JPH0457750B2 - - Google Patents

Info

Publication number
JPH0457750B2
JPH0457750B2 JP17870083A JP17870083A JPH0457750B2 JP H0457750 B2 JPH0457750 B2 JP H0457750B2 JP 17870083 A JP17870083 A JP 17870083A JP 17870083 A JP17870083 A JP 17870083A JP H0457750 B2 JPH0457750 B2 JP H0457750B2
Authority
JP
Japan
Prior art keywords
water
voltage
current
electrodes
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17870083A
Other languages
Japanese (ja)
Other versions
JPS6070191A (en
Inventor
Takahiro Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP17870083A priority Critical patent/JPS6070191A/en
Publication of JPS6070191A publication Critical patent/JPS6070191A/en
Publication of JPH0457750B2 publication Critical patent/JPH0457750B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

【発明の詳細な説明】 本発明は電気化学的に水処理を行う水処理装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water treatment device that electrochemically treats water.

この種の水処理装置は、被処理水に浸漬した電
極間に電流を通じることにより送水管路に付着し
たスケールの除去或いは付着防止や錆防止を行う
ものである。スケール付着の防止、或いは錆防止
の効果は、フアラデーの法則により通電量に比例
するため、一定の水質の被処理水を一定流量にて
処理する場合には、電極間に一定電流を流すこと
により良好な処理を行うことができる。
This type of water treatment device removes or prevents scale from adhering to water pipes or prevents rust by passing an electric current between electrodes immersed in water to be treated. The effect of preventing scale adhesion or rust is proportional to the amount of current applied according to Faraday's law. Therefore, when treating water of a certain quality at a constant flow rate, by passing a constant current between the electrodes. Good processing can be performed.

第1図は従来の水処理装置の回路構成を示す図
であり、この例では、電極間に一定電流を流すた
め定電流回路が組み込まれている。1は直流電
源、2,2′は被処理水に浸漬される1対の電極
である。3はトランジスタ等より成る電流制御手
段であり、直流電源1より電極2,2′に流れる
電流を制御するためのものである。4は誤差増幅
器、E1は基準電源、R1は抵抗であり、抵抗R1
の検出電圧と基準電源E1の電圧との誤差が零と
なるように、誤差増幅器4の出力電圧により電流
制御手段3が作動し、以つて電極2,2′間に定
電流が流れる。
FIG. 1 is a diagram showing the circuit configuration of a conventional water treatment device, and in this example, a constant current circuit is incorporated in order to flow a constant current between electrodes. 1 is a DC power supply, and 2 and 2' are a pair of electrodes immersed in the water to be treated. Reference numeral 3 denotes a current control means consisting of a transistor or the like, and is used to control the current flowing from the DC power supply 1 to the electrodes 2 and 2'. 4 is an error amplifier, E 1 is a reference power supply, and R 1 is a resistor. The control means 3 is activated, so that a constant current flows between the electrodes 2, 2'.

ところでこのような構成の水処理装置を循環式
冷却水系に適用すると次のような問題が起こる。
即ち循環式冷却水系においては、冷却水の負荷量
によつて大気中に蒸発する水量が変化するので冷
却水の濃縮度が変わり、従つて冷却水のスケール
成分濃度は冷却水の負荷量によつて変動する。こ
のため除去すべき余分なスケール成分量は循環水
量が一定であつても変動することになる。また冷
却水の補給水は一般的には市水、或いは工業用水
等が用いられるが、これらの水の水質は、通常常
時一定ではなく季節的に変動する。このように冷
却水の負荷の変動や補給水の水質の変動によつ
て、除去すべきスケール成分量が変動するが、電
極2,2′間に定電流を流す方法ではスケール成
分の除去能力が常に一定であるため、スケール成
分量の変動によつて除去能力の過不足が生じる。
そして除去能力が不足した場合には、循環水の水
質が悪化してスケール障害が発生し、水処理装置
を取り付けた意味がなくなつてしまう。一方除去
能力が過大になつた場合には、電流が流れ続ける
ので水質は増々良くなるが、水の電導度が低下し
て電極2,2′間の電圧上昇を招く。そして電圧
が異常に上昇すると水の電気分解等の反応が起こ
り、ガスが発生したり腐食作用が起こつたりする
上、直流電源1が耐圧破壊を起こすおそれもあ
る。また電極2,2′間に流す電流の大きさは、
標準水質状態の冷却水(スケール障害を全く起こ
すおそれのない量のスケール成分を含んだ水)の
処理に合わせているため、冷却水が不良水質とな
つた循環冷却水系に水処理装置を取り付ける場合
には、取り付け時に冷却水を標準状態のものに入
れ替える必要があつた。仮に冷却水の入れ替えを
行わずに水処理を行つたとすると、水質が標準水
質状態になるまでに長い時間がかかり、その間に
スケール障害を発生するおそれがあつた。
However, when a water treatment device having such a configuration is applied to a circulating cooling water system, the following problems occur.
In other words, in a circulating cooling water system, the amount of water that evaporates into the atmosphere changes depending on the amount of cooling water loaded, so the concentration of the cooling water changes, and therefore the concentration of scale components in the cooling water changes depending on the amount of cooling water loaded. It fluctuates. Therefore, the amount of excess scale components to be removed will vary even if the amount of circulating water is constant. Furthermore, city water, industrial water, or the like is generally used as supplementary water for cooling water, but the quality of these waters is usually not constant at all times but changes seasonally. In this way, the amount of scale components to be removed varies depending on changes in the cooling water load and the quality of the make-up water, but the method of flowing a constant current between electrodes 2 and 2' has a poor ability to remove scale components. Since it is always constant, fluctuations in the amount of scale components will cause excess or deficiency in removal ability.
If the removal capacity is insufficient, the quality of the circulating water will deteriorate and scale failure will occur, rendering the installation of the water treatment device useless. On the other hand, if the removal capacity becomes excessive, the current continues to flow and the quality of the water improves, but the conductivity of the water decreases, causing an increase in the voltage between the electrodes 2 and 2'. If the voltage increases abnormally, reactions such as electrolysis of water occur, which may generate gas or cause corrosion, and there is also a risk that the DC power supply 1 will break down withstand voltage. Also, the magnitude of the current flowing between electrodes 2 and 2' is
When installing a water treatment device in a circulating cooling water system where the cooling water is of poor quality because it is designed to treat cooling water with standard water quality (water that contains scale components in an amount that does not cause any risk of scale failure). It was necessary to replace the cooling water with standard water at the time of installation. If water treatment were to be carried out without replacing the cooling water, it would take a long time for the water quality to reach standard water quality, and there was a risk of scale failure occurring during that time.

