JPH0457994A - Additive for paper-making process - Google Patents

Additive for paper-making process

Info

Publication number
JPH0457994A
JPH0457994A JP16575390A JP16575390A JPH0457994A JP H0457994 A JPH0457994 A JP H0457994A JP 16575390 A JP16575390 A JP 16575390A JP 16575390 A JP16575390 A JP 16575390A JP H0457994 A JPH0457994 A JP H0457994A
Authority
JP
Japan
Prior art keywords
reaction
paper
polyacrylamide
added
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16575390A
Other languages
Japanese (ja)
Inventor
Haruki Tsutsumi
堤 春樹
Takashi Yodoya
淀谷 隆
Toshihiko Takagi
斗志彦 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP16575390A priority Critical patent/JPH0457994A/en
Publication of JPH0457994A publication Critical patent/JPH0457994A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Abstract

PURPOSE:To obtain a paper-making additive suitable as an additive for pulp slurry to improve the paper strength by reacting a specific cationic copolymer with a hypohalite under alkaline condition. CONSTITUTION:The objective additive can be produced by copolymerizing (A) 0.1-20mol% of a diallylamine derivative monomer of formula I (R1 and R2 are H or CH3; R3 and R4 are H or 1-6C alkyl; X is anion of inorganic or organic acid) and (B) 80-99.9mol% of an acrylamide monomer of formula II (R5 is H or CH3) and reacting the resultant cationic copolymer with (C) a hypohalite at 50-110 deg.C under alkaline condition in a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本!!明は、製紙用添加剤に関する。更に詳細には、ジ
アリルアミン誘導体のモノマーとアクリルアミド系モノ
マーを共重合し、これを高温、短時間でホフマン分解反
応させて得られるカチオン性アクリルアミド系重合体を
製紙用添加剤として用いるものであって、このものは抄
紙する際のpl(変動に対して受ける影響が小さく、ま
たパルブスラリ−中に存在する溶解成分、例えば硫酸ナ
トリウムや硫酸カルシウム等のmsa塩に対して安定し
た効果を発現することを特徴とする0本発明はこのよう
なa紙用添加剤及び該製紙用添加剤を用いての紙力増強
方法及び濾水向上方法に関する。
[Detailed description of the invention] [Industrial application field] Book! ! The present invention relates to additives for papermaking. More specifically, a cationic acrylamide polymer obtained by copolymerizing a diallylamine derivative monomer and an acrylamide monomer and subjecting the copolymer to a Hofmann decomposition reaction at high temperature in a short time is used as a papermaking additive, This product is characterized by being less affected by fluctuations in PL during paper making, and exhibiting stable effects against dissolved components present in the pulp slurry, such as msa salts such as sodium sulfate and calcium sulfate. The present invention relates to such an additive for paper, and a method for increasing paper strength and a method for improving drainage using the additive for paper manufacturing.

〔従来技術とその問題点〕[Prior art and its problems]

従来、カチオン性アクリルアミド系重合体(以下アクリ
ルアミド系重合体を単にポリアクリルアミドと略称する
)としてホフマン分解ポリアクリルアミド、マンニッヒ
化ポリアクリルアミド、及びカチオン性モノマーとアク
リルアミドとの共重合体等があり、紙力増強剤、高分子
N幕剤あるいは濾水向上剤等各種の用達に使用され、あ
るいはその使用が検討されている。
Conventionally, cationic acrylamide-based polymers (hereinafter acrylamide-based polymers are simply referred to as polyacrylamide) include Hoffmann-decomposed polyacrylamide, Mannich-modified polyacrylamide, and copolymers of cationic monomers and acrylamide. It is used for various purposes such as a reinforcing agent, a polymer N-curing agent, and a drainage improver, or its use is being considered.

上記の中でもホフマン分解ポリアクリルアミドはマンニ
ッヒ化ポリアクリルアミド及びカチオン性モノマーとの
共重合体にはない優れた特徴を有しているにもかかわら
ず、水溶液中でそのカチオン性が経時的に消失するとい
う経時劣化の問題があり、幅広く実用されるには至って
いない。
Among the above, although Hofmann-decomposed polyacrylamide has excellent characteristics not found in Mannich-modified polyacrylamide and copolymers with cationic monomers, it is said that its cationic properties disappear over time in an aqueous solution. Due to the problem of deterioration over time, it has not been widely put into practical use.

従来その点を改善するため種々検討がなされている。こ
れらの1つとしてポリアクリルアミドのホフマン分解反
応を低温で行うことにより、副反応を抑制して経時劣化
を抑制しようという試みがある。すなわち高分子論文集
票339 、No6,309〜316へ°−シ゛、19
76年にポリアクリルアミドCホフマン分解反応は隣接
基の反応促進効果により低温でもアミノ基への変換は容
易に起こることが指摘されており、副反応(加水分解、
ラクタム環形成*>、解重合などを抑える意味で概ね2
5℃以下の@温で反応を行うことが、高性能のアミノ化
PAMを得る上で望ましいということが開示されている
Conventionally, various studies have been made to improve this point. One of these attempts is to perform the Hofmann decomposition reaction of polyacrylamide at a low temperature to suppress side reactions and thereby suppress deterioration over time. That is, to Polymer Paper Collection 339, No. 6, 309-316, 19
In 1976, it was pointed out that in the Hofmann decomposition reaction of polyacrylamide C, conversion to amino groups easily occurs even at low temperatures due to the reaction promoting effect of adjacent groups, and side reactions (hydrolysis,
Generally 2 to suppress lactam ring formation*, depolymerization, etc.
It is disclosed that it is desirable to carry out the reaction at a temperature of 5° C. or less in order to obtain a high performance aminated PAM.

同様にポリアクリルアミドのホフマン分解反応を低温で
行うことの優位性については特開昭61−200103
、特開昭58−152004、特開昭58−10820
6、特開昭57−165404、特開昭55〜6556
、特開昭52−152493.特開昭51−12218
8等にも記載されている。しかし、ただ単にホフマン分
解反応を低温で行っただけでは経時変化は実用に耐えろ
る程度には改善されない。
Similarly, regarding the advantages of conducting the Hofmann decomposition reaction of polyacrylamide at low temperatures, JP-A No. 61-200103
, JP-A-58-152004, JP-A-58-10820
6, JP-A-57-165404, JP-A-55-6556
, Japanese Patent Publication No. 52-152493. Japanese Patent Publication No. 51-12218
It is also listed in 8th grade. However, simply carrying out the Hofmann decomposition reaction at a low temperature does not improve the change over time to a level that is suitable for practical use.

また別の方法としてホフマン分解反応時に第4アンモニ
ウム塩等のカチオン性基の導入された水酸基置換化合物
、あるいはN、  N−ジアルキル置換ジアミン、グア
ニジン、ポリアミン等を共存させておき、ホフマン分解
反応の中間体であるイソシアネート基と該物質を反応さ
せて、該物質を重合体中に取り込むことにより経fR変
化を防止するという考えfJ(特R昭62−59602
、特Ill 1146l−1208(17、特開ii!
l57−192408、特開昭58−144295、特
開昭54−145790、特開昭53−109594等
に開示されている。しかし、このような方法をとってし
ても、満足のいく結果が得られていないのが実状である
Another method is to coexist a hydroxyl-substituted compound with a cationic group such as a quaternary ammonium salt, or an N,N-dialkyl-substituted diamine, guanidine, polyamine, etc. during the Hofmann decomposition reaction. fJ (Special R.Sho 62-59602
, Toku Ill 1146l-1208 (17, Tokukai II!
157-192408, JP-A-58-144295, JP-A-54-145790, JP-A-53-109594, etc. However, the reality is that even with such methods, satisfactory results have not been obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は広い抄紙pH領域で効果を発挿するために、及
びパルプスラリー中に存在する無機塩に対する抵抗性を
もたせるために、主鎖にジアルキルジアリルアンモニウ
ムクロライドを導入し、更にホフマン分解反応を高温、
短時間で行うことによって、性能の安定した、高い紙力
強度を有する製紙用添加剤を提供することにある。更に
、高温・短時間でホフマン分解反応を行い、紙に添加す
る紙力増強方法及び濾水向上方法を提供するものである
In the present invention, dialkyldiallylammonium chloride is introduced into the main chain in order to be effective in a wide papermaking pH range and to provide resistance to inorganic salts present in pulp slurry, and the Hofmann decomposition reaction is carried out at high temperature. ,
The purpose of the present invention is to provide a papermaking additive having stable performance and high paper strength by performing the process in a short period of time. Furthermore, the present invention provides a method for increasing paper strength and a method for improving drainage by performing a Hofmann decomposition reaction at a high temperature and in a short time and adding it to paper.

〔問題を解決するための手段〕[Means to solve the problem]

本発明者らは上記した点に鑑み、ポリアクリルアミドの
ホフマン分解反応を詳細に検討した結果。
In view of the above points, the present inventors have conducted a detailed study on the Hofmann decomposition reaction of polyacrylamide.

従来顧みられなかったホフマン分解の一高温反応におい
て反応時間を極めて短時間にすることにより、低温反応
で製造されるホフマン分解ポリアクリルアミドと同等以
上の性質を有するカチオン性ポリアクリルアミドを製造
できることを見い出し、本発明に至フた。
We have discovered that by extremely shortening the reaction time in the single-temperature reaction of Hoffmann decomposition, which has not been considered in the past, it is possible to produce cationic polyacrylamide having properties equivalent to or superior to those of Hoffmann decomposition polyacrylamide produced by low-temperature reaction. This led to the present invention.

