JPH0457753B2 - - Google Patents

Info

Publication number
JPH0457753B2
JPH0457753B2 JP63162951A JP16295188A JPH0457753B2 JP H0457753 B2 JPH0457753 B2 JP H0457753B2 JP 63162951 A JP63162951 A JP 63162951A JP 16295188 A JP16295188 A JP 16295188A JP H0457753 B2 JPH0457753 B2 JP H0457753B2
Authority
JP
Japan
Prior art keywords
plating
alloy
ions
bath
plating bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63162951A
Other languages
Japanese (ja)
Other versions
JPH0211792A (en
Inventor
Yoshio Shindo
Fumio Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16295188A priority Critical patent/JPH0211792A/en
Publication of JPH0211792A publication Critical patent/JPH0211792A/en
Publication of JPH0457753B2 publication Critical patent/JPH0457753B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、耐チツピング性、溶接部の耐食性に
優れ、特に自動車用防錆鋼板として最適なZn−
Ni系合金めつき鋼板の製造方法に関する。 (従来の技術) Zn−Ni系合金めつき鋼板としては、Ni含有量
3〜23%のZn−Ni,Zn−Ni−Co,Zn−Ni−Fe
−Cr,Zn−Ni−Crや、これらに必要に応じて
Co,Cr,Fe,Mn,Mo,Sn,Cu,Pb等の1種
もしくは2種以上を含ませためつき鋼板、あるい
はこれらの各種合金めつき層中にSiO2,TiO2
Al2O3,ZrO2,NbO2,T2O5,Cr2O3等の酸化物
やBaCrO4,PbCrO4等のクロム酸化合物を1種
もしくは2種以上を含ませた複合めつき系Zn−
Ni合金めつき鋼板が提案され、一部実用化して
いる。 (発明が解決しようとする課題) これらの合金めつき鋼板について共通の問題と
して、塗装後低温化で小石がぶつかるような低
温チツピングで塗膜と一緒にめつき層が剥がれて
しまうことがある、めつき層の深さ方向でNi
濃度に差があると局部的な腐食の進行により耐食
性が低下する、ピンホールがあると腐食環境で
赤錆が出やすくなる、合わせ部、特に溶接部の
耐食性が弱い等がある。 これらの問題について検討を進めたところ、
Zn−Ni系合金めつきが鋼板表面に析出成長する
際の、初期電析物の合金組成づれが大きな要因で
あることがわかつた。すなわち、シアンや複雑な
キレート化剤を含まない硫酸浴や塩化物浴の様な
単純系のめつき液でめつきするとZnが先に析出
し、これに伴つて水素過電圧が上がると析出物中
のNi含有量がしだいに増し、安定したZn−Ni系
合金めつき組成物の析出にと変化する。 第3図に、Zn−Ni系合金めつきをGDSで分析
したときの深さ方向のプロフイルを示す。2,
3,4はそれぞれNi,Zn,Feの強度を示し、1
はNi含有率(Niの強度/(Znの強度+Niの強
度))を示す。このようにZn−Ni系合金めつき層
のNi組成はめつき層全体にわたつて均一ではな
く、鋼板との界面側にNi組成の不均一部分が存
在する。これを初期析出物層とし、この厚みをT
とする。この部分のNi組成は0から連続的に増
加し、一定の組成に漸近していく。従つて、この
部分には電析による大きな歪みが発生している。
これは、例えば、そのまま−20℃で小石をチツピ
ングしてもめつき剥離しないのに自動車用3コー
ト塗装のような厚膜塗装して同じくチツピングす
ると、塗膜のみ剥離するのではなくめつきごと地
鉄から剥離するような現象の原因となる。電解条
件(電流密度、浴温、浴のPH、流速)、めつき浴
組成などを色々と変化させて、この初期析出層の
厚みTを変えて低温チツピング性を調べると、明
らかに第4図のように、低Ni析出物である初期
折出物が厚いほうが悪いことがわかる。又、この
ようなめつき層内での組成の差は、合わせ部の溶
接点近傍の耐食性にも影響し、塩水噴霧30分と、
70℃、RH40%の乾燥1時間を1サイクルとして
くり返すサイクル腐食試験による板厚減少量を縦
軸に、組成のづれた部分の厚みを横軸に取ると第
5図からあきらかなように耐食性の低下も認めら
れる。 めつき層の剥離をふせぐ方法としては、めつき
条件を選ぶ方法や、めつき浴への添加剤、さらに
はより完全な方法として特開昭59−200789号公報
開示のように下層にめつき密着性に優れた異種め
つき層をもうける方法など各種の方法が提案され
ている。しかし、凍結防止に道路に散布した岩塩
によつて入り込む塩水による自動車の腐食防止用
途では、この異種金属の層を下層にもうけること
は、電気化学的な電位差にもとづく卑な金属の優
先腐食を発生させ、予想外な腐食の発生原因にも
なりかねない。 本発明は、こうした耐食性的な問題のない方法
として、原因となつているZn−Ni系合金めつき
層の初期析出層でのNi含有量を全体のNi含有量
に合せ、めつき層全体にわたつて均一なNi組成
を持つZn−Ni系合金めつきとすることにより、
実用上極めて重要な耐チツピング性、溶接部の耐
食性を向上させる方法を提供する。 (課題を解決するための手段) 本発明は、鋼板のZn−Ni系合金めつき方法に
おいて、 (イ) まずNiイオンとZnイオンのモル濃度比を5
以上かつ合計濃度25g/l以上、PHを1.0〜4.5
に調整した高Ni濃度めつき浴を用いて、Ni付
着量として8〜800mg/m2の範囲に相当する
Zn−Niの析出物を得、 (ロ) ついで該高Ni濃度めつき浴に接触もしくは
該高Ni濃度めつき浴中で陽極溶解法に従い上
記析出物を再溶解させた後、再溶解金属イオン
を含んだ再溶解液を付着させたまま、 (ハ) 連続的にNiイオンが10g/l以上、Znイオン
が15g/l以上でかつNiイオンとZnイオンのモ
ル濃度比が0.5〜1.5,PHが0.8〜3.8、浴温が50
〜95℃に保たれたZn−Ni系合金めつき浴中に
導き、Zn−Ni系合金めつきを施すことを特徴
とする耐チツピング性、溶接部の耐食性に優れ
たZn−Ni系合金めつき鋼板の製造方法、 および、鋼板のZn−Ni系合金めつき方法にお
いて、 (イ) まずNiイオンとZnイオンのモル濃度比を5
以上かつ合計濃度25g/l以上、PHを1.0〜4.5
に調整した高Ni濃度めつき浴を用いて、Ni付
着量として8〜800mg/m2の範囲に相当する
Zn−Niの析出物を得、 (ロ) ついで下記(ハ)のZn−Ni系合金めつき浴に接
触もしくは下記(ハ)のZn−Ni系合金めつき浴中
で陽極溶解法に従い上記析出物を再溶解させた
後、再溶解金属イオンを含んだ再溶解液を付着
させたまま、 (ハ) 連続的にNiイオンが10g/l以上、Znイオン
が15g/l以上でかつNiイオンとZnイオンのモ
ル濃度比が0.5〜1.5,PHが0.8〜3.8、浴温が50
〜95℃に保たれたZn−Ni系合金めつき浴中に
導き、Zn−Ni系合金めつきを施すことを特徴
とする耐チツピング性、溶接部の耐食性に優れ
たZn−Ni系合金めつき鋼板の製造方法である。 (作用) 本発明は、初期の析出物中のNi濃度を増すた
めに高Ni濃度めつき浴で初期析出物を得、これ
を再溶解させてめつき面近傍の電解液中のNi濃
度を高めておき、通常のZn−Ni系合金めつき浴
中に導入してめつき条件を選ぶことにより均一組
成のめつきを得ることに基き、初期析出用の高
Ni濃度めつき浴とZn−Ni系合金めつき浴の浴条
件を検討して見いだしたものである。 本発明を、図面を用いて更に詳細に説明する。 第1図は、初期析出物を得るための高Ni濃度
めつき浴中のNi/Znモル濃度比とPHがZn−Ni系
合金めつき鋼板の耐チツピング性及び溶接部の耐
食性に及ぼす影響を示す。なお、高Ni濃度めつ
き浴での処理の後は、本発明に準ずる方法で一連
の処理を行なつている。図中の印は、耐チツピン
グ性及び溶接部の耐食性の良否を表わしている。 ○:耐チツピング性(−20℃)、溶接部の耐食
性共に良好 ●:耐チツピング性(−10℃)良好、溶接部の
耐食性良好 △:耐チツピング性(−10℃)良好、溶接部の
耐食性不良 ×:チツピング性(−10℃)不良、溶接部の耐
食性不良 ここで、耐チツピング性は、0.8×70×150mmの
試験片に浸漬型リン酸塩処理−カオチン電着塗装
(20μ)−中塗(40μ)−上塗(40μ)を施した後、
