JPH04578B2 - - Google Patents

Info

Publication number
JPH04578B2
JPH04578B2 JP23260585A JP23260585A JPH04578B2 JP H04578 B2 JPH04578 B2 JP H04578B2 JP 23260585 A JP23260585 A JP 23260585A JP 23260585 A JP23260585 A JP 23260585A JP H04578 B2 JPH04578 B2 JP H04578B2
Authority
JP
Japan
Prior art keywords
superconducting
protective resistor
magnet
superconducting magnet
magnet device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23260585A
Other languages
Japanese (ja)
Other versions
JPS6292416A (en
Inventor
Shinichi Nose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP23260585A priority Critical patent/JPS6292416A/en
Publication of JPS6292416A publication Critical patent/JPS6292416A/en
Publication of JPH04578B2 publication Critical patent/JPH04578B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は超電導磁石装置における永久電流ス
イツチがクエンチした場合の保護方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a protection method when a persistent current switch in a superconducting magnet device is quenched.

〔従来技術とその問題点〕[Prior art and its problems]

超電導線を用いた超電導磁石は、電流密度を高
くすることができるので広い空間に強磁界をコン
パクトな磁石でしかも比較的小さな電力で発生す
ることができる。現在実用化されている超電導線
は高純度の銅やアルミニウムなどの金属(これら
を安定化材と称する)中に超電導材の細線を埋め
込んだ複合超電導線である。銅やアルミニウムは
超電導材(NbTiやNb3Snなど)が超電導状態を
維持できる液体ヘリウム温度(1気圧のもとで約
4.2K)においても超電導状態にはならない。し
かしこれら安定化材は4.2Kなる温度においては
非常に低い抵抗率を持つているため超電導体が何
らかの原因により超電導状態を失つて高抵抗状態
になつた場合(いわゆるクエンチ現象)、超電導
体を流れている電流をバイパス回路に導きジユー
ル発熱を減少させ超電導線の焼損を防ぐ。
Superconducting magnets using superconducting wires can have high current density, so they can generate a strong magnetic field in a wide space with a compact magnet and with relatively low power. The superconducting wires currently in practical use are composite superconducting wires in which fine wires of superconducting material are embedded in high-purity metals such as copper and aluminum (these are called stabilizing materials). Copper and aluminum are used at liquid helium temperatures (approx.
Even at 4.2K), it does not become superconducting. However, these stabilizing materials have a very low resistivity at a temperature of 4.2K, so if the superconductor loses its superconducting state for some reason and enters a high resistance state (the so-called quench phenomenon), it will flow through the superconductor. The current is guided to the bypass circuit to reduce Joule heat generation and prevent burnout of the superconducting wire.

複合超電導線における安定化材と超電導体の比
(これを一般に銅比と称する)は製作される磁石
の使用時の冷却状態、磁石の大きさおよび運転方
法に依存する。一般に蓄積エネルギーの大きな超
電導磁石は複合超電導線の銅比も大きく電流密度
も小さくなる。したがつて大きな著積エネルギー
を持つ超電導磁石をできるだけ高い電流密度で運
転することが最も好ましい。
The ratio of the stabilizing material to the superconductor (generally referred to as the copper ratio) in the composite superconducting wire depends on the cooling condition of the manufactured magnet during use, the size of the magnet, and the operating method. In general, superconducting magnets with a large stored energy have a large copper ratio in the composite superconducting wire and a low current density. Therefore, it is most preferable to operate a superconducting magnet with a large significant energy at a current density as high as possible.