すなわち、本発明は基本的には、アルカリ性領域下でア
クリルアミド系重合体と次亜ハロゲン酸塩とを、50〜
110″Cの温度範囲で、短時間に反応を行うことによ
って得られるカチオン性ポリアクリルアミドであり、こ
のものは抄紙時のl)Hの変動に対して依存性が小さく
、またパルプスラリー中に存在する無機塩に対しても受
ける影響が小さい点が特徴である。これを製紙用添加剤
として用いることを特徴とする。また、製造後直ちに添
加する紙力増強方法及び濾水向上方法を特徴とする。そ
して、本発明により従来とは異なる全く新しいカチオン
性ポリアクリルアミドの製造システムが可能となり、そ
の製造システムを活用することによりホフマン分解ポリ
アクリルアミドの経時劣化問題を回避でき、多方面、即
ち広く製紙用添加剤として応用展開することが可能にな
ったのである。
That is, the present invention basically involves mixing an acrylamide polymer and a hypohalite in an alkaline region at a concentration of 50 to 50%.
This is a cationic polyacrylamide obtained by performing a reaction in a short period of time in a temperature range of 110"C. This product has low dependence on l)H fluctuations during paper making, and is present in pulp slurry. It is characterized in that it has little effect on inorganic salts.It is characterized in that it is used as an additive for paper manufacturing.It is also characterized in that it is added immediately after production to strengthen paper strength and improve drainage. The present invention enables a completely new production system for cationic polyacrylamide that is different from the conventional ones, and by utilizing this production system, it is possible to avoid the problem of deterioration over time of Hoffmann decomposed polyacrylamide, and it can be widely used in paper manufacturing. This made it possible to develop its application as an additive for industrial use.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に用いるジアリルアミン誘導体モノマーとは、−
船底(1) C式中、R1、R2は水素またはメチル基を表し、R−
Rはそれぞれ水素、炭素数1−・6のアルキル基を表す
、X−は無機酸あるいは有機酸の陰イオンを表す)で表
されるモノマーをいう。具体的には、ジアリルアミン、
ジメタアリルアミン等の2級アミンの無機あるいは有機
酸塩、ジアリルメチルアミン、ジアリルエチルアミン、
ジアリルブチルアミン等の3級アミンの無機あるい雑有
機酸塩、ジアリルジメチルアンモニウムクロライド、ジ
アリルジメチルアンモニウムブロマイド、ジアリルジエ
チルアンモニウムクロライド、ジアリルジブチルアンモ
ニウムクロライド、ジアリルメチルエチルアンモニウム
クロライド等を挙げることができる。
The diallylamine derivative monomer used in the present invention is -
Ship bottom (1) In formula C, R1 and R2 represent hydrogen or a methyl group, and R-
Each R represents hydrogen or an alkyl group having 1-6 carbon atoms, and X- represents an anion of an inorganic acid or an organic acid. Specifically, diallylamine,
Inorganic or organic acid salts of secondary amines such as dimethallylamine, diallylmethylamine, diallylethylamine,
Examples include inorganic or miscellaneous organic acid salts of tertiary amines such as diallylbutylamine, diallyldimethylammonium chloride, diallyldimethylammonium bromide, diallyldiethylammonium chloride, diallyldibutylammonium chloride, diallylmethylethylammonium chloride, and the like.

式(1)と共重合するアクリルアミド系モノマーとは、
−船底(n) CH= C(Rs ) −CON H2(II )(式
中、R5は水素またはメチル基を表す)で表されるモノ
マーをいう、具体的には、アクリルアミド、メタクリル
アミドを挙げることができる。
The acrylamide monomer copolymerized with formula (1) is
-Bottom (n) refers to a monomer represented by CH=C(Rs)-CON H2(II) (in the formula, R5 represents hydrogen or a methyl group), specifically, acrylamide and methacrylamide. I can do it.

本発明では式(I)で表されるジアリルアミン誘導体モ
ノマーと式(II )で表されるアクリルアミド系モノ
マーを共重合するのであるが、更にアクリルアミド(ま
たはメタクリルアミド)と共重合可能な一種以上の不飽
和単量体と共重合することも可能である。
In the present invention, the diallylamine derivative monomer represented by formula (I) and the acrylamide monomer represented by formula (II) are copolymerized, and one or more monomers copolymerizable with acrylamide (or methacrylamide) are also added. It is also possible to copolymerize with saturated monomers.

共重合可能な単量体としては、親水性単量体、イオン性
単量体、親油性単量体などがあげられ、それらの一種以
上の単量体が適用できる。具体的には親水性単量体とし
て、例えばジアセトンアクリルアミド、N、N−ジメチ
ルアクリルアミド、N、N−ジメチルメタクリルアミド
、N−エチルメタクリルアミド、N−エチルアクリルア
ミド、N、N−ジエチルアクリルアミド、N−プロピル
アクリルアミド、N−アクリロイルピロリジン、N−ア
クリロイルピペリジン、N−アクリロイルモルホリン、
ヒドロキシエチルメタクリレート、ヒドロキシエチルア
クリレート、ヒドロキシプロピルメタクリレート、ヒド
ロキシプロピルアクリレート、各種のメトキシポリエチ
レングリコール(メタ)アクリレート、N−ビニル−2
−ピロリドン等をあげることができる。
Examples of copolymerizable monomers include hydrophilic monomers, ionic monomers, and lipophilic monomers, and one or more of these monomers can be used. Specifically, as a hydrophilic monomer, for example, diacetone acrylamide, N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, N-ethylmethacrylamide, N-ethylacrylamide, N,N-diethylacrylamide, N -propylacrylamide, N-acryloylpyrrolidine, N-acryloylpiperidine, N-acryloylmorpholine,
Hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxypropyl methacrylate, hydroxypropyl acrylate, various methoxypolyethylene glycol (meth)acrylates, N-vinyl-2
- Examples include pyrrolidone.

また、イオン性単量体としては、例えばアクリル酸、メ
タクリル酸、ビニルスルホン酸、アリルスルホン酸、メ
タリルスルホン酸、スチレンスルホン酸、2−アクリル
アミド−2−フェニルプロパンスルホン酸、2−アクリ
ルアミド−2−メチルプロパンスルホン酸等の酸及びそ
れらの塩、N。
Examples of ionic monomers include acrylic acid, methacrylic acid, vinylsulfonic acid, allylsulfonic acid, methallylsulfonic acid, styrenesulfonic acid, 2-acrylamido-2-phenylpropanesulfonic acid, and 2-acrylamide-2 - Acids such as methylpropanesulfonic acid and their salts, N.

N−ジメチルアミノエチルメタクリレート、N、N−ジ
エチルアミノエチルメタクリレート、N、N−ジメチル
アハノエチルアクリレート、N、N−ジメチルアミノプ
ロピルメタクリルアミド、N、N−ジメチルアミンプロ
ピルアクリルアミド等のアミン及びそれらの塩等をあげ
ることができる。
Amines and salts thereof such as N-dimethylaminoethyl methacrylate, N,N-diethylaminoethyl methacrylate, N,N-dimethylahanoethyl acrylate, N,N-dimethylaminopropylmethacrylamide, N,N-dimethylaminepropylacrylamide, etc. etc. can be given.

また、親油性単量体としては、例えばアクリロニトリル
、N、N−ジ−n−プロピルアクリルアミド、N−n−
ブチルアクリルアミド、N−n−ヘキシルアクリルアミ
ド、N−n−へキシルメタクリルアミド、N−n−オク
チルアクリルアミド、N−n−オクチルメタクリルアミ
ド、N −tert−オクチルアクリルアミド、N−ド
デシルアクリルアミド、N−n−ドデシルメタクリルア
ミド等のN−アルキル(メタ)アクリルアミド誘導体、
N、N−ジグリシジルアクリルアミド、N、N−ジグリ
シジルメタクリルアミド、N−(4−グリシドキシブチ
ル)アクリルアミド、N−(4−グリシドキシブチル)
メタクリルアミド、 N−(5−グリシドキシペンチル)アクリルアミド、N
−(6−ゲリシドキシヘキシル)アクリルアミド等のN
−(ω−グリシドキシアルキル)(メタ)アクリルアミ
ド誘導体、メチル(メタ)アクリレート、エチル(メタ
)アクリレート、ブチル(メタ)アクリレート、ラウリ
ル(メタ)アクリレート、2−エチルヘキシル(メタ)
アクリレート、グリシジル(メタ)アクリレート等の(
メタ)アクリレート誘導体、アクリロニトリル、メタク
リロニトリル、酢酸ビニル、塩化ビニル、塩化ビニリデ
ン、エチレン、プロピレン、ブテン等のオレフィン類、
スチレン、ジビニルベンゼン、α−メチルスチレン、ブ
タジェン、イソプレン等をあげることができる。共重合
に供せられる不飽和単量体の使用量は、不飽和単量体の
種類、及びそれらの組合せにより異なり一部には占えな
いが、概ね0〜50重量2の範囲にある。
In addition, examples of the lipophilic monomer include acrylonitrile, N,N-di-n-propylacrylamide, N-n-
Butylacrylamide, N-n-hexylacrylamide, N-n-hexylmethacrylamide, N-n-octylacrylamide, N-n-octylmethacrylamide, N-tert-octylacrylamide, N-dodecyl acrylamide, N-n- N-alkyl (meth)acrylamide derivatives such as dodecylmethacrylamide,
N,N-diglycidyl acrylamide, N,N-diglycidyl methacrylamide, N-(4-glycidoxybutyl)acrylamide, N-(4-glycidoxybutyl)
Methacrylamide, N-(5-glycidoxypentyl)acrylamide, N
-N such as (6-gelicidoxyhexyl)acrylamide
-(ω-Glycidoxyalkyl) (meth)acrylamide derivative, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, lauryl (meth)acrylate, 2-ethylhexyl (meth)
Acrylate, glycidyl (meth)acrylate, etc. (
meth)acrylate derivatives, acrylonitrile, methacrylonitrile, vinyl acetate, vinyl chloride, vinylidene chloride, olefins such as ethylene, propylene, butene,
Examples include styrene, divinylbenzene, α-methylstyrene, butadiene, and isoprene. The amount of unsaturated monomers used for copolymerization varies depending on the type of unsaturated monomers and their combination, and is generally in the range of 0 to 50% by weight2.

