogen or a monovalent organosilicon group, and X is a divalent organic group.) An aromatic diamine represented by the general formula (In the formula, R is a divalent aromatic group and Y is a halogen.) By reacting the aromatic dicarboxylic acid dihalide represented by the formula in an organic solvent, the general formula (In the formula, R is a divalent aromatic group, X is a divalent organic group, and n is an integer of 1 to 200.) A method for producing a polybenzoxazole resin, which comprises carrying out a dehydration cyclization reaction.
JP12515486A 1986-05-30 1986-05-30 Production of polybenzoxazole resin Granted JPS62283127A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP12515486A JPS62283127A (en) 1986-05-30 1986-05-30 Production of polybenzoxazole resin
GB08712400A GB2191496A (en) 1986-05-30 1987-05-27 Method of preparing aromatic polyamides and polybenzoxazoles
US07/054,965 US4820793A (en) 1986-05-30 1987-05-28 Method of preparing aromatic polyamides and polybenzoxazoles
IT20732/87A IT1205115B (en) 1986-05-30 1987-05-29 METHOD FOR PREPARING AROMATIC POLYAMIDS AND POLYBENZOSSAZOLS
FR878707596A FR2599370B1 (en) 1986-05-30 1987-05-29 PROCESS FOR THE PREPARATION OF AROMATIC POLYAMIDES AND POLYBENZOXAZOLES
DE19873718212 DE3718212A1 (en) 1986-05-30 1987-05-29 METHOD FOR PRODUCING AROMATIC POLYAMIDES AND POLYBENZOXAZOLES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12515486A JPS62283127A (en) 1986-05-30 1986-05-30 Production of polybenzoxazole resin

Publications (2)

Publication Number Publication Date
JPS62283127A JPS62283127A (en) 1987-12-09
JPH0458808B2 true JPH0458808B2 (en) 1992-09-18

Family

ID=14903208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12515486A Granted JPS62283127A (en) 1986-05-30 1986-05-30 Production of polybenzoxazole resin

Country Status (1)

Country Link
JP (1) JPS62283127A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0291778B1 (en) * 1987-05-18 1994-03-16 Siemens Aktiengesellschaft Process for the preparation of high temperature-resistant dielectrics
JPH01292034A (en) * 1988-05-19 1989-11-24 Cosmo Oil Co Ltd Production of poly(amidobenzoxazole) resin
JPH02247225A (en) * 1989-03-20 1990-10-03 Honda Motor Co Ltd Production of polybenzobisoxazole precursor substance
JP2007262158A (en) * 2006-03-27 2007-10-11 Osaka Prefecture Microparticle of polyoxazole or its precursor and method for producing the microparticle

Also Published As

Publication number Publication date
JPS62283127A (en) 1987-12-09

Similar Documents

Publication Publication Date Title
Liou et al. Synthesis and characterization of novel soluble triphenylamine‐containing aromatic polyamides based on N, N′‐bis (4‐aminophenyl)‐N, N′‐diphenyl‐1, 4‐phenylenediamine
US3875116A (en) Polyetherimides
CA1219398A (en) Polyimides, polyamic acid and ester intermediates thereof, and novel aromatic diamines for their preparation
Ghaemy et al. Synthesis and characterization of new soluble polyamides from an unsymmetrical diamine bearing a bulky triaryl pyridine pendent group
US4820793A (en) Method of preparing aromatic polyamides and polybenzoxazoles
Kricheldorf et al. New polymer syntheses. 67. Kevlar-type polyaramides of monosubstituted terephthalic acids
Hsiao et al. Synthesis and properties of novel soluble polyamides having ether linkages and laterally attached p‐terphenyl units
JP2759796B2 (en) Novel bis (maleimide) siloxane and method for producing the same
Parthiban et al. Amino-functionalized poly (arylene ether ketone) s
JP2971325B2 (en) Macrocyclic polyimide oligomer and method for producing the same
Liou et al. Synthesis and properties of new soluble aromatic polyamides and polyimides on the basis of N, N′‐bis (3‐aminobenzoyl)‐N, N′‐diphenyl‐1, 4‐phenylenediamine
Liou et al. Preparation and properties of aromatic polyamides from 2, 2′‐bis (p‐carboxyphenoxy) biphenyl or 2, 2′‐bis (p‐carboxyphenoxy)‐1, 1′‐binaphthyl and aromatic diamines
US4978734A (en) Polyamide-polyamide and polybenzoxazole-polyamide polymer
JPH0458808B2 (en)
Hsiao et al. Preparation and characterization of aromatic polyamides based on ether‐sulfone‐dicarboxylic acids
Li et al. Highly organosoluble and transparent polyamides containing cyclohexane and trifluoromethyl moieties: Synthesis and characterization
Mohite et al. Synthesis and characterization of silicon‐containing phenylated soluble aramids
Yang et al. Novel perfluorononenyloxy group-containing polyimides
JPS5846244B2 (en) Manufacturing method of polyetherimide
JPH082962B2 (en) Method for producing aromatic polythioether imide
Mohamed et al. Synthesis and characterization of novel wholly para‐oriented aromatic polyamide‐hydrazides containing sulfone‐ether linkages
Hsiao et al. Synthesis and evaluation of novel polyimides derived from spirobichroman diether anhydride
Hsiao et al. Synthesis and properties of aromatic polyamides based on 4, 4′‐(1, 5‐naphthalenedioxy) dibenzoic acid
Kakimoto et al. Synthesis and properties of block copolymers based on carboxyl-terminated polydimethylsiloxane and aromatic polyamides
JP2700703B2 (en) Polybenzobisoxazole molecular composite and method for producing the same