試験片を−10℃もしくは−20℃に冷やした状態
で、大きさ2〜5mmの小石200gを、スピード約
150Kmで試験片にぶつけ、テーピング後のめつき
剥離について調べた結果である。又、溶接部の耐
食性は、試験片を70mm重ね合わせてスポツト溶接
を行ない、上記と同様の3コート塗装を施した
後、塩水噴霧試験30分と、70℃,RH40%の乾燥
1時間を1サイクルとするサイクル腐食試験を
100サイクル行ない、溶接部の板厚減少を調べた
結果である。本発明における高Ni濃度めつき浴
中のNi/Znモル濃度比及びPHの限定範囲に斜線
を施して示す。 このデータに基づいて限定理由を説明すると、
Ni/Znモル濃度比5未満では耐チツピング性が
不十分であり、溶接部の耐食性も不良である。一
方、PH1未満、4.5超では、Ni/Znモル濃度比の
高い領域で−10℃での耐チツピング性は良好にな
るものの、−20℃では不十分である。なおNiイオ
ンとZnイオンのモル濃度比としては5〜100,PH
としては1.5〜3.5がより好ましい。 高Ni濃度めつき浴中の総金属イオン量Zn2+
Ni2+が25g/l未満では、電流密度が大きくなつ
た場合に正常なめつきが行なわれず、したがつ
て、第1図中の印で述べるならば△あるいは×の
レベルに性能が低下してしまう。電流効率やイオ
ンの溶解性の点から、総金属イオン量としては30
〜150g/lが好ましい。浴温としては50〜95℃
が好ましい。 高Ni濃度めつき浴を用いて得るZn−Niの初期
析出物量は、Ni付着量として8〜800mg/m2であ
る。8mg/m2未満では十分な耐チツピング性が得
られず、800mg/m2超では溶接部の耐食性が低下
してしまう。より好ましい範囲は50〜500mg/m2
である。 次に、初期析出物を高Ni濃度めつき浴に接触
もしくは浴中で陽極電解により再溶解させ、再溶
解金属イオンを含んだ再溶解液層を付着させたま
ま後述するZn−Ni系合金めつき浴に導く。初期
析出物を再溶解させるためのめつき浴としては、
上述の高Ni濃度めつき浴の代わりに後述するZn
−Ni系合金めつき浴でもよい。初期析出物に対
するこれら一連の中間処理によりZn−Ni系合金
めつき全体の合金組成を均一化させ、耐チツピン
グ性及び溶接部の耐食性の向上をもたらす。 再溶解処理は、初期析出物が微量であるため極
く短時間の接触による化学溶解もしくは陽極電解
でよい。例えば、接触の場合は0.1〜5秒、陽極
電解の場合は通電量1〜500c/m2でよい。多数の
めつきセルを有する連続ラインにおいては、第2
番目のセルで接触もしくは陽極電解による溶解処
理を行なつた後、水洗を行なわずに第3番目以降
のセルでZn−Ni系合金めつきを行なえばよい。
最も簡便な方法としては、第1番目のセルで高
Ni濃度めつき浴により初期析出物を得、そのま
ま第2番目セル以降でZn−Ni系合金めつきを施
す方法があげられる。この場合、セル間で高Ni
濃度めつき浴の残存液により再溶解処理が行なわ
れることになる。 第2図は、Zn−Ni系合金めつき浴中のNi/Zn
モル濃度比とPHがZn−Ni系合金めつき鋼板の耐
チツピング性及び溶接部の耐食性に及ぼす影響を
示す。なお、Zn−Ni系合金めつきまでは本発明
に準ずる方法で一連の処理を行なつている。図中
の印及び性能試験方法は第1図の場合と同様であ
る。 本発明におけるZn−Ni系合金めつき浴中の
Ni/Znモル濃度比及びPHの限定範囲に斜線を施
して示す。第2図から明らかなように、Ni/Zn
モル濃度0.5〜1.5及びPH0.8〜3.8の範囲で−20℃
での耐チツピング性及び溶接部の耐食性が良好で
あり、それ以外の範囲ではこれらの性能が不十分
もしくは不良となる。 Zn−Ni系合金めつき浴中のNiイオン濃度、Zn
イオン濃度がそれぞれ10g/l未満、15g/l未
満では、電流密度が大きくなつた場合正常なめつ
きが行なわれず、したがつて第2図中の印で述べ
るならば、△あるいは×のレベルに性能が低下し
てしまう。電流効率やイオンの溶解性の点から
は、NiイオンとZnイオンの合計で30〜150g/l
が好ましい。浴温は50℃未満では耐食性上効果の
あるNi含有率が得られず、95℃超ではめつき浴
を加熱するために多量の熱源(蒸気など)を要
し、不経済である。より好ましくは60〜90℃とす
る。 本発明は、Zn,Niを主成分として、必要に応
じてCo,Cr,Fe,Mn,Mo,Sn,Cu,Pbなど
の金属イオンを1種もしくは2種以上含むZn−
Ni系合金めつき鋼板の製造、あるいはこれら合
金めつき層中にSiO2,TiO2,Al2O3,ZrO2
Ta2O5,NbO,Cr2O3等の酸化物、SiC,Si3N4
BN等のセラミツクス化合物、BaCrO4,PbCrO4
などのクロム酸化合物を1種もしくは2種以上含
む複合めつき系Zn−Ni合金めつき鋼板の製造に
適用できる。又、めつき浴は硫酸塩浴、塩化物
浴、これらの混合浴の何れでもよく、Na2SO4
(NH42SO4,NaClなどの電導助剤を含ませても
よい。 (実施例) 横型のめつき槽5つを備える連続電気めつきラ
インで、0.8mm厚×150mm幅の冷延鋼板ストリツプ
にZn−Ni系合金めつきを連続的に施した。めつ
き浴としては硫酸塩浴を用い、めつき量は20g/
m2とした。第1めつき槽には高Ni濃度めつき浴
を循環させ、第3めつき槽以降にはZn−Ni系合
金めつき浴を循環させた。第2めつき槽には高
Ni濃度めつき浴、Zn−Ni系合金めつき浴、水の
何れかを循環させ、めつき浴の場合には接触もし
くは陽極溶解を行なつた。 第1表にめつき条件及び評価結果をまとめて示
す。ここで1−1〜1−23が実施例、2−1〜2
−9が比較例である。第2めつき槽における処理
内容は以下の通りであり、表中には記号で示し
た。 A 高Ni濃度めつき浴を循環、接触により再溶
解 B 高Ni濃度めつき浴を循環、陽極溶解により
再溶解 C Zn−Ni系合金めつき浴を循環、接触により
再溶解 D Zn−Ni系合金めつき浴を循環、陽極溶解に
より再溶解 E 水を循環 なお、Ni含有率は何れも9〜15%内にあつた。
ここで、評価試験の方法は前に記載した方法に準
じた。評価基準は以下の通りである。 (耐低温チツピング性) −20℃でめつき剥離2%以下:○ −20℃でめつき剥離2%超5%以下:△ −20℃でめつき剥離5%超:× (溶接部の耐食性) 板厚減少量 0.1mm以下:○ 板厚減少量 0.1mm超0.2mm以下:△ 板厚減少量 0.2mm超:× 比較例の内2−1〜2−5は高Ni濃度めつき
浴での処理もしくはZn−Ni系合金めつき浴での
処理における条件が本発明の要件を満たしていな
いため、2−6〜2−8は第2めつき槽で再溶解
処理を行なわず水洗を行なつたため、また2−9
は高Ni濃度めつき浴での処理を行なつていない
ため、それぞれ耐チツピング性及び/または溶接
部の耐食性が不十分である。これに対して、実施
例1−1〜1−23は耐ピツチング性及び溶接部の
耐食性共に良好である。
(Industrial Application Field) The present invention is a Zn-
This invention relates to a method for producing Ni-based alloy plated steel sheets. (Conventional technology) Zn-Ni, Zn-Ni-Co, Zn-Ni-Fe with Ni content of 3 to 23% are used as Zn-Ni alloy plated steel sheets.
−Cr, Zn−Ni−Cr, and these as necessary
SiO 2 , TiO 2 ,
Composite plating system containing one or more oxides such as Al 2 O 3 , ZrO 2 , NbO 2 , T 2 O 5 , Cr 2 O 3 and chromic acid compounds such as BaCrO 4 and PbCrO 4 Zn−
Ni-alloy plated steel sheets have been proposed and some have been put into practical use. (Problems to be Solved by the Invention) A common problem with these alloy-plated steel sheets is that the plating layer may peel off along with the coating film due to low-temperature chipping, such as being hit by pebbles, when the temperature is lowered after painting. Ni in the depth direction of the plating layer