また、上記した単量体をクラフト共重合する水溶性重合
体として、天然系及び合成系いづれのものも使用できる
。天然系として各種由来のでんぷん及び酸化でんぷん、
カルボキシルでんぷん、ジアルデヒドでんぷん、カチオ
ン化でんぷん等の変性得、メチルセルロース、エチルセ
ルロース、カルボキシメチルセルロース、ヒドロキシエ
チルセルロース等のセルロース誘導体、アルギン酸、寒
天、ペクチン、カラギーナン、デキストラン、プルラン
、コンニャク、7ラビヤゴム、カゼイン、ゼラチン等が
あげられる。合成系としてはポリビニルアルコール、ポ
リビニルエーテル、ポリビニルピロリドン、ポリエチレ
ンイミン、ポリエチレンイミン、ポリエチレングリコー
ル、ポリプロピレングリコール、ポリマレイン酸共重合
体、ポリアクリル酸、ポリアクリルアミド等があげられ
る。
Furthermore, both natural and synthetic water-soluble polymers can be used for craft copolymerization of the above-mentioned monomers. Starch and oxidized starch derived from various natural sources,
Modified products such as carboxyl starch, dialdehyde starch, cationized starch, cellulose derivatives such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, alginic acid, agar, pectin, carrageenan, dextran, pullulan, konjac, 7-rabiya gum, casein, gelatin, etc. can be given. Examples of synthetic systems include polyvinyl alcohol, polyvinyl ether, polyvinylpyrrolidone, polyethyleneimine, polyethyleneimine, polyethylene glycol, polypropylene glycol, polymaleic acid copolymer, polyacrylic acid, polyacrylamide, and the like.

上記した水溶性重合体への前記した単量体の添加量は水
溶性重合体基準で0.1〜10.0倍の範囲である。
The amount of the above-mentioned monomer added to the above-mentioned water-soluble polymer is in the range of 0.1 to 10.0 times based on the water-soluble polymer.

次に上記した単量体を重合して、カチオン性ポリアクリ
ル7ミドを製造するのであるが、重合法としてはラジカ
ル重合が好ましく、重合溶媒としては水、アルコール、
ジメチルホルムアミド等の極性溶媒が適用可能であるが
、ホフマン分解反応を水溶液中で行うので、水溶液重合
が好ましい。
Next, the above-mentioned monomers are polymerized to produce cationic polyacryl 7mide. Radical polymerization is preferable as the polymerization method, and water, alcohol,
Although polar solvents such as dimethylformamide are applicable, aqueous solution polymerization is preferred since the Hofmann decomposition reaction is carried out in an aqueous solution.

その時の単量体濃度は2〜30重量%好ましくは5〜3
0重量%である1重合開始剤としては水溶性のものであ
れば特に制限はなく、通常単量体水溶液に溶解して使用
される。具体的には過酸化物系では、たとえば過硫酸ア
ンモニウム、過硫酸カリ、過酸化水系、tert−ブチ
ルパーオキサイド等があげられる。この場合、単独でも
使用できるが、還元剤と組合せてレドックス系重合剤と
しても使える。還元剤としては、例えば亜硫酸塩、亜硫
酸水素塩、鉄、鯛、コバルトなどの低次のイオン化の塩
、N、N、N’、N’−テトラメチルエチレンジアミン
等の有機アミン、更にはアルドース、ケトース等の還元
糖などをあげることができる。
The monomer concentration at that time is 2 to 30% by weight, preferably 5 to 3% by weight.
The 0% by weight 1 polymerization initiator is not particularly limited as long as it is water-soluble, and it is usually used after being dissolved in an aqueous monomer solution. Specifically, examples of peroxides include ammonium persulfate, potassium persulfate, aqueous peroxide, and tert-butyl peroxide. In this case, it can be used alone, but it can also be used as a redox polymerization agent in combination with a reducing agent. Examples of reducing agents include sulfites, hydrogen sulfites, salts of lower ionization such as iron, sea bream, and cobalt, organic amines such as N, N, N', N'-tetramethylethylenediamine, and aldoses and ketoses. Examples include reducing sugars such as

また、アゾ化合物としては、2.2°−アゾビス−2−
アミジノプロパン塩酸塩、2,2°−7ゾビスー2.4
−ジメチルバレロニトリル、4.4′−アゾビス−4−
シアツバレイン酸及びその塩等を使用することができる
。更に、上記した重合開始剤を2種以上併用することも
可能である。また、水溶性重合体にグラフト重合する場
合には重合開始剤として上記した重合開始剤以外に、第
2セリウムイオン、第2鉄イオン等の遷移金属イオンを
使用することも可能であり、前記した重合開始剤と併用
してもよい。開始剤の添加量は、単量体に対して0.0
1〜10重量%、好ましくは0.02〜8重量%である
。また、レドックス系の場合には、開始剤に対して還元
剤の添加量はモル基準で0.1〜200%、好ましくは
0.2〜150%である。
In addition, as an azo compound, 2.2°-azobis-2-
Amidinopropane hydrochloride, 2,2°-7zobisu2.4
-dimethylvaleronitrile, 4,4'-azobis-4-
Ciatsuvaleic acid and its salts, etc. can be used. Furthermore, it is also possible to use two or more of the above-mentioned polymerization initiators in combination. In addition, when graft polymerizing a water-soluble polymer, it is also possible to use transition metal ions such as ceric ions and ferric ions in addition to the above-mentioned polymerization initiators. It may be used in combination with a polymerization initiator. The amount of initiator added is 0.0 relative to the monomer.
It is 1 to 10% by weight, preferably 0.02 to 8% by weight. In the case of a redox system, the amount of reducing agent added to the initiator is 0.1 to 200%, preferably 0.2 to 150%, on a molar basis.

重合開始温度は単一重合開始剤の場合には、より低く概
ね30〜90℃であり、 レドックス系重合開始剤の場
合にはより低く概ね5〜50°Cである。また、重合中
間−温度に保つ必要はなく、重合の進行に伴い適宜変え
てよく一般に重合の進行に伴い発生する重合熱により昇
温する。その時の重合器内の雰日気は特に限定はないが
、重合を速やかに行わせるには窟素ガスのような不活性
ガスで置換したほうがよい0重合時間は特に限定はない
が、概ね1〜20時間である。この様にして主板にカチ
オン性基をもつジアリルアミン誘導体千ツマ−とアクリ
ルアミド系モノマーの共重合体及び/またはこれに各種
単量体モノマーを共重合して得られる共重合体がカチオ
ン性ポリアクリルアミドとなる。
In the case of a single polymerization initiator, the polymerization initiation temperature is lower, approximately 30 to 90°C, and in the case of a redox polymerization initiator, it is lower, approximately 5 to 50°C. Further, it is not necessary to maintain the temperature at a temperature during the polymerization, and it may be changed as appropriate as the polymerization progresses, and the temperature is generally raised by the polymerization heat generated as the polymerization progresses. The atmosphere inside the polymerization vessel at that time is not particularly limited, but in order to speed up the polymerization, it is better to replace the atmosphere with an inert gas such as hydrogen gas.The polymerization time is not particularly limited, but is approximately 1 ~20 hours. In this way, a copolymer of a diallylamine derivative having a cationic group on the main plate and an acrylamide monomer, and/or a copolymer obtained by copolymerizing this with various monomers, is produced as a cationic polyacrylamide. Become.

次に、この様な方法で製造したカチオン性ポリアクリル
アミドのホフマン分解反応を行う。その時、原料となる
カチオン性ポリアクリルアミドはその製造を水溶液で行
った場合には、そのままもしくは必要に応じ希釈して反
応に供することかできる。また、グラフト共重合体の場
合、グラフトしないポリアクリルアミドも副生ずるが、
通常それは分離しないでそのまま反応に供する。
Next, the cationic polyacrylamide produced by such a method is subjected to a Hoffman decomposition reaction. At this time, when the cationic polyacrylamide used as a raw material is produced in an aqueous solution, it can be used for the reaction as it is or diluted if necessary. In addition, in the case of graft copolymers, non-grafted polyacrylamide is also produced as a by-product.
Usually, it is used for the reaction as is without being separated.

ホフマン分解反応はポリアクリルアミドのアミド基に次
亜ハロゲン酸塩をアルカリ性物質の共存下に作用させて
行うものであり、次亜ハロゲン酸としでは次亜塩素酸、
次亜臭素酸、次亜ヨウ素酸があげられる。81:亜塩業
酸塩としては、次亜塩素酸の金属またはアルカリ土類金
属塩があげられ、具体的には次亜塩素酸ナトリウム、次
亜塩素酸カリウム、次亜塩素酸リチウム、次亜塩素酸カ
ルシウム、次亜塩素酸マグネシウム、次亜塩素酸バリウ
ム等がある。同様に次亜臭素酸塩及び次亜ヨウ素酸塩で
も次亜臭素酸塩及び次亜ヨウ素酸塩のアルカリ金属また
はアルカリ土類金属塩があげられる。また、アルカリ溶
液中にハロゲンガスを吹き込んで次亜ハロゲン酸塩を生
成させることも可能である。
The Hofmann decomposition reaction is carried out by allowing hypohalite to act on the amide group of polyacrylamide in the presence of an alkaline substance. Hypohalous acids include hypochlorous acid,
Examples include hypobromous acid and hypoiodic acid. 81: Examples of salts of chlorite include metal or alkaline earth metal salts of hypochlorous acid, specifically sodium hypochlorite, potassium hypochlorite, lithium hypochlorite, and hypochlorite. Examples include calcium chlorate, magnesium hypochlorite, barium hypochlorite, etc. Similarly, hypobromite and hypoiodite include alkali metal or alkaline earth metal salts of hypobromite and hypoiodite. It is also possible to generate hypohalite by blowing halogen gas into the alkaline solution.