磁石のクエンチ時には蓄積されている磁気エネ
ルギーが前述した安定化材のジユール発熱として
消費されるが、このジユール発熱によつて磁石の
温度が上昇する。この温度の最高値TMは TM∝JO 2・τ …(1) で表わされる。ここでJOは安定化材中の電流密
度、τは減衰時定数でτ≡L/R(Lは磁石のイ
ンダクタンス、Rは回路の抵抗値でこの場合は超
電導磁石に発生する抵抗値が支配的)である。こ
の最高温度TMは磁石を保護する上からは小形の
もので約300K、中規模のもので200〜100K、ク
エンチを許す大形のものでは約70Kとして設計さ
れるのが通常である。回路の抵抗はコイル自身の
抵抗による場合と第5図に示すように磁石1のク
エンチ検出後回路遮断器4を開いて磁石1を電源
5より切離し、磁石1と直列に保護抵抗体2を挿
入して磁石1の蓄積エネルギーの一部を常温領域
(A)に設置した保護抵抗体で消費させ、クエンチ後
の磁石1の最高温度を抑制したり、もしくはより
高い電流密度で運転される磁石を提供できる保護
方式がしばしば用いられる。なお第5図における
3は磁石1に励磁電流を供給する電流供給リード
を示し、(L)は極低温領域を示す。
When the magnet is quenched, the stored magnetic energy is consumed as the aforementioned Joule heat generation from the stabilizing material, and this Joule heat generation increases the temperature of the magnet. This maximum temperature T M is expressed as T M ∝J O 2 ·τ (1). Here, J O is the current density in the stabilizing material, τ is the decay time constant, and τ≡L/R (L is the inductance of the magnet, and R is the resistance value of the circuit. In this case, the resistance value generated in the superconducting magnet is dominant. target). This maximum temperature T M is usually designed to be about 300K for small magnets to protect the magnet, 200 to 100K for medium magnets, and about 70K for large magnets that allow quenching. The circuit resistance is due to the resistance of the coil itself, and as shown in Figure 5, after detecting the quench of the magnet 1, the circuit breaker 4 is opened to disconnect the magnet 1 from the power source 5, and a protective resistor 2 is inserted in series with the magnet 1. A part of the stored energy of magnet 1 is transferred to the room temperature range.
A protection method is often used that can suppress the maximum temperature of the magnet 1 after quenching by dissipating it with a protective resistor installed in (A), or provide a magnet operated at a higher current density. Note that 3 in FIG. 5 indicates a current supply lead for supplying an excitation current to the magnet 1, and (L) indicates an extremely low temperature region.

超電導線を使用した永久電流スイツチを用いて
超電導磁石の両端子を短絡したいわゆる永久電流
モードで運転する超電導磁石は磁石の励磁、減磁
以外の定常使用状態では電流供給リードは引き抜
かれて使用されるのが普通である。永久電流モー
ド状態でもし永久電流スイツチがクエンチして高
抵抗状態になつた場合、磁石の蓄積エネルギーは
永久電流スイツチ部分に集中し、スイツチの焼損
につながる。それがため第6図に示すように保護
抵抗体2をスイツチ6と並列に接続して使用する
ことが知られている。この場合保護抵抗体2の抵
抗値R2の値はスイツチ6のOFF状態の時すなわ
ち常電導抵抗値RSより充分小さくする必要があ
るが、これらの値は磁石の蓄積エネルギーや実用
的な励磁時間を考慮して決定される。また保護抵
抗体2は磁石より十分離し、たとえば冷媒のガス
空間L2に設置され、磁石励磁の妨げとならない
ように構成されなければならない。磁石とスイツ
チは冷媒の液領域に設置されるものとする。
Superconducting magnets operate in so-called persistent current mode, where both terminals of the superconducting magnet are short-circuited using a persistent current switch using superconducting wire, and the current supply lead is pulled out during normal use except for excitation and demagnetization of the magnet. It is normal to If the persistent current switch quenches and enters a high resistance state in the persistent current mode, the energy stored in the magnet will be concentrated in the persistent current switch, leading to burnout of the switch. Therefore, it is known to use a protective resistor 2 connected in parallel with a switch 6 as shown in FIG. In this case, the value of the resistance value R2 of the protective resistor 2 needs to be sufficiently smaller than the normal conduction resistance value R S when the switch 6 is in the OFF state, but these values should be determined based on the stored energy of the magnet and practical excitation. Determined based on time. Furthermore, the protective resistor 2 must be placed sufficiently away from the magnet, for example, in the refrigerant gas space L2, and configured so as not to interfere with magnet excitation. The magnet and switch shall be installed in the refrigerant liquid area.