If there is a difference in concentration, corrosion resistance will decrease due to the progress of local corrosion, if there are pinholes, red rust will easily appear in a corrosive environment, and the corrosion resistance of mating parts, especially welded parts, will be weak. After considering these issues, we found that
It was found that the difference in the alloy composition of the initial deposit is a major factor in the growth of Zn-Ni alloy plating on the steel sheet surface. In other words, when plating with a simple plating solution such as a sulfuric acid bath or chloride bath that does not contain cyanide or a complex chelating agent, Zn precipitates first, and as the hydrogen overvoltage increases, The Ni content gradually increases, resulting in the precipitation of a stable Zn-Ni alloy plating composition. Figure 3 shows the depth profile of Zn-Ni alloy plating analyzed by GDS. 2,
3 and 4 indicate the strength of Ni, Zn, and Fe, respectively, and 1
indicates the Ni content (Ni strength/(Zn strength + Ni strength)). As described above, the Ni composition of the Zn--Ni alloy plating layer is not uniform over the entire plating layer, and there is a non-uniform portion of the Ni composition on the interface side with the steel plate. This is the initial precipitate layer, and its thickness is T
shall be. The Ni composition in this part increases continuously from 0 and asymptotically approaches a constant composition. Therefore, large distortion occurs in this part due to electrodeposition.
For example, if you chip a pebble at -20°C, the pebble will not peel off, but if you apply a thick film like a 3-coat car paint and chip it, the pebble will not peel off, but the entire pebble will peel off. This causes phenomena such as peeling off from the iron. When the low-temperature chipping property was investigated by varying the electrolytic conditions (current density, bath temperature, bath PH, flow rate), plating bath composition, etc., and by changing the thickness T of this initial deposited layer, it was clearly shown in Figure 4. It can be seen that the thicker the initial precipitate, which is a low Ni precipitate, is worse. In addition, such compositional differences within the plating layer also affect the corrosion resistance near the welding point of the joint, and salt water spraying for 30 minutes and
If we take the vertical axis as the thickness reduction in a cyclic corrosion test in which one cycle of drying at 70°C and 40% RH is taken as the vertical axis, and the horizontal axis as the thickness of the area with a different composition, it is clear from Figure 5 that the corrosion resistance A decrease in Methods for preventing peeling of the plating layer include methods for selecting plating conditions, adding additives to the plating bath, and, as a more complete method, plating the lower layer as disclosed in JP-A No. 59-200789. Various methods have been proposed, including methods of forming dissimilar plating layers with excellent adhesion. However, when used to prevent corrosion in automobiles caused by salt water that enters the road through rock salt sprinkled on roads to prevent freezing, creating a layer of dissimilar metals at the bottom causes preferential corrosion of base metals due to electrochemical potential differences. This may cause unexpected corrosion. In order to avoid such corrosion resistance problems, the present invention adjusts the Ni content in the initial precipitated layer of the Zn-Ni alloy plating layer, which is the cause of the problem, to the overall Ni content, so that the entire plating layer is coated with By using Zn-Ni alloy plating with uniform Ni composition throughout,
A method for improving chipping resistance and corrosion resistance of welded parts, which are extremely important in practice, is provided. (Means for Solving the Problems) The present invention provides a Zn-Ni alloy plating method for steel sheets, (a) First, the molar concentration ratio of Ni ions and Zn ions is set to 5.