一方、アルカリ性物質としてはアルカリ金属水酸化物、
アルカリ土類金属水酸化物、アルカリ金属炭酸塩等があ
げられ、それらの中でもアルカリ金属水酸化物が好まし
く、水酸化ナトリウム、水酸化カリウム、水酸化リチウ
ム等があげられる。
On the other hand, alkaline substances include alkali metal hydroxides,
Examples include alkaline earth metal hydroxides and alkali metal carbonates. Among them, alkali metal hydroxides are preferred, and examples include sodium hydroxide, potassium hydroxide, lithium hydroxide, and the like.

上記した物質のポリアクリルアミドに対する添加量は次
亜ハロゲン酸では、アミド基に対して0.05〜2.0
モル、好ましくは0.1〜1,5モルであり、アルカリ
性物質ではアミド基に対して0.05〜4.0モル、好
ましくは0.1〜3,0モルである。その時のpHは概
ね11〜14の範囲にある。
The amount of the above-mentioned substance added to polyacrylamide is 0.05 to 2.0 per amide group for hypohalous acid.
mol, preferably 0.1 to 1.5 mol, and for alkaline substances 0.05 to 4.0 mol, preferably 0.1 to 3.0 mol, based on the amide group. The pH at that time is generally in the range of 11-14.

以上の条件下でカチオン性ポリアクリルアミドの濃度は
概ね0.1〜17.5重量%であるが、反応濃度が高く
なると撹拌が困難になることやゲル化を起こし易くなる
点から、通常は0.1〜10重量%の範囲であることが
好ましい。また、反応濃度が1χ未満の場合反応速度が
遅くなる等の問題があるため、1〜10重量%であるこ
とがさらに好ましい。
Under the above conditions, the concentration of cationic polyacrylamide is approximately 0.1 to 17.5% by weight, but as the reaction concentration increases, stirring becomes difficult and gelation tends to occur, so it is usually 0.1 to 17.5% by weight. It is preferably in the range of .1 to 10% by weight. Further, if the reaction concentration is less than 1.chi., there are problems such as a slow reaction rate, so it is more preferably 1 to 10% by weight.

一方反応温度は50〜110°Cの範囲であり、好まし
くは60〜100℃の範囲である。
On the other hand, the reaction temperature is in the range of 50 to 110°C, preferably in the range of 60 to 100°C.

本発明においては、次に上記した濃度範囲内でホフマン
分解反応を短時間に行うのであるが、反応時間は反応温
度、及び反応溶液中のポリマー濃度に依存して変わりう
るが、例えばポリマー濃度が1〜10重量%程量部場合
、50°Cでは土数分以内、65°Cでは数分以内、8
0°Cでは数十秒以内で十分である。更にポリマー濃度
が高くなれば反応時間はより短くて清む。反応時間と反
応温度との関係は概略下記2つの関係式に挟まれる範囲
内にあればよく、その範囲内で反応を行えば好適な結果
が得られる。
In the present invention, the Hofmann decomposition reaction is then carried out within the above concentration range in a short period of time, but the reaction time may vary depending on the reaction temperature and the polymer concentration in the reaction solution. If the amount is about 1 to 10% by weight, within a few minutes at 50°C, within a few minutes at 65°C, 8
At 0°C, several tens of seconds or less is sufficient. Furthermore, the higher the polymer concentration, the shorter and cleaner the reaction time. The relationship between the reaction time and the reaction temperature is generally within the range between the following two relational expressions, and a suitable result can be obtained if the reaction is carried out within this range.

T: 反応温度(”C) 5 o  ≦ T ≦  110 上記した条件で製造されるカチオン性ポリアクリルアミ
ドはPH2でのコロイド滴定より測定されるカチオン当
量が概ねD〜10.0■eq/gの範囲にあり、次亜ハ
ロゲン酸塩の添加量により該カチオン当量を制御するこ
とができる。また、反応をアルカリ性領域で行うのでア
ミド基が加水分解されてカルボキシル基が副生する。そ
の副生量はpH10でのコロイド滴定により測定される
アニオン当量で示され、概ね、0〜10.0*eq/g
の範囲にある。その副生量は添加するアルカリ性物質の
量により制御可能となる。
T: Reaction temperature ("C) 5 o ≦ T ≦ 110 The cationic polyacrylamide produced under the above conditions has a cation equivalent measured by colloid titration at PH2, which is approximately in the range of D to 10.0 eq/g. The cation equivalent can be controlled by the amount of hypohalite added.Also, since the reaction is carried out in an alkaline region, the amide group is hydrolyzed and a carboxyl group is produced as a by-product.The amount of the by-product is Indicated by anion equivalent measured by colloid titration at pH 10, approximately 0-10.0*eq/g
within the range of The amount of by-product can be controlled by the amount of alkaline substance added.

次に上記した条件で反応を行った後、−本発明において
は、副反応の進行を抑制するために反応を停止すること
が好ましい。ただし、後述するような用途に反応後直ち
に使用する場合には必ずしも反応停止を行わなくともよ
い。
Next, after carrying out the reaction under the above-mentioned conditions, in the present invention, it is preferable to stop the reaction in order to suppress the progress of side reactions. However, if the reaction is used immediately after the reaction as described below, the reaction does not necessarily have to be stopped.

反応停止の方法としては、 (1)還元剤を添加する、
 (2)冷却し低温にする、 (3)溶液のpHを酸添
加により低下させる、等の方法を単独あるいは組み合わ
せて用いることができる。 (1)は残存する次亜ハロ
ゲン酸塩などを還元剤との反応により失活させる方法で
ある。使用する還元剤としては、亜硫酸ナトリウム、チ
オ硫酸ナトリウム、マロン酸エチル、チオグリセロール
、 トリエチルアミンなどが挙げられる。還元剤の使用
量は通常反応に使用された次亜ハロゲン酸に対して00
05〜0.15倍モル、好ましくは0.01〜0.10
倍モルである。一般にホフマン分解反応の反応終了時に
は未反応の次亜ハロゲン酸塩等の活性塩素を有する化合
物が残存している。かかる反応溶液を紙力剤として用い
ると抄紙機の錆を引き起こす要因ともなるため、通常は
還元剤を用いて活性塩素を失活させる。しかしながら、
次亜ハロゲン酸塩はポリマーのアクリルアミド単位モル
数に対して当モル以下で反応を行い、かつ高温度で反応
を行うと反応終了時には未反応の次亜ハロゲン酸塩はほ
とんど残存していない。従って、このような条件を採用
すれば、還元剤を用いて活性塩素を失活させることなく
紙力剤として使用することも可能である。 (2)は冷
却により反応進行を抑える方法であり、その方法として
は、熱交換器を用いて冷却したり、冷水で希釈する等の
方法がある。冷却時の温度は通常50°C以下好ましく
は45”C以下、更に好ましくは40°C以下である。
Methods for stopping the reaction include (1) adding a reducing agent;
Methods such as (2) cooling to a low temperature, and (3) lowering the pH of the solution by adding an acid can be used alone or in combination. (1) is a method in which remaining hypohalite and the like are deactivated by reaction with a reducing agent. Reducing agents used include sodium sulfite, sodium thiosulfate, ethyl malonate, thioglycerol, and triethylamine. The amount of reducing agent used is usually 0.00% relative to the hypohalous acid used in the reaction.
05 to 0.15 times the mole, preferably 0.01 to 0.10
It is twice the mole. Generally, when the Hofmann decomposition reaction is completed, unreacted compounds containing active chlorine such as hypohalite salts remain. If such a reaction solution is used as a paper strength agent, it may cause rust in the paper machine, so normally a reducing agent is used to deactivate the active chlorine. however,
The hypohalite reacts in a molar amount equal to or less than the number of moles of acrylamide units in the polymer, and if the reaction is carried out at a high temperature, almost no unreacted hypohalite remains at the end of the reaction. Therefore, if such conditions are adopted, it is also possible to use active chlorine as a paper strength agent without deactivating it using a reducing agent. (2) is a method of suppressing the reaction progress by cooling, which includes methods such as cooling using a heat exchanger and diluting with cold water. The temperature during cooling is usually 50°C or less, preferably 45''C or less, more preferably 40°C or less.

下は制限はないが、凍結する温度以上が好ましい。 (
3)で、通常p H12〜13のアルカリ性を示す反応
終了時の溶液を、酸を用いてpHを下げることによりホ
フマン分解反応を停止させ、同時に加水分解反応の進行
を抑制する。その時のPHは中性以下であればよく、好
ましくはpH4〜6の範囲である。pH調整で使用する
酸としては、塩酸、硫酸、りん酸、硝酸等の鉱酸、ある
いはぎ酸、酢酸、くえん酸などの有機酸が挙げられる。
There is no limit to the temperature below, but temperatures above freezing are preferred. (
In step 3), the pH of the solution at the end of the reaction, which is usually alkaline at pH 12 to 13, is lowered using an acid to stop the Hofmann decomposition reaction and at the same time suppress the progress of the hydrolysis reaction. The pH at that time should just be neutral or lower, preferably in the range of pH 4 to 6. Examples of acids used for pH adjustment include mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, and nitric acid, and organic acids such as formic acid, acetic acid, and citric acid.

反応停止法は(1)〜(3)の中から反応の条件により
適宜選ぶことができ、またそれらの方法を組み合わせて
もよい。
The reaction termination method can be appropriately selected from among (1) to (3) depending on the reaction conditions, and these methods may be combined.