永久電流スイツチとその保護抵抗体の設計に際
しては、スイツチのOFFすなわち常電導時の抵
抗値をRSとすると、 W・RS∫〓m 4.2CSdθ≧RS/R2+RS・E …(2) を満足しなければならない。ここでW:スイツチ
を構成している材料の1Ωあたりの質量〔Kg/
Ω〕、∫〓m 4.2CSdθ:スイツチが最高温度θm(K)まで

達したときのエンタルピー増加〔J/Kg〕、E:
超電導磁石の蓄積エネルギー(J)である。すなわち
スイツチで吸収できるエネルギーとスイツチの最
高温度θMは(2)式を満たす必要があり、かつθmは
300Kを越えることが望ましい。蓄積エネルギー
が大きくなれば永久電流スイツチも大形化して耐
熱負荷も大きくしなければならないという問題が
生じ、さらにスイツチの大形化はON−OFFの応
答性を悪くするという問題を生じる。
When designing a persistent current switch and its protective resistor, let R S be the resistance value when the switch is OFF, that is, during normal conduction, W・R S ∫〓 m 4.2 C S dθ≧R S /R 2 +R S・E …(2) must be satisfied. Here, W: Mass per 1Ω of the material that makes up the switch [Kg/
Ω], ∫〓 m 4.2 C S dθ: Enthalpy increase when the switch reaches the maximum temperature θm (K) [J/Kg], E:
This is the stored energy (J) of a superconducting magnet. In other words, the energy that can be absorbed by the switch and the maximum temperature θM of the switch must satisfy equation (2), and θm is
It is desirable to exceed 300K. As the stored energy increases, the problem arises that the persistent current switch must also be larger and the heat-resistant load must be increased, and the larger switch also causes the problem of poorer ON-OFF response.

〔発明の目的〕[Purpose of the invention]

この発明は大きな磁気蓄積エネルギーを有する
超電導磁石を永久電流モードで運転する場合にそ
の永久電流スイツチのクエンチに対して、スイツ
チを大形化することなしに、スイツチの保護を十
分安全に行なえるような超電導磁石装置を提供す
ることを目的とする。
This invention is designed to protect the persistent current switch sufficiently safely without increasing the size of the switch when a superconducting magnet with large magnetic stored energy is operated in persistent current mode. The purpose of this invention is to provide a superconducting magnet device.

〔発明の要点〕[Key points of the invention]