or more and total concentration 25g/l or more, PH 1.0 to 4.5
Using a high Ni concentration plating bath adjusted to
Obtain a Zn-Ni precipitate, (b) Then contact with the high Ni concentration plating bath or redissolve the above precipitate according to the anodic dissolution method in the high Ni concentration plating bath, and then dissolve the redissolved metal ions. (c) Continuously maintain Ni ions of 10 g/l or more, Zn ions of 15 g/l or more, and the molar concentration ratio of Ni ions and Zn ions of 0.5 to 1.5, PH is 0.8 to 3.8, bath temperature is 50
A Zn-Ni alloy with excellent chipping resistance and corrosion resistance of welded parts, which is introduced into a Zn-Ni alloy plating bath maintained at ~95°C and subjected to Zn-Ni alloy plating. In the method for producing coated steel sheets and the method for plating Zn-Ni alloys on steel sheets, (a) First, the molar concentration ratio of Ni ions and Zn ions is set to 5.
or more and total concentration 25g/l or more, PH 1.0 to 4.5
Using a high Ni concentration plating bath adjusted to
Obtain a Zn-Ni precipitate, (b) then contact the following (c) Zn-Ni alloy plating bath or in the following (c) Zn-Ni alloy plating bath according to the anodic dissolution method to deposit the above. After redissolving the material, with the redissolution solution containing redissolved metal ions attached, (c) Continuously dissolving Ni ions at 10 g/l or more, Zn ions at 15 g/l or more, and Ni ions. Zn ion molar concentration ratio is 0.5 to 1.5, PH is 0.8 to 3.8, bath temperature is 50
A Zn-Ni alloy with excellent chipping resistance and corrosion resistance of welded parts, which is introduced into a Zn-Ni alloy plating bath maintained at ~95°C and subjected to Zn-Ni alloy plating. This is a method for manufacturing a steel plate. (Function) In order to increase the Ni concentration in the initial precipitate, the present invention obtains the initial precipitate in a high Ni concentration plating bath and redissolves it to increase the Ni concentration in the electrolytic solution near the plating surface. The high temperature for initial precipitation is based on the idea of obtaining plating with a uniform composition by introducing it into a normal Zn-Ni alloy plating bath and selecting the plating conditions.
This was discovered by examining the bath conditions of the Ni-concentrated plating bath and the Zn-Ni alloy plating bath. The present invention will be explained in more detail using the drawings. Figure 1 shows the effects of the Ni/Zn molar concentration ratio and PH in the high Ni concentration plating bath used to obtain initial precipitates on the chipping resistance of Zn-Ni alloy plated steel sheets and the corrosion resistance of welded parts. show. Note that after the treatment in the high Ni concentration plating bath, a series of treatments were performed using a method according to the present invention. The marks in the figure represent the quality of chipping resistance and corrosion resistance of the welded part. ○: Good chipping resistance (-20°C) and corrosion resistance of welded parts ●: Good chipping resistance (-10°C), good corrosion resistance of welded parts △: Good chipping resistance (-10°C), good corrosion resistance of welded parts Poor ×: Poor chipping property (-10°C), poor corrosion resistance of welded parts Here, chipping resistance is determined by immersion phosphate treatment on a 0.8 x 70 x 150 mm test piece, cationic electrodeposition coating (20μ), and intermediate coating. (40μ) - After applying topcoat (40μ),
With the test piece cooled to -10℃ or -20℃, 200g of pebbles with a size of 2 to 5mm are
These are the results of testing for peeling of plating after taping by hitting a test piece at 150 km. In addition, the corrosion resistance of the welded part was determined by spot welding test pieces overlapped by 70 mm, applying the same three coats as above, and then performing a salt spray test for 30 minutes and drying at 70°C and RH 40% for 1 hour. Cyclic corrosion test