本発明においては、上記した方法で停止した反応液はそ
のままカチオン性ポリアクリルアミドの水溶液゛として
使用できるし、該水溶液をメタノール等のカチオン性ポ
リアクリルアミドを溶解しない溶媒中に投入して、ポリ
マーを析出させてその後乾燥して粉末状にすることもで
きる。また、以上の方法で得られた該カチオン性ポリア
クリルアミド水溶液をタンク中に保存しておき、必要に
応じ使用することもできる。その時保存しておく温度は
水溶液の凍結しない程度の低温であればよく、好ましく
は10〜15°Cである。しかし比較的短期間のうちに
使用する場合には常温でも保存でき、1力月程度の保存
は可能である。
In the present invention, the reaction solution stopped by the above method can be used as it is as an aqueous solution of cationic polyacrylamide, or the aqueous solution can be poured into a solvent such as methanol that does not dissolve cationic polyacrylamide to precipitate the polymer. It can also be dried and made into a powder. Moreover, the cationic polyacrylamide aqueous solution obtained by the above method can be stored in a tank and used as needed. The temperature at which the aqueous solution is stored may be as low as not freezing, preferably 10 to 15°C. However, if it is to be used within a relatively short period of time, it can be stored at room temperature, and can be stored for about one month.

本発明のカチオン性ポリアクリルアミドは、上記したご
とく、極めて短時間で製造できるため、使用する場所(
プラント)の近くに製造装置を設置するような、オンサ
イト化が可能になる。この点が本発明の紙力増強方法及
び濾水向上方法としての大きな特徴である。このとき、
次亜ハロゲン酸塩の使用量がポリアクリルアミドのアミ
ド基に対して下回る条件で反応を行わしめれば、溶液中
に遊離の次亜ハロゲン酸イオンが残存していないように
することができる。この場合には反応を停止することな
く、パルプスラリーなどに添加することができる。
As mentioned above, the cationic polyacrylamide of the present invention can be produced in an extremely short time, so it can be used at any place where it is used (
On-site production, such as installing manufacturing equipment near the plant, becomes possible. This point is a major feature of the paper strength increasing method and drainage improving method of the present invention. At this time,
If the reaction is carried out under conditions in which the amount of hypohalite used is less than the amide group of polyacrylamide, it is possible to prevent free hypohalite ions from remaining in the solution. In this case, it can be added to pulp slurry or the like without stopping the reaction.

本発明により製造されるカチオン性ポリアクリルアミド
は通常の水浴性カチオン性ポリマーの使用されている分
野に適用でき、それらの中でも主な用途として紙を抄造
する時使用する薬品及び高分子凝集剤の分野などがあげ
られる。紙薬品の分野では紙の製造工程の種々の分野で
カチオン性重合体は使用されるのであるが、本発明の方
法により製造されるカチオン性ポリアクリルアミドはバ
ルブを抄紙する工程において使用され、抄紙時の水切れ
をよくするための濾水性向上及び紙の機械的強度を増強
する紙力増強などにその添加により大きな効力がもたら
される。また、本発明のカチオン性ポリアクリルアミド
は特に抄紙時のpH1あるいはイオン強度変動に影響を
受けにくく、広い領域での製紙用薬品として有効である
。これらは水溶性のアニオン性樹脂を併用すると更に効
果が増す場合がある。このとき使用される水溶性アニオ
ン性樹脂は、カルボキシル基、スルホン酸基、リン酸基
等のアニオン性の置換基あるいはそれらの塩を含有する
水溶性の樹脂であり、例えばアニオン性アクリルアミド
系樹脂、アニオン性ポリビニルアルコール系樹脂、カル
ボキシメチルセルロース、カルボキシメチル化でんぷん
、アルギン酸ナトリウム等を挙げることができる。
The cationic polyacrylamide produced according to the present invention can be applied to fields in which ordinary water-bathable cationic polymers are used, and among these, the main applications are in the field of chemicals and polymer flocculants used in paper making. etc. In the field of paper chemicals, cationic polymers are used in various areas of the paper manufacturing process, and the cationic polyacrylamide produced by the method of the present invention is used in the process of making paper valves. Its addition brings great effects, such as improving drainage to improve water drainage and increasing paper strength to increase the mechanical strength of paper. Furthermore, the cationic polyacrylamide of the present invention is particularly resistant to changes in pH 1 or ionic strength during papermaking, and is therefore effective as a papermaking chemical in a wide range of applications. These effects may be further enhanced when used in combination with a water-soluble anionic resin. The water-soluble anionic resin used at this time is a water-soluble resin containing anionic substituents such as carboxyl groups, sulfonic acid groups, phosphoric acid groups, or salts thereof, such as anionic acrylamide resins, Examples include anionic polyvinyl alcohol resin, carboxymethyl cellulose, carboxymethylated starch, and sodium alginate.

本発明のカチオン性ポリアクリルアミドを濾水向上剤の
目的で使用する方法は、従来公知の方法に従って行えば
よい、ただし本発明の方法の特徴は上記のようにしてカ
チオン性ポリアクリルアミドと次亜ハロゲン酸塩とを高
温・短時間に反応を行った後、直ちにパルプスラリーに
添加するところにある。ここで言う「直ちに」とは反応
後の水溶液を配管内より取り出し、外部に移液すること
なく同一配管内を輸送してパルプスラリーに添加するこ
とをいう。より具体的には反応後の水溶液を配管内を通
して直接パルプスラリーに添加しても良いし、その間に
ストックタンクを設けてそこで一時滞留させた後、添加
量を調節して添加してもよい。配管内での反応液の1m
時間は、反応後の水溶液が劣化しない範囲であればよい
、しかし、余り長くすると液を滞留しておく装置が大き
くなってしまい、本発明の特徴が生かされない。従って
本発明を好適に実施するには、反応後5時間以内に添加
することが好ましく、より好ましくは1時間以内であり
、更により好ましくは10分以内である。
The method of using the cationic polyacrylamide of the present invention for the purpose of a drainage improver may be carried out according to a conventionally known method.However, the feature of the method of the present invention is that the cationic polyacrylamide and hypohalogen After reacting with the acid salt at high temperature and short time, it is added to the pulp slurry immediately. Here, "immediately" means that the aqueous solution after the reaction is taken out from inside the pipe, transported within the same pipe and added to the pulp slurry without being transferred to the outside. More specifically, the aqueous solution after the reaction may be directly added to the pulp slurry through a pipe, or a stock tank may be provided between the reactors and the aqueous solution may be temporarily retained there, and then the amount may be adjusted and added. 1m of reaction liquid in the pipe
The time may be within a range in which the aqueous solution after the reaction does not deteriorate; however, if it is too long, the device for retaining the liquid will become large and the features of the present invention will not be utilized. Therefore, in order to suitably carry out the present invention, it is preferable to add within 5 hours after the reaction, more preferably within 1 hour, and even more preferably within 10 minutes.

また、その際反応後のカチオン性ポリアクリルアミドの
濃度に応じて水で希釈して添加してもよい。希釈度は、
バルブの種類、抄紙のスピード等により変化しうるが、
添加するときのカチオン性ポリアクリルアミドの濃度は
概ね0.1〜10重量%であり、好ましくは0.5〜5
重量%であり、より好ましくは0.8〜2重量%である
。このとき、本発明のカチオン性ポリアクリルアミドを
単独で使用することもできるが、必要に応じて硫酸バン
ド、アニオン性樹脂等と併用して抄造を行うことも好ま
しい。これらの薬剤の添加順序は任意の順序、あるいは
同時に添加することができる。また、カチオン性ポリア
クリルアミドと水溶性アニオン性樹脂とをpH9以上で
混合した後に添加することもできる。カチオン性ポリア
クリルアミドと水溶性アニオン性樹脂の添加比率は任意
に選ぶことができ、固形分重量の比で100:0〜10
:90の範囲にある。その添加量はバルブの乾燥固形分
重量に対してそれぞれ0.005〜3重量%、好ましく
は0.01〜1重量%の範囲である。添加場所は湿潤シ
ートが形成される以前であればどこでもよく、通常は抄
紙ワイヤ一部に近い場所で添加する方がよい0本発明は
ホフマン分解反応直後の溶液を反応停止を行う、あるい
は反応停止を行うことなくパルプスラリー添加すること
ができる。いずれの場合にも、溶液を希釈することなく
添加できるが、必要に応じてポリマー固形分0.1〜l
O%に水で希釈した後に添加する方が好ましい。
Further, at that time, it may be added after being diluted with water depending on the concentration of the cationic polyacrylamide after the reaction. The dilution is
It may vary depending on the type of valve, speed of paper making, etc.
The concentration of cationic polyacrylamide when added is approximately 0.1 to 10% by weight, preferably 0.5 to 5% by weight.
% by weight, more preferably 0.8 to 2% by weight. At this time, although the cationic polyacrylamide of the present invention can be used alone, it is also preferable to use it in combination with sulfuric acid, an anionic resin, etc., as necessary. These drugs can be added in any order or at the same time. Moreover, it can also be added after mixing the cationic polyacrylamide and the water-soluble anionic resin at pH 9 or higher. The addition ratio of cationic polyacrylamide and water-soluble anionic resin can be selected arbitrarily, and is 100:0 to 10 in solid content weight ratio.
: In the range of 90. The amount added is in the range of 0.005 to 3% by weight, preferably 0.01 to 1% by weight, based on the dry solid weight of the bulb. The addition location can be anywhere before the wet sheet is formed, and it is usually better to add it to a location near a part of the papermaking wire.The present invention involves terminating the reaction of the solution immediately after the Hofmann decomposition reaction, or terminating the reaction. Pulp slurry can be added without the need for In either case, the solution can be added without dilution, but if necessary, the polymer solids content may be 0.1 to 1.
It is preferable to add it after diluting it with water to 0%.