この発明は永久電流スイツチを用いて運転され
る超電導磁石において、スイツチの保護抵抗体を
超電導磁石の極く近傍に設置することにより永久
電流スイツチのクエンチにより保護抵抗体に流れ
る電流のジユール発熱により超電導磁石を加熱し
磁石自体もクエンチさせるようにし、蓄積エネル
ギーの消費を磁石内部でも行なわせてスイツチに
おけるエネルギー消費を抑え、これによつて永久
電流スイツチを小形化させようとするものであ
る。
In a superconducting magnet that is operated using a persistent current switch, the present invention provides superconducting by installing the protective resistor of the switch very close to the superconducting magnet, and by quenching the persistent current switch and generating heat from the current flowing through the protective resistor. The idea is to heat the magnet and quench the magnet itself, thereby consuming the stored energy inside the magnet, thereby suppressing energy consumption in the switch, and thereby miniaturizing the persistent current switch.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の実施例を示す超電導装置の
電気回路図で、従来の電気回路たる第5図、第6
図と同一部分には同一の符号を付し説明を省略す
る。永久電流スイツチ6の保護抵抗2は、励磁・
減磁時に発生する電圧によつて保護抵抗2に電流
が流れることを防止するために設けたダイオード
7と直列に接続され、この回路が超電導磁石1と
永久電流スイツチ6に対しそれぞれ電気的に並列
接続されかつ位置的に超電導磁石1に近接して設
置される。この場合、超電導磁石の励磁・減磁時
の電圧は極めて小さいのでダイオード7の順耐圧
(約数ボルト)により保護抵抗体には電流は流れ
ない。またダイオードが逆並列接続されているの
は回路の極性(+、−)がどちらになつても対応
できるようにするためである。永久電流スイツチ
6のクエンチにより発生する抵抗値RSと保護抵
抗体2の抵抗値R2との合成抵抗値R2S(R2S=1/RS +1/R2)により端子af間に電圧が誘起されダイオ ード7がターンオンし、永久電流モードでは
bcdeを流れていた電流のほとんどが保護抵抗体
2回路を含むac dfなる回路を流れる。そこで保
護抵抗体2にはジユール発熱を生じ近接している
超電導磁石1が熱せられて、クエンチを導く。
Figure 1 is an electrical circuit diagram of a superconducting device showing an embodiment of the present invention, and Figures 5 and 6 are conventional electrical circuit diagrams.
Components that are the same as those in the figures are given the same reference numerals and explanations will be omitted. The protective resistor 2 of the persistent current switch 6 is
It is connected in series with a diode 7 provided to prevent current from flowing through the protective resistor 2 due to the voltage generated during demagnetization, and this circuit is electrically connected in parallel to the superconducting magnet 1 and the persistent current switch 6, respectively. The superconducting magnet 1 is connected to the superconducting magnet 1 and located close to the superconducting magnet 1 . In this case, since the voltage during excitation and demagnetization of the superconducting magnet is extremely small, no current flows through the protective resistor due to the forward breakdown voltage (about several volts) of the diode 7. The reason why the diodes are connected in antiparallel is to be able to handle either polarity (+ or -) of the circuit. Due to the combined resistance value R 2S (R 2S = 1/ RS + 1/R 2 ) of the resistance value R S generated by the quenching of the persistent current switch 6 and the resistance value R 2 of the protective resistor 2, a voltage is generated between the terminals af. The induced diode 7 turns on, and in persistent current mode
Most of the current flowing through bcde flows through the ac df circuit, which includes two protective resistor circuits. Therefore, Joule heat generation occurs in the protective resistor 2, and the superconducting magnet 1 in the vicinity is heated, leading to quenching.

第2図は永久電流スイツチの保護抵抗体の具体
的設置方法を示す縦断面図で、円筒体の両端にフ
ランジを有する巻枠8にソレノイド状に巻かれた
超電導巻線1aの外周面に密着して永久電流スイ
ツチ6を介して保護抵抗体2が巻回される。この
保護抵抗体2は銅あるいはステンレス等で形成す
るが、この場合保護抵抗体がインダクタンスを持
たないように保護抵抗体2a層と2b層を流れる
電流の向きは逆方向となるように接続する。また
超電導巻線の外側に密着して設置した保護抵抗体
は電磁力を抑える作用も同時に備えもつ利点を有
する。
Fig. 2 is a vertical cross-sectional view showing a specific method of installing the protective resistor of a persistent current switch, in which the protective resistor of the persistent current switch is tightly attached to the outer peripheral surface of the superconducting winding 1a wound in a solenoid shape around the winding frame 8 having flanges at both ends of the cylindrical body. The protective resistor 2 is then wound through the persistent current switch 6. The protective resistor 2 is made of copper, stainless steel, or the like, but in this case, the protective resistor layers 2a and 2b are connected in opposite directions so that the currents flow in the layers 2a and 2b in opposite directions so that the protective resistor has no inductance. Furthermore, the protective resistor installed closely on the outside of the superconducting winding has the advantage of simultaneously suppressing electromagnetic force.

第3図は第2図の保護抵抗体2a,2b層に通
常運転時における超電導巻線1aの冷却を促進す
る冷却用孔9を設けた状態を示す斜視図である。
FIG. 3 is a perspective view showing a state in which cooling holes 9 are provided in the protective resistor layers 2a and 2b of FIG. 2 to promote cooling of the superconducting winding 1a during normal operation.

第4図はスイツチの保護抵抗体を超電導巻線1
aの内側に設置した他の実施例を示す縦断面図で
ある。
Figure 4 shows the switch's protective resistor connected to superconducting winding 1.
It is a longitudinal cross-sectional view showing another example installed inside a.