This is the result of examining the decrease in plate thickness at the welded part after 100 cycles. The limited ranges of the Ni/Zn molar concentration ratio and PH in the high Ni concentration plating bath in the present invention are indicated by diagonal lines. Explaining the reason for the limitation based on this data:
If the Ni/Zn molar concentration ratio is less than 5, the chipping resistance is insufficient and the corrosion resistance of the welded part is also poor. On the other hand, when the pH is less than 1 and more than 4.5, the chipping resistance at -10°C is good in the region where the Ni/Zn molar concentration ratio is high, but it is insufficient at -20°C. The molar concentration ratio of Ni ions and Zn ions is 5 to 100, PH
1.5 to 3.5 is more preferable. Total metal ion amount Zn 2+ in high Ni concentration plating bath
If Ni 2+ is less than 25 g/l, normal plating will not occur when the current density becomes large, and therefore the performance will drop to the level of △ or × if you refer to the marks in Figure 1. Put it away. From the viewpoint of current efficiency and ion solubility, the total amount of metal ions is 30
~150 g/l is preferred. Bath temperature is 50-95℃
is preferred. The initial amount of Zn-Ni precipitates obtained using a high Ni concentration plating bath is 8 to 800 mg/m 2 as Ni deposited amount. If it is less than 8 mg/m 2 , sufficient chipping resistance cannot be obtained, and if it exceeds 800 mg/m 2 , the corrosion resistance of the welded part will deteriorate. A more preferable range is 50 to 500 mg/m 2
It is. Next, the initial precipitates are redissolved by anodic electrolysis in contact with or in a high Ni concentration plating bath, and a layer of redissolved solution containing redissolved metal ions is left attached to form a Zn-Ni alloy as described below. He leads her to a soaking bath. As a plating bath for redissolving initial precipitates,
Instead of the high Ni concentration plating bath mentioned above, use Zn as described below.
- A Ni-based alloy plating bath may be used. These series of intermediate treatments for initial precipitates make the alloy composition of the entire Zn-Ni alloy plating uniform, resulting in improved chipping resistance and corrosion resistance of the welded part. Since the amount of initial precipitates is small, the re-dissolution treatment may be chemical dissolution with very short contact or anodic electrolysis. For example, in the case of contact, the amount of current may be 0.1 to 5 seconds, and in the case of anodic electrolysis, the amount of current may be 1 to 500 c/m 2 . In a continuous line with a large number of plated cells, the second
After dissolving by contact or anodic electrolysis in the third cell, Zn--Ni alloy plating may be performed in the third and subsequent cells without washing with water.
The simplest method is to set the height in the first cell.
An example of this method is to obtain an initial precipitate in a Ni-concentrated plating bath, and directly apply Zn--Ni alloy plating to the second cell onward. In this case, high Ni
A re-dissolution process is performed using the remaining liquid in the concentration plating bath. Figure 2 shows Ni/Zn in a Zn-Ni alloy plating bath.
This figure shows the influence of molar concentration ratio and pH on the chipping resistance of Zn-Ni alloy coated steel sheets and the corrosion resistance of welded parts. Note that a series of treatments up to Zn--Ni alloy plating are performed by a method according to the present invention. The marks in the figure and the performance test method are the same as in Figure 1. In the Zn-Ni alloy plating bath in the present invention
The limited ranges of Ni/Zn molar concentration ratio and PH are indicated by diagonal lines. As is clear from Figure 2, Ni/Zn