本発明のカチオン性ポリアクリルアミドを紙力増強剤の
目的で使用する方法は、従来公知の方法に従って行えば
よい、このとき、本発明のカチオン性ポリアクリルアミ
ドを単独で使用することもできるが、必要に応じて硫酸
バンド、アニオン性樹脂等と併用して抄造を行う、これ
らの薬剤の添加順序は任意の順序、あるいは同時に添加
することができる。また、カチオン性ポリアクリルアミ
ドと7ニオン性樹脂とをpH9以上で混合した後に添加
することもできる。カチオン性ポリアクリルアミドとア
ニオン性樹脂の添加比率は任意に選ぶことができ、固形
分重量の比で100:0〜10:90の範囲にある。そ
の添加量はバルブの乾燥固形分重量に対してそれぞれ0
.01〜5重量%、好ましくは0.05〜2重量%であ
る。添加場所は湿潤シートが形成される以前に添加する
こともできるが、湿潤シートが形成された後でも、特に
抄き合わせ紙を製造する場合には、スプレー兼有や′ロ
ールコーター塗布により添加することも可能である。ま
た、本発明ではカチオン性ポリアクリルアミドを高温、
短時間でホフマン分解反応を行フて更に性能を高めたカ
チオン性ポリアクリルアミドを製造するのであるが、驚
くべきことに、同様の反応を低温、長時間で行って得ら
れるカチオン性ポリアクリルアミドよりも遥かに優れた
紙力能を示すことを本発明者らは見出した。この理由は
必ずしも明かとはなっていないが、特に反応停止操作を
行うことなく、パルプスラリーなどに添加した場合に特
に効果が顕著であった点などから、主鎖に共重合したジ
アリルアミン誘導体及び、反応中間体であるN−クロロ
基や、その他の、高温度ゆえに生じる官能基が直接、あ
るいは間接的に紙力発現に寄与しているものと考えられ
る。従って、反応停止操作を行うことなく添加すること
が更に望ましいが、反応停止を行わないと経時的に劣化
を生じるため、その場合は、反応後直ちに添加すること
が好ましい。ここで言う「直ちに」とは反応後の水溶液
を配管内より取り出し、外部に移液することなく同一配
管内を輸送してパルプスラリーに添加することをいう、
より具体的には反応後の水溶液を配管内を通して直接パ
ルプスラリーに添加しても良いし、その間にストックタ
ンクを設けてそこで一時7111!留させた後、添加量
を調節して添加してもよい。配管内での反応液の?l!
留時開時間反応後の水溶液が劣化しない範囲であればよ
い。しかし、余り長くすると液をS留しておく装置が大
きくなってしまい、本発明の特徴が生かされない。
The cationic polyacrylamide of the present invention can be used as a paper strength agent by a conventionally known method. At this time, the cationic polyacrylamide of the present invention can be used alone, but if necessary Paper-making is performed in combination with sulfuric acid, anionic resin, etc., depending on the requirements.These agents can be added in any order or at the same time. It can also be added after mixing the cationic polyacrylamide and the 7-ionic resin at pH 9 or higher. The addition ratio of cationic polyacrylamide and anionic resin can be arbitrarily selected, and is in the range of 100:0 to 10:90 in terms of solid content weight ratio. The amount added is 0 for each dry solid weight of the valve.
.. 01-5% by weight, preferably 0.05-2% by weight. The addition site can be added before the wet sheet is formed, but even after the wet sheet is formed, especially when manufacturing laminated paper, it can be added by spraying or applying with a roll coater. It is also possible. In addition, in the present invention, cationic polyacrylamide is heated at high temperature.
The Hofmann decomposition reaction is carried out in a short period of time to produce a cationic polyacrylamide with even higher performance, but surprisingly, it is better than the cationic polyacrylamide obtained by carrying out the same reaction at a lower temperature for a longer period of time. The inventors have found that the paper exhibits far superior paper strength. The reason for this is not necessarily clear, but the effect was particularly remarkable when added to pulp slurry without performing a reaction termination operation, and diallylamine derivatives copolymerized with the main chain and It is thought that the N-chloro group, which is a reaction intermediate, and other functional groups generated due to high temperature directly or indirectly contribute to the development of paper strength. Therefore, it is more desirable to add the compound without stopping the reaction, but if the reaction is not stopped, it will deteriorate over time, so in that case, it is preferable to add it immediately after the reaction. "Immediately" here means that the aqueous solution after the reaction is taken out of the pipe, transported within the same pipe and added to the pulp slurry without transferring to the outside.
More specifically, the aqueous solution after the reaction may be added directly to the pulp slurry through the pipe, or a stock tank may be provided in between and temporarily 7111! After distillation, the amount may be adjusted and added. of the reaction liquid in the piping? l!
The distillation time may be within a range in which the aqueous solution after the reaction does not deteriorate. However, if the length is too long, the device for storing the liquid in S becomes large, and the features of the present invention cannot be utilized.

従って本発明を好適に実施するには、反応後5時間以内
に添加することが好ましく、より好ましくは1時間以内
であり、更により好ましくは10分以内である。また、
その際反応後のカチオン性ポリアクリルアミドの濃度に
応じて水で希釈して添加してもよい、バルブの種類、抄
紙のスピード等により変化し、−概には述べられないが
、添加するときのカチオン性ポリアクリルアミドの濃度
は概ね0,1〜10重量%であり、好ましくは0,5〜
5重量%であり、より好ましくは 0.8〜2重量%で
ある。
Therefore, in order to suitably carry out the present invention, it is preferable to add within 5 hours after the reaction, more preferably within 1 hour, and even more preferably within 10 minutes. Also,
At that time, it may be diluted with water and added depending on the concentration of cationic polyacrylamide after the reaction.It varies depending on the type of valve, speed of paper making, etc. The concentration of cationic polyacrylamide is approximately 0.1 to 10% by weight, preferably 0.5 to 10% by weight.
It is 5% by weight, more preferably 0.8-2% by weight.

上記のような方法で製造した紙は、紙力強度、具体的に
は破裂強度、2軸強度、圧縮強度等に優れている。従っ
て、本発明の紙力増強剤を用い本発明の紙力増強方法を
適用すれば、段ボールや新聞紙等のような原料に古紙の
占める割合の高いものに使用すると非常に効果が大きく
、紙力強度の高い紙の製造が可能になる。また、段ボー
ル紙や新聞紙に限らず、強度が求められる紙に本発明を
適用することにより、優れた紙力強度をもつ紙を製造す
ることが可能になる。また、抄紙工程で濾水性が求めら
れる場合に本!!明を適用すれば、生産性良く優れた紙
力強度をもつ紙を製造することが可能になる。
Paper produced by the method described above has excellent paper strength, specifically bursting strength, biaxial strength, compressive strength, and the like. Therefore, if the paper strength enhancing agent of the present invention is applied to the paper strength increasing method of the present invention, it will be very effective when used for materials with a high proportion of waste paper such as cardboard and newspaper, and the paper strength It becomes possible to produce paper with high strength. Furthermore, by applying the present invention to papers that require strength, not just corrugated paper and newspaper, it becomes possible to produce paper with excellent paper strength. Also, if freeness is required in the paper making process, this book is for you! ! By applying this technique, it becomes possible to produce paper with high productivity and excellent paper strength.

〔作用〕[Effect]

本発明によれば紙力効果が高く、更に抄紙pHの変動に
対して効果の変動が小さく、またパルプスラリー中に存
在する溶解成分に対して効果の変動が小さい紙力増強剤
を提供することができた。
According to the present invention, there is provided a paper strength enhancer that has a high paper strength effect, has a small change in effect with respect to changes in papermaking pH, and has a small change in effect with respect to dissolved components present in pulp slurry. was completed.

その理由は必ずしも明かではないが、従来のポリアクリ
ルアミド系製紙用添加剤は比較的直鎖状の構造を持って
いたのに対し、本発明のポリアクリルアミド系製紙用添
加剤は、主鎖に4級カチオン性千ツマーを導入したこと
により、及び高温、短時間にホフマン分解反応する工程
を導入したために、部分的に分岐した構造や重合体が重
合体を抱え込んでいる構造が多くなっているものと推察
される0紙は直径数ミクロンから数十ミクロンで長さ数
百ミクロンから数ミリのバルブwA雑が絡み合った構造
を持っている。ポリアクリルアミドyf、製紙用添加剤
の紙力効果の向上はバルブta維間の水素結合の補強に
あると言われており、ポリアクリルアミド系製紙用添加
剤に対して非常に粗な構造である紙のバルブIl維間の
水素結合を補強するには、従来のポリアクリルアミド系
製紙用添加剤よりも3次元的な構造の方が適していると
推察され、本特許のポリアクリルアミド系製紙用添加剤
の紙力効果の向上につながっているものと推察される。
The reason for this is not necessarily clear, but while conventional polyacrylamide-based papermaking additives have a relatively linear structure, the polyacrylamide-based papermaking additive of the present invention has 4 chains in the main chain. Due to the introduction of class cationic polymers and the introduction of a high-temperature, short-time Hofmann decomposition reaction process, there are many partially branched structures and structures in which polymers envelop polymers. It is assumed that the 0 paper has a structure in which valves WA are intertwined with diameters of several microns to several tens of microns and lengths of hundreds of microns to several millimeters. It is said that the improvement in the paper strength effect of polyacrylamide YF, a papermaking additive, is due to the reinforcement of hydrogen bonds between valve TA fibers, and paper has a very rough structure compared to polyacrylamide papermaking additives. It is presumed that a three-dimensional structure is more suitable for reinforcing the hydrogen bonds between valve Il fibers than conventional polyacrylamide-based papermaking additives, and the polyacrylamide-based papermaking additive of this patent It is presumed that this leads to an improvement in the paper strength effect.

また、製紙用添加剤はパルプへ定着する際に電気的な引
力が中心に作用していると言われており、本特許のポリ
アクリルアミド系製紙用添加剤は主鎖に4級カチオン性
千ツマーを導入していることから、バルブへの化学的定
着を更に向上させており、およびホフマン分解反応によ
り導入される1級アミノ基等との相乗効果によって、抄
紙pHの変動に対して効果の変動が小さく、またパルプ
スラリー中に存在する溶解成分に対して効果の変動が小
さい特性を賦与しているものと推察される。
In addition, it is said that electrical attraction acts mainly on paper-making additives when they are fixed to pulp, and the polyacrylamide-based paper-making additive of this patent has quaternary cationic polymers in the main chain. , which further improves the chemical fixation on the valve, and the synergistic effect with the primary amino groups introduced by the Hofmann decomposition reaction reduces the effect against fluctuations in papermaking pH. It is inferred that this gives the pulp slurry the characteristics of small fluctuations in its effect on the dissolved components present in the pulp slurry.