〔発明の効果〕〔Effect of the invention〕

この発明によれば永久電流スイツチのクエンチ
に対する保護抵抗体を超電導磁石巻線に密接して
配置する構造としたので、スイツチのクエンチ後
は保護抵抗体が通電され、それによる発熱により
超電導磁石もクエンチするため、解放される磁気
エネルギーを分散して消費できる。これがため永
久電流スイツチの耐熱容量を小さくできる。した
がつて大きな蓄積エネルギーを持つ超電導磁石に
対しても小形の永久電流スイツチで対応できとく
に熱式永久電流スイツチにおいてはON−OFFの
応答性の向上や、より少ない超電導線でスイツチ
の製作が可能なため磁気的安定性も向上する。
According to this invention, the protective resistor against quenching of the persistent current switch is arranged in close proximity to the superconducting magnet winding, so that after the switch is quenched, the protective resistor is energized, and the resulting heat generation also quenches the superconducting magnet. Therefore, the released magnetic energy can be dispersed and consumed. Therefore, the heat resistance capacity of the persistent current switch can be reduced. Therefore, even with superconducting magnets that have a large amount of stored energy, a small persistent current switch can be used.In particular, thermal persistent current switches can improve ON-OFF response and can be manufactured using fewer superconducting wires. Therefore, magnetic stability is also improved.

さらにエネルギー消費部が分散されることによ
り、保護抵抗体自体も小形化でき、また保護抵抗
体によつて生じるクエンチは、磁石の局部的クエ
ンチでなく短時間で磁石全体におよぶ傾向を持つ
ため、磁石の局部的な温度上昇を防止できる。
Furthermore, by dispersing the energy consumption parts, the protective resistor itself can be made smaller, and the quench caused by the protective resistor tends to spread over the entire magnet in a short period of time, rather than locally quenching the magnet. It is possible to prevent local temperature rise of the magnet.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による超電導磁石装置の電気
回路図、第2図はこの発明の第1の実施例として
外側に保護抵抗体を設置した超電導磁石の縦断面
図、第3図はこの発明の第2の実施例として第2
図における保護抵抗体に冷却用孔を設けた超電磁
石の斜視図、第4図はこの発明の第3の実施例と
して保護抵抗体を内側に設置した超電導磁石の縦
断面図、第5図、第6図は夫々従来の超電導磁石
の保護回路を示す図である。 1:超電導磁石、2,2a,2b:保護抵抗
体、6:永久電流スイツチ、7:ダイオード、
8:巻枠、9:冷却用孔。
FIG. 1 is an electric circuit diagram of a superconducting magnet device according to the present invention, FIG. 2 is a vertical cross-sectional view of a superconducting magnet with a protective resistor installed on the outside as a first embodiment of the present invention, and FIG. 3 is a diagram of a superconducting magnet according to the present invention. As a second embodiment, the second
FIG. 4 is a vertical cross-sectional view of a superconducting magnet with a protective resistor installed inside as a third embodiment of the present invention; FIG. FIG. 6 is a diagram showing a protection circuit of a conventional superconducting magnet. 1: Superconducting magnet, 2, 2a, 2b: Protective resistor, 6: Persistent current switch, 7: Diode,
8: Winding frame, 9: Cooling hole.

Claims (1)