-20℃ in the range of molar concentration 0.5 to 1.5 and pH 0.8 to 3.8
The chipping resistance and corrosion resistance of welded parts are good in the above ranges, and these performances are insufficient or poor in other ranges. Ni ion concentration in Zn-Ni alloy plating bath, Zn
If the ion concentration is less than 10 g/l and less than 15 g/l, normal plating will not occur when the current density becomes large, and therefore, if the marks in Figure 2 are used, the performance will be at the level of △ or ×. will decrease. In terms of current efficiency and ion solubility, the total amount of Ni ions and Zn ions is 30 to 150 g/l.
is preferred. If the bath temperature is less than 50°C, a Ni content that is effective in terms of corrosion resistance cannot be obtained, and if it exceeds 95°C, a large amount of heat source (such as steam) is required to heat the plating bath, which is uneconomical. More preferably, the temperature is 60 to 90°C. The present invention is a Zn-
Manufacture of Ni-based alloy plated steel sheets, or incorporation of SiO 2 , TiO 2 , Al 2 O 3 , ZrO 2 ,
Oxides such as Ta 2 O 5 , NbO, Cr 2 O 3 , SiC, Si 3 N 4 ,
Ceramics compounds such as BN, BaCrO 4 , PbCrO 4
It can be applied to the production of composite plated Zn-Ni alloy plated steel sheets containing one or more chromic acid compounds such as. Further, the plating bath may be a sulfate bath, a chloride bath, or a mixed bath thereof, and may contain Na 2 SO 4 , Na 2 SO 4 ,
A conductivity aid such as (NH 4 ) 2 SO 4 or NaCl may be included. (Example) Zn--Ni alloy plating was continuously applied to a cold-rolled steel strip having a thickness of 0.8 mm and a width of 150 mm using a continuous electroplating line equipped with five horizontal plating tanks. A sulfate bath was used as the plating bath, and the amount of plating was 20g/
m2 . A high Ni concentration plating bath was circulated in the first plating tank, and a Zn-Ni alloy plating bath was circulated in the third and subsequent plating tanks. The second plating tank has high
Either a Ni-concentrated plating bath, a Zn-Ni alloy plating bath, or water was circulated, and in the case of a plating bath, contact or anodic dissolution was performed. Table 1 summarizes the plating conditions and evaluation results. Here, 1-1 to 1-23 are examples, 2-1 to 2
-9 is a comparative example. The processing contents in the second plating tank are as follows, and are indicated by symbols in the table. A High Ni concentration plating bath is circulated and remelted by contact B High Ni concentration plating bath is circulated and remelted by anodic melting C Zn-Ni alloy plating bath is circulated and remelted by contact D Zn-Ni system Circulating the alloy plating bath and remelting by anode dissolution E. Circulating water. The Ni content was within 9 to 15% in all cases.
Here, the evaluation test method was based on the method described above. The evaluation criteria are as follows. (Low temperature chipping resistance) Plating peeling at -20℃ 2% or less: ○ Plating peeling at -20℃ more than 2% and 5% or less: △ Plating peeling at -20℃ more than 5%: × (Corrosion resistance of welded parts ) Plate thickness reduction: 0.1 mm or less: ○ Plate thickness reduction: more than 0.1 mm and 0.2 mm or less: △ Plate thickness reduction: more than 0.2 mm: × Comparative examples 2-1 to 2-5 were used in high Ni concentration plating baths. Because the conditions in the treatment or the treatment in the Zn-Ni alloy plating bath do not meet the requirements of the present invention, samples 2-6 to 2-8 were washed with water without being redissolved in the second plating bath. 2-9 again due to summer
Since these were not treated with a high Ni concentration plating bath, the chipping resistance and/or the corrosion resistance of the welded parts were insufficient. On the other hand, Examples 1-1 to 1-23 have good pitting resistance and corrosion resistance of welded parts.