〔発明の効果〕〔Effect of the invention〕

本発明の方法により得られたカチオン性ポリアクリルア
ミドは単に短時間で得られたと言うだけではなく、種々
の産業上の利用分野において適用する場合、それ自体優
れた作用効果を奏するのは、上記したところであるし1
、また後述する実施例より明かである。
The cationic polyacrylamide obtained by the method of the present invention is not only obtained in a short time, but also has excellent effects when applied in various industrial fields. By the way, 1
This is also clear from the examples described later.

なお、蛇足であるが、本発明の方法により高温で短時間
反応で品質的にも極めて優れたカチオン性ポリアクリル
アミドを製造できるので、下記の効果をも有することは
言うまでもない。
Incidentally, the method of the present invention allows production of cationic polyacrylamide of extremely high quality in a short reaction time at high temperatures, and it goes without saying that it also has the following effects.

(1)反応時間が極めて短いので反応装置を軽量小型化
できる。
(1) Since the reaction time is extremely short, the reaction apparatus can be made lighter and smaller.

(2)反応装置を小型化できるので、カチオン性ポリア
クリルアミドを使用する現場に反応装置を設置でき、反
応のオンサイト化が可能となる。
(2) Since the reactor can be miniaturized, the reactor can be installed at the site where cationic polyacrylamide is used, making it possible to conduct the reaction on-site.

(3)反応液組成を変えるだけで、短時間のうちにカチ
オン性の程度を変えたカチオン性ポリアクリルアミドを
製造できる。
(3) By simply changing the composition of the reaction solution, cationic polyacrylamide with varying degrees of cationicity can be produced in a short time.

(4)さらに、紙力強度の優れた紙自体を製造すること
もできる。
(4) Furthermore, it is also possible to produce paper itself with excellent paper strength.

(5)特に、抄紙pHの変動に対して効果の変動が小さ
く、またパルプスラリー中に存在する溶解成分に対して
効果の変動が小さい特徴を有する。
(5) Particularly, the effect has small fluctuations with respect to changes in papermaking pH, and also has the characteristics of small fluctuations in effect with respect to dissolved components present in the pulp slurry.

[実施例] 以下に実施例で本発明を説明する。なお以下【二於て%
は特に断わらないかぎり重量%を意味するものとする。
[Example] The present invention will be described below with reference to Examples. In addition, the following [2%
means % by weight unless otherwise specified.

製造例1 40%のアクリルアミド水溶液250gと蒸留水700
gを仕込み、撹拌下に窒素ガスで内部を置換しながら4
0℃まで加熱した。ついで10%通’fRMアンモニウ
ム水溶液と、10%亜硫酸水素ナトリウム水溶液を加え
ると直ちに重合反応が始まり液温は85°C迄上昇した
。その後85°Cで1時間保温して重合体成分10%、
25℃に於けるブルックフィールド粘度が3.200c
psのポリアクリルアミド水溶液を得た。
Production example 1 250 g of 40% acrylamide aqueous solution and 700 g of distilled water
4 g while stirring and purging the inside with nitrogen gas.
Heated to 0°C. Then, a 10% aqueous RM ammonium solution and a 10% aqueous sodium bisulfite solution were added, and the polymerization reaction immediately started and the temperature of the solution rose to 85°C. After that, it was kept warm at 85°C for 1 hour, and the polymer component was 10%.
Brookfield viscosity at 25℃ is 3.200c
An aqueous polyacrylamide solution of ps was obtained.

製造例2 攪拌機、還流冷却機、温度計及び窒素ガス導入管を備え
付けたの四ツロフラスコに40%のアクリルアミド水溶
液199.5[と蒸留水771.7g及び70%ジメチ
ルジアリルアンモニウムクロライド 28.8gを仕込
み、攪拌下に窒素ガスで内部を置換しながら40″Cま
で加熱した。ついで10%過ff1Mアンモニウム水溶
液と10%亜硫酸水素ナトリウム水溶液を加えると直ち
に重合反応が始まり、液温は85℃まで上昇した。その
後85°Cで2時間保温して重合体成分10%、25℃
に於けるブルックフィールド粘度が3,350cpsの
カチオン性ポリアクリルアミド水溶液を得た。
Production Example 2 A 40% acrylamide aqueous solution (199.5 g), distilled water (771.7 g), and 70% dimethyldiallylammonium chloride (28.8 g) were placed in a four-piece flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen gas inlet tube. The mixture was heated to 40"C while stirring and purging the inside with nitrogen gas. Next, a 10% 1M aqueous ammonium solution and a 10% sodium bisulfite aqueous solution were added, and the polymerization reaction started immediately, and the liquid temperature rose to 85°C. After that, it was kept warm at 85°C for 2 hours, and the polymer component was 10% at 25°C.
A cationic polyacrylamide aqueous solution having a Brookfield viscosity of 3,350 cps was obtained.

実施例1 製造例2で製造したカチオン性ポリアクリルアミド系重
合体水溶液を10倍容量のメタノールを用いて再沈澱を
行い、乾燥処理を行った粉末状ポリアクリルアミド系重
合体10gを蒸留水140gに溶解させた。この溶液を
80℃に加熱し、撹拌下12.5%の吹亜塩素酸ナトリ
ウム溶液17 、7g、 30%水酸化ナトリウム溶液
7.5g及び蒸留水24.8gの混合溶液を一度に加え
た。添加後5秒後に反応混合物を過剰の亜[酸ナトリウ
ムを含んだ水溶液中にとって反応を停止した。このもの
をサンプル[A]とする。
Example 1 The aqueous cationic polyacrylamide polymer solution produced in Production Example 2 was reprecipitated using 10 times the volume of methanol, and 10 g of the dried powdered polyacrylamide polymer was dissolved in 140 g of distilled water. I let it happen. This solution was heated to 80° C., and while stirring, a mixed solution of 17.7 g of a 12.5% blown sodium chlorite solution, 7.5 g of a 30% sodium hydroxide solution, and 24.8 g of distilled water was added at once. Five seconds after the addition, the reaction mixture was poured into an aqueous solution containing excess sodium [sodiumite] to stop the reaction. This product is referred to as sample [A].

実施例2.3 表−1で示すような反応温度と反応時間をでホフマン分
解反応を行った以外は、全て実施例1の方法により行い
、サンプルを得た。これらのものをそれぞれサンプル[
B]  [C]とする。
Example 2.3 Samples were obtained by following the same method as in Example 1, except that the Hofmann decomposition reaction was carried out at the reaction temperature and reaction time shown in Table 1. Sample each of these [
B] [C].

表−1 比較例1 製造例1で製造したポリアクリルアミド系重合体水溶液
を20℃/180秒でホフマン分解反応を行った以外は
全て実施例1の方法にしたがってサンプルを得た。
Table 1 Comparative Example 1 A sample was obtained in accordance with the method of Example 1 except that the polyacrylamide polymer aqueous solution produced in Production Example 1 was subjected to a Hoffman decomposition reaction at 20° C./180 seconds.

このものをサンプル[D]とする。This is designated as sample [D].

比較例2 製造例1で製造したポリアクリルアミド系重合体水溶液
20°C/7200秒でホフマン分解を行った以外は全
て実施例1の方法に従ってサンプルを得た。
Comparative Example 2 A sample was obtained in accordance with the method of Example 1 except that the aqueous solution of the polyacrylamide polymer produced in Production Example 1 was subjected to Hoffmann decomposition at 20°C/7200 seconds.

このものをサンプル[E]とする。This is designated as sample [E].

比較例3 製造例2で製造したカチオン性ポリアクリルアミド系重
合体水溶液を20″C7180秒でホフマン分解反応を
行った以外は全て実施例1の方法に従ってサンプルを得
た。
Comparative Example 3 A sample was obtained in accordance with the method of Example 1, except that the aqueous solution of the cationic polyacrylamide polymer produced in Production Example 2 was subjected to a Hofmann decomposition reaction at 20"C for 180 seconds.

このものをサンプル[F]とする。This is designated as sample [F].

比較例4 製造例2で製造したカチオン性ポリアクリルアミド系重
合体水溶液を20°C/7200秒でホフマン分解反応
を行った以外は全て実施例1の方法に従ってサンプルを
得た。
Comparative Example 4 A sample was obtained in accordance with the method of Example 1, except that the aqueous solution of the cationic polyacrylamide polymer produced in Production Example 2 was subjected to a Hofmann decomposition reaction at 20°C/7200 seconds.

このものをサンプル[G]とする。This is designated as sample [G].

応用例1 濾水度(CS F ) 390m1ニ叩Jli Lf:
pj;tニール故Hの1%パルプスラリーに硫酸バンド
を加えてpHを3水準に調整した。硫酸バンドを1%パ
ルプスラリーのバルブに対して0.1%、1.0%、2
.0%添加したものpHがそれぞれ6.8.5.7.4
−6であった。
Application example 1 Freeness (CSF) 390m1 Jli Lf:
pj;t Sulfuric acid band was added to a 1% pulp slurry of Neil's late H to adjust the pH to three levels. 0.1%, 1.0%, 2% sulfuric acid band to the valve of 1% pulp slurry
.. 0% added pH is 6.8, 5, 7.4 respectively
-6.