【特許請求の範囲】 1 永久電流スイツチを用いて運転する超電導磁
石において;永久電流スイツチのクエンチに対す
る保護抵抗体を超電導巻線に密着して設け、かつ
この保護抵抗体は電気的に逆並列されたダイオー
ドと直列接続されるとともに前記超電導巻線とは
並列接続となるように構成したことを特徴とする
超電導磁石装置。 2 特許請求の範囲第1項記載の超電導磁石装置
において;円筒体の両端にフランジを有する巻枠
に超電導巻線を巻回し、この外周部に偶数層に分
割された保護抵抗体を巻回して構成したことを特
徴とする超電導磁石装置。 3 特許請求の範囲第1項記載の超電導磁石装置
において;円筒体の両端にフランジを有する巻枠
に偶数層に分割された保護抵抗体を巻回し、この
外周部に超電導巻線を巻回して構成したことを特
徴とする超電導磁石装置。 4 特許請求の範囲第2項および第3項記載の超
電導磁石装置において;偶数層に分割されて巻回
された保護抵抗体は各層それぞれに流れる電流の
向きが逆方向となるように接続されたことを特徴
とする超電導磁石装置。 5 特許請求の範囲第2項記載の超電導磁石装置
において;偶数層に分割されて巻回された保護抵
抗体は各層を貫通する複数個の冷却用孔を有する
ことを特徴とする超電導磁石装置。
[Claims] 1. In a superconducting magnet operated using a persistent current switch; a protective resistor against quenching of the persistent current switch is provided in close contact with the superconducting winding, and the protective resistor is electrically connected in antiparallel. A superconducting magnet device characterized in that the superconducting magnet device is configured to be connected in series with a diode and connected in parallel with the superconducting winding. 2. In the superconducting magnet device according to claim 1; a superconducting winding is wound around a winding frame having flanges at both ends of a cylindrical body, and a protective resistor divided into an even number of layers is wound around the outer periphery of the winding frame. A superconducting magnet device characterized by comprising: 3. In the superconducting magnet device according to claim 1; a protective resistor divided into an even number of layers is wound around a winding frame having flanges at both ends of a cylindrical body, and a superconducting winding is wound around the outer periphery of the winding frame. A superconducting magnet device characterized by comprising: 4. In the superconducting magnet device according to claims 2 and 3; the protective resistor is divided into an even number of layers and is wound so that the current flowing through each layer is connected in the opposite direction. A superconducting magnet device characterized by: 5. The superconducting magnet device according to claim 2, wherein the protective resistor is divided into an even number of layers and wound, and has a plurality of cooling holes penetrating each layer.
JP23260585A 1985-10-18 1985-10-18 Superconductive magnet device Granted JPS6292416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23260585A JPS6292416A (en) 1985-10-18 1985-10-18 Superconductive magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23260585A JPS6292416A (en) 1985-10-18 1985-10-18 Superconductive magnet device

Publications (2)

Publication Number Publication Date
JPS6292416A JPS6292416A (en) 1987-04-27
JPH04578B2 true JPH04578B2 (en) 1992-01-08

Family

ID=16941969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23260585A Granted JPS6292416A (en) 1985-10-18 1985-10-18 Superconductive magnet device

Country Status (1)

Country Link
JP (1) JPS6292416A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8780510B2 (en) * 2009-09-23 2014-07-15 General Electric Company Passive quench protection circuit for superconducting magnets
JP2013251516A (en) * 2012-06-04 2013-12-12 Hitachi Ltd Superconducting magnet device

Also Published As

Publication number Publication date
JPS6292416A (en) 1987-04-27

Similar Documents

Publication Publication Date Title
US7701677B2 (en) Inductive quench for magnet protection
EP0470762B1 (en) Superconductive switch
JP2003197418A (en) Balanced quench protection circuit
JP2011187524A (en) High-temperature superconducting parallel conductor, high-temperature superconducting coil using the same, and high-temperature superconducting magnet
JP6666274B2 (en) High temperature superconducting permanent current switch and high temperature superconducting magnet device
JPS59144106A (en) Device for protecting superconductive magnet coil unit
JP4933034B2 (en) Superconducting coil protection device, NMR device and MRI device
US4812796A (en) Quench propagation device for a superconducting magnet
US5361055A (en) Persistent protective switch for superconductive magnets
JP2024503776A (en) High temperature superconductor field coil
US4956740A (en) Protection technique for superconducting magnets
JP7110035B2 (en) Superconducting magnet device
JPH04578B2 (en)
US3613006A (en) Stable superconducting magnet
JP2004186524A (en) Superconducting magnet device and superconducting transformer
JPS62244110A (en) Superconducting coil device
US3183413A (en) Protective means for superconducting solenoids
JPS617610A (en) Superconductive device
JPH0630299B2 (en) Superconducting magnet device
JP2001155917A (en) Superconducting magnet, superconducting magnet coil excitation method and refrigerant flow rate control device
JPH033362B2 (en)
JPH07142773A (en) Superconducting electromagnet
JPH11126543A (en) Permanent current switch apparatus
JPS5856985B2 (en) Thermal persistent current switch
JPH05160447A (en) Permanent current switch