【表】【table】

【表】 (発明の効果) 従来、Zn−Ni系合金めつきは優れた耐食性を
有するものの、耐チツピング性、溶接部の耐食性
といつた実用的な性能面で問題が残つていたが、
本発明はめつき層、特に鋼板界面近傍でのNi組
成を均一化させることによつてこれらの性能を大
巾に向上させるものであり、特に自動車用Zn−
Ni系合金めつき鋼板の製造にあたつて利用価値
は極めて大きい。
[Table] (Effects of the invention) Conventionally, Zn-Ni alloy plating had excellent corrosion resistance, but problems remained in practical performance such as chipping resistance and corrosion resistance of welded parts.
The present invention greatly improves these performances by making the Ni composition uniform in the plating layer, especially in the vicinity of the steel plate interface.
It has extremely high utility value in the production of Ni-based alloy plated steel sheets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は高Ni濃度めつき浴のNi/Znモル濃度
比とPHが耐チツピング性、溶接部の耐食性に及ぼ
す影響を示す図、第2図はZn−Ni系合金めつき
浴のNi/Znモル濃度比とPHが耐チツピング性、
溶接部の耐食性に及ぼす影響を示す図、第3図は
Zn−Ni系合金めつき鋼板の深さ方向の組成プロ
フイル(GDS分析)を示す図、第4図はZn−Ni
系合金めつきの初期析出物層の厚みと耐チツピン
グ性(−20℃)との関係を示す図、第5図はZn
−Ni系合金めつきの初期析出物層の厚みと溶接
部の耐食性との関係を示す図である。
Figure 1 shows the effects of the Ni/Zn molar concentration ratio and PH in a high Ni concentration plating bath on chipping resistance and corrosion resistance of welds. Zn molar concentration ratio and PH have chipping resistance,
Figure 3 shows the influence on the corrosion resistance of welded parts.
Figure 4 shows the composition profile (GDS analysis) in the depth direction of a Zn-Ni alloy plated steel sheet.
A diagram showing the relationship between the thickness of the initial precipitate layer and chipping resistance (-20℃) of Zn alloy plating.
- It is a figure which shows the relationship between the thickness of the initial precipitate layer of Ni-based alloy plating, and the corrosion resistance of a welded part.

【特許請求の範囲】[Claims]

1 鋼板のZn−Ni系合金めつき方法において、
Ni2+濃度を10g/l以上、Zn2+濃度を15g/l以
上とし、かつNi2+とZn2+のモル濃度比を0.48〜
1.48に、PHを0.5〜4.5に、さらに浴温を50℃以上
に調整すると共に、鋼板と平行に電極を設置した
めつきセルで、めつき液の鋼板界面での接線流速
を5m/min以下に設定し、40A/dm2以上の電流
密度でめつきを行なうと同時に、めつきセルの中
央部にめつき電流をカツトし、かつ周囲の液圧よ
りも水柱にて100mm以上加圧されたゾーンを設け
ることを特徴とする耐食性、耐プレスパウダリン
グ性及び表面外観に優れたZn−Ni系合金めつき
鋼板の製造方法。
1. In the Zn-Ni alloy plating method for steel sheets,
The Ni 2+ concentration is 10 g/l or more, the Zn 2+ concentration is 15 g/l or more, and the molar concentration ratio of Ni 2+ and Zn 2+ is 0.48 ~
1.48, adjust the pH to 0.5 to 4.5, adjust the bath temperature to 50℃ or higher, and use a plating cell with electrodes installed parallel to the steel plate to keep the tangential flow velocity of the plating solution at the steel plate interface to 5 m/min or less. At the same time, the plating current was cut to the center of the plating cell, and the water column was pressurized by at least 100 mm higher than the surrounding liquid pressure. A method for producing a Zn-Ni alloy coated steel sheet with excellent corrosion resistance, press powdering resistance, and surface appearance, characterized by providing zones.

Claims (1)

で陽極溶解法に従い上記析出を再溶解させた
後、再溶解金属イオンを含んだ再溶解液を付着
させたまま、 (ハ) 連続的にNiイオンが10g/l以上、Znイオン
が15g/l以上でかつNiイオンとZnイオンのモ
ル濃度比が0.5〜1.5,PHが0.8〜3.8、浴温が50
〜95℃に保たれたZn−Ni系合金めつき浴中に
導き、Zn−Ni系合金めつきを施すことを特徴
とする耐チツピング性、溶接部の耐食性に優れ
たZn−Ni系合金めつき鋼板の製造方法。
After redissolving the above precipitate according to the anodic dissolution method, (c) Continuously dissolving Ni ions of 10 g/l or more and Zn ions of 15 g/l while keeping the redissolving solution containing redissolved metal ions attached. or more, and the molar concentration ratio of Ni ions and Zn ions is 0.5 to 1.5, PH is 0.8 to 3.8, and bath temperature is 50.
A Zn-Ni alloy with excellent chipping resistance and corrosion resistance of welded parts, which is introduced into a Zn-Ni alloy plating bath maintained at ~95°C and subjected to Zn-Ni alloy plating. Manufacturing method for steel plate.
JP16295188A 1988-06-30 1988-06-30 Production of zn-ni alloy plated steel sheet having excellent chipping resistance and corrosion resistance of weld zone Granted JPH0211792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16295188A JPH0211792A (en) 1988-06-30 1988-06-30 Production of zn-ni alloy plated steel sheet having excellent chipping resistance and corrosion resistance of weld zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16295188A JPH0211792A (en) 1988-06-30 1988-06-30 Production of zn-ni alloy plated steel sheet having excellent chipping resistance and corrosion resistance of weld zone

Publications (2)

Publication Number Publication Date
JPH0211792A JPH0211792A (en) 1990-01-16
JPH0457753B2 true JPH0457753B2 (en) 1992-09-14

Family

ID=15764365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16295188A Granted JPH0211792A (en) 1988-06-30 1988-06-30 Production of zn-ni alloy plated steel sheet having excellent chipping resistance and corrosion resistance of weld zone

Country Status (1)