このそれぞれの1%パルプスラリーに実施例1〜3で製
造した製紙用添加剤と比較例1〜4で製造した!2紙用
添加剤をバルブに対して固形分で□、50%になる様に
添加した。これらのパルプスラリーをタラピースタンダ
ードシートマシンにより150g/ゴの紙に抄造し乾燥
した。同時にこのパルプスラリーの一部をとりJIS−
P−8121に準じて濾水度を測定した。更にJIS−
P−8112により破裂強度を、熊谷理機工業−のイン
ターナルボンドテスターで2軸強度を測定した。その結
果表−2に示す。尚、ブランクは製紙用添加剤を添加し
ていないことを示す。
The papermaking additives produced in Examples 1 to 3 and Comparative Examples 1 to 4 were added to each of these 1% pulp slurries! 2 Paper additives were added to the bulb so that the solid content was □ and 50%. These pulp slurries were made into 150 g/g paper using a Tarapee standard sheet machine and dried. At the same time, take a part of this pulp slurry and
Freeness was measured according to P-8121. Furthermore, JIS-
The bursting strength was measured using P-8112, and the biaxial strength was measured using an internal bond tester manufactured by Kumagai Riki Kogyo. The results are shown in Table-2. Note that blank indicates that no papermaking additives were added.

応用例2 CS F  420m1に叩解したダンボール故紙の1
%パルプスラリーに硫酸バンドを加えてpH5,5に調
整した。この1%パルプスラリーに対して硫酸ナトリウ
ムを0.2,000.4.000pp■加えたところそ
れぞれの1%パルプスラリーの電気伝導度は0,18.
2.76.5.18sS/csとなった。このそれぞれ
の1%パルプスラリーに実施例1〜3で製造した製紙用
添加剤と比較例1〜4で製造した製紙用添加剤をバルブ
に対して固形分で0.50%になるように添加した。こ
れらのパルプスラリーをタラピースタンダードシートマ
シンにより坪量150g/ rrrの紙に抄造し乾燥し
た。同時にこのパルプスラリーの一部をとり、JIS−
P−8121に準じて濾水度を測定した。更に、 JI
S−3−P8112により破裂強度を、 JIS−P−
8126により圧縮強度を測定した。その結果を5−3
に示す、尚、ブランクは製紙用添加剤を添加していない
ことを示す。
Application example 2 CS F 1 piece of cardboard waste paper beaten to 420 m1
% pulp slurry was added with sulfuric acid band to adjust the pH to 5.5. When 0.2,000.4.000pp of sodium sulfate was added to this 1% pulp slurry, the electrical conductivity of each 1% pulp slurry was 0.18.
It became 2.76.5.18sS/cs. The papermaking additives produced in Examples 1 to 3 and the papermaking additives produced in Comparative Examples 1 to 4 were added to each of these 1% pulp slurries so that the solid content was 0.50% relative to the valve. did. These pulp slurries were made into paper with a basis weight of 150 g/rrr using a Tarapee standard sheet machine and dried. At the same time, take a part of this pulp slurry and
Freeness was measured according to P-8121. Furthermore, J.I.
Bursting strength is determined by S-3-P8112, JIS-P-
Compressive strength was measured using 8126. The result is 5-3
The blank indicates that no papermaking additives were added.

応用例3 C9F450■lに叩解したダンボール故紙の1%パル
プスラリーに硫酸バンドを加えてp H5,5に調整し
た。この1%パルプスラリーに対してリグニンスルホン
酸ソーダを0.100.200PPJ加えた。
Application Example 3 Sulfuric acid was added to a 1% pulp slurry of cardboard waste paper beaten in 450 liters of C9F, and the pH was adjusted to 5.5. 0.100.200 PPJ of sodium lignin sulfonate was added to this 1% pulp slurry.

このそれぞれの1%パルプスラリーに実施例1〜3で製
造した製紙用添加剤と比較例1〜4で製造した製紙用添
加剤をバルブに対して固形分で0.50%になる様に添
加した。これらの1%パルプスラリーをタラピースタン
ダードシートマシンにより坪量150g/ rrrの紙
に抄造し乾燥した。同時にこのパルプスラリーの一部を
とりJIS−P−8121に準じて濾水度を測定した。
The papermaking additives produced in Examples 1 to 3 and the papermaking additives produced in Comparative Examples 1 to 4 were added to each of these 1% pulp slurries so that the solid content was 0.50% relative to the valve. did. These 1% pulp slurries were made into paper with a basis weight of 150 g/rrr using a Tarapee standard sheet machine and dried. At the same time, a portion of this pulp slurry was taken and its freeness was measured according to JIS-P-8121.

更に、JIS−P−8112により破裂強度を、JIS
−P−8126により圧縮強度を測定した。
Furthermore, the bursting strength was determined according to JIS-P-8112.
- Compressive strength was measured using P-8126.

その結果を表−4に示す。尚、ブランクは製紙用添加剤
を添加していないことを示す。
The results are shown in Table 4. Note that blank indicates that no papermaking additives were added.

Claims (3)

【特許請求の範囲】[Claims] (1)一般式( I ) ▲数式、化学式、表等があります▼( I ) (式中、R_1、R_2は水素またはメチル基を表し、
R、Rはそれぞれ水素、炭素数1〜6のアルキル基を表
す。X^−は無機酸あるいは有機酸の陰イオンを表す)
で表されるジアリルアミン誘導体モノマー0.1〜20
モル%と、一般式(II) CH=C(R_5)−CONH_2(II) (式中、R_5は水素またはメチル基を表す)で表され
るアクリルアミド系モノマー80〜99.9モル%を共
重合して得られるカチオン性共重合体を、アルカリ性領
域下で次亜ハロゲン酸塩と50〜110℃の温度範囲に
て、短時間に反応を行って得られる製紙用添加剤。
(1) General formula (I) ▲Mathematical formula, chemical formula, table, etc.▼(I) (In the formula, R_1 and R_2 represent hydrogen or methyl group,
R and R each represent hydrogen and an alkyl group having 1 to 6 carbon atoms. X^- represents an anion of an inorganic or organic acid)
Diallylamine derivative monomer represented by 0.1 to 20
mol% and 80 to 99.9 mol% of an acrylamide monomer represented by the general formula (II) CH=C(R_5)-CONH_2(II) (in the formula, R_5 represents hydrogen or a methyl group). A papermaking additive obtained by reacting the resulting cationic copolymer with a hypohalite salt in an alkaline region at a temperature range of 50 to 110°C for a short time.
(2)請求項1記載の製紙用添加剤を、製造後直ちにパ
ルプスラリーに添加することを特徴とする紙力増強方法
(2) A method for increasing paper strength, which comprises adding the papermaking additive according to claim 1 to a pulp slurry immediately after production.
(3)請求項1記載の製紙用添加剤を、製造後直ちにパ
ルプスラリーに添加することを特徴とする濾水向上方法
(3) A method for improving drainage, which comprises adding the papermaking additive according to claim 1 to pulp slurry immediately after production.
JP16575390A 1990-06-26 1990-06-26 Additive for paper-making process Pending JPH0457994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16575390A JPH0457994A (en) 1990-06-26 1990-06-26 Additive for paper-making process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16575390A JPH0457994A (en) 1990-06-26 1990-06-26 Additive for paper-making process

Publications (1)

Publication Number Publication Date
JPH0457994A true JPH0457994A (en) 1992-02-25

Family

ID=15818412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16575390A Pending JPH0457994A (en) 1990-06-26 1990-06-26 Additive for paper-making process

Country Status (1)

Country Link
JP (1) JPH0457994A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299012A (en) * 2004-04-12 2005-10-27 Kao Corp Paper quality improving agent
JP2006052506A (en) * 2004-08-13 2006-02-23 Seiko Pmc Corp Method for producing hardboard
JP2015531032A (en) * 2012-08-22 2015-10-29 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Paper, paperboard and cardboard manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299012A (en) * 2004-04-12 2005-10-27 Kao Corp Paper quality improving agent
JP2006052506A (en) * 2004-08-13 2006-02-23 Seiko Pmc Corp Method for producing hardboard
JP2015531032A (en) * 2012-08-22 2015-10-29 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Paper, paperboard and cardboard manufacturing method

Similar Documents

Publication Publication Date Title
KR102170792B1 (en) Novel complexes of water-soluble polymers, and uses thereof
US5543446A (en) Water-soluble acrylamide/acrylic acid polymers and their use as dry strength additives for paper
US11608597B2 (en) Complex of polymers, preparation and use
JPH0457994A (en) Additive for paper-making process
JP2863275B2 (en) Papermaking additive and papermaking method
JP2986855B2 (en) Cationic polyacrylamide
JPH0457991A (en) Additive for paper-making process
JP2794414B2 (en) Cationic polyacrylamide, Z-axis paper strength and interlayer paper strength Paper strength enhancer and drainage improver
JP3075589B2 (en) Papermaking method and papermaking additive
JP2001254290A (en) Paper making method
JP3803670B2 (en) Acrylamide polymer aqueous solution and its use
JP2005336646A (en) Additive for papermaking and paper obtained therefrom
JP2912403B2 (en) Papermaking additives
JP3043111B2 (en) Papermaking method and papermaking additive
JP3462523B2 (en) Papermaking additive, method for producing the same, and method for papermaking
JP2665968B2 (en) Z-axis paper strength and interlayer paper strength Paper strength enhancer and method, drainage improver, and papermaking
JP2938150B2 (en) Paper manufacturing method
JPH06192993A (en) Additive for papermaking
JP2860554B2 (en) Method for producing cationic acrylamide polymer and use thereof
JP2761923B2 (en) Paper making method
JP2683521B2 (en) Paper made using a cationic acrylamide polymer
JPH0457993A (en) Additive for paper-making process
JP2928785B2 (en) Papermaking additives
JP2665969B2 (en) Z-axis paper strength and interlayer paper strength Paper strength enhancer and method, drainage improver, and papermaking
JP2794413B2 (en) Cationic polyacrylamide, Z-axis paper strength and interlayer paper strength Paper strength enhancer and drainage improver