Country Link
JP (1) JPH0211792A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219491A (en) * 1988-07-07 1990-01-23 Sumitomo Metal Ind Ltd Production of zn-ni alloy plated steel sheet having high corrosion resistance
JPH0270091A (en) * 1988-09-01 1990-03-08 Sumitomo Metal Ind Ltd Zn-ni alloy plated steel sheet having superior adhesion under shock
KR100428021B1 (en) * 2000-12-13 2004-04-30 현대하이스코 주식회사 Process for manufacturing Zn/Zn-Ni double layer electroplated steel sheet having a good chipping resistance at subzero temperature for automobile
KR100428022B1 (en) * 2000-12-13 2004-04-30 현대하이스코 주식회사 Manufacturing process for Zinc-Nickel electroplated steel sheet having a good chipping resistance at subzero temperature in automobile use

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107095A (en) * 1982-12-10 1984-06-21 Kawasaki Steel Corp Zinc-nickel alloy plated steel sheet having excellent processability and impact resistance
JPS61916A (en) * 1984-06-13 1986-01-06 Konishiroku Photo Ind Co Ltd Magnetic recording medium
JPS61439A (en) * 1984-06-12 1986-01-06 Toyoda Gosei Co Ltd Plasma treatment apparatus
JPS62211397A (en) * 1986-03-11 1987-09-17 Sumitomo Metal Ind Ltd Production of zinc alloy plated steel sheet having excellent adhesiveness
JPS62294198A (en) * 1986-06-12 1987-12-21 Sumitomo Metal Ind Ltd Rustproof steel sheet for automobile and its production
JPS637393A (en) * 1986-06-25 1988-01-13 Kawasaki Steel Corp Production of zn-ni electroplated steel sheet having superior adhesion to plating
JPS6311690A (en) * 1986-06-30 1988-01-19 Nippon Steel Corp Production of zn alloy electroplated steel sheet having superior adhesion to plating
JPS6342394A (en) * 1986-08-07 1988-02-23 Nippon Kokan Kk <Nkk> Production of zinc-nickel alloy electroplated steel sheet having superior adhesion under shock
JPS6393891A (en) * 1986-10-08 1988-04-25 Sumitomo Metal Ind Ltd Production of rustproof steel sheet for automobile

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107095A (en) * 1982-12-10 1984-06-21 Kawasaki Steel Corp Zinc-nickel alloy plated steel sheet having excellent processability and impact resistance
JPS61439A (en) * 1984-06-12 1986-01-06 Toyoda Gosei Co Ltd Plasma treatment apparatus
JPS61916A (en) * 1984-06-13 1986-01-06 Konishiroku Photo Ind Co Ltd Magnetic recording medium
JPS62211397A (en) * 1986-03-11 1987-09-17 Sumitomo Metal Ind Ltd Production of zinc alloy plated steel sheet having excellent adhesiveness
JPS62294198A (en) * 1986-06-12 1987-12-21 Sumitomo Metal Ind Ltd Rustproof steel sheet for automobile and its production
JPS637393A (en) * 1986-06-25 1988-01-13 Kawasaki Steel Corp Production of zn-ni electroplated steel sheet having superior adhesion to plating
JPS6311690A (en) * 1986-06-30 1988-01-19 Nippon Steel Corp Production of zn alloy electroplated steel sheet having superior adhesion to plating
JPS6342394A (en) * 1986-08-07 1988-02-23 Nippon Kokan Kk <Nkk> Production of zinc-nickel alloy electroplated steel sheet having superior adhesion under shock
JPS6393891A (en) * 1986-10-08 1988-04-25 Sumitomo Metal Ind Ltd Production of rustproof steel sheet for automobile

Also Published As

Publication number Publication date
JPH0211792A (en) 1990-01-16

Similar Documents

Publication Publication Date Title
EP0047987B1 (en) Cationic electrodeposition lacquer-coated steel material
CN1004972B (en) Electrodeposition of an iron-zinc alloy coating
EP2171130A2 (en) Method of providing a metallic coating layer and substrate provided with said coating layer
JPH0216397B2 (en)
CN103358614B (en) Stanniferous clad steel sheet and preparation method thereof
JPH0457753B2 (en)
JPS6046199B2 (en) Manufacturing method of surface-treated steel plate for welded cans with high rust resistance
JPS5867886A (en) Steel article coated with iron-zinc alloy plating layer having concentration gradient and manufacture thereof
JPS634635B2 (en)
JPS5947040B2 (en) Steel plate for containers with excellent weldability and corrosion resistance after painting and its manufacturing method
JP2707478B2 (en) High corrosion resistant multi-layer electroplated steel sheet
JPS6396294A (en) Production of steel sheet having excellent weldability and corrosion resistance
Galeotti Electrodeposition of Zn-Cr alloy coatings for corrosion protection
JPH0148356B2 (en)
JPS63125694A (en) Production of surface treated steel sheet for welded can
JPH06116747A (en) Blank for welded can having excellent high speed seam-weldability, corrosion resistance, heat resistance and coating adhesion
JP2002509196A (en) Products with colored metal coatings with special properties
JPH052745B2 (en)
JPH06116790A (en) Stock for welded can excellent in high speed seam weldability, pitting corrosion resistance, heat resistance and adhesion of coating material
JPH0331793B2 (en)
JPS6335793A (en) Steel plate electrically plated with zinc-nickel alloy and excellent in impact adhesion
JPS60197884A (en) Double-plated steel sheet for welded can
JPS6376892A (en) Production of zn-ni plated steel sheet for outside of automobile body
JPH09184097A (en) Surface treated steel sheet for welded can excellent in corrosion resistance and worked coating material adhesion and its production
JPS5929117B2 (en) Nickel-chromium alloy plating method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070914

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 16

EXPY Cancellation because of completion of term