本発明はこのような事情のもとになされたもの
であり、常に良好な水処理を行うことができ、し
かも水の電気分解を起こすことがなくて腐食作用
やガスの発生等を生じることのない水処理装置を
提供することを目的とするものである。
The present invention was developed under these circumstances, and it is possible to always perform good water treatment, and it does not cause electrolysis of water, causing corrosion or gas generation. The purpose of this project is to provide a water treatment system that does not require

本発明の特徴とするところは、被処理水に浸漬
された1対の電極間に、直流電源により直流電流
を通ずることにより水処理を行う水処理装置にお
いて、前記電極間に流れる電流を検出する電流検
出回路と、前記電極間の電圧を検出する電圧検出
回路と、一方の入力端に、前記電流検出回路の出
力端及び前記電圧検出回路の出力端が接続される
と共に、他方の入力端に、予め設定された基準電
圧を発生する基準電源が接続された誤差増幅器
と、前記直流電源と電極との間に設けられ、前記
誤差増幅器の出力電圧に応じて電極間に流れる電
流を制御する電流制御手段とを設け、電極間の電
圧が所定電圧以下であるときは電流検出路の出力
電圧が電圧検出回路の出力電圧よりも大きく、電
極間の電圧が所定電圧を越えたときには電圧検出
回路の出力電圧が電流検出回路の出力電圧よりも
大きい点にある。
The present invention is characterized by detecting the current flowing between the electrodes in a water treatment apparatus that performs water treatment by passing a DC current between a pair of electrodes immersed in water to be treated using a DC power source. a current detection circuit; a voltage detection circuit that detects the voltage between the electrodes; an output terminal of the current detection circuit and an output terminal of the voltage detection circuit are connected to one input terminal; , an error amplifier connected to a reference power source that generates a preset reference voltage, and a current that is provided between the DC power source and the electrode and controls the current flowing between the electrodes according to the output voltage of the error amplifier. A control means is provided, and when the voltage between the electrodes is below a predetermined voltage, the output voltage of the current detection path is higher than the output voltage of the voltage detection circuit, and when the voltage between the electrodes exceeds the predetermined voltage, the output voltage of the voltage detection circuit is The point is that the output voltage is greater than the output voltage of the current detection circuit.

以下図面により本発明の実施例について説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明の一実施例を示す回路図であ
り、第1図と同符号のものは同一部分若しくは相
当部分を示す。5は電極2,2′間に流れる電流
を検出するための電流検出回路であり、この例で
は、電極2,2′に直列に接続された抵抗R2及び
この抵抗R2の両端に夫々入力端が接続された第
1の緩衝増幅器51より成る。6は電極2,2′
間の電圧を検出するための電圧検出回路であり、
この例では、電極2,2′に並列に接続された抵
抗R3及びこの抵抗R3の両端に夫々入力端が接続
された第2の緩衝増幅器61より成る。7は誤差
増幅器であり、この誤差増幅器7の一方の入力端
には、第1の緩衝増幅器51及び第2の緩衝増幅
器61の各々の出力端が接続されている。また当
該誤差増幅器7の他方の入力端は、予め設定され
た基準電圧を発生する基準電源E2に接続され、
誤差増幅器7の出力端は電流制御手段3に接続さ
れている。そして電流検出回路5及び電圧検出回
路6の回路構成部品の定格等については、電極
2,2′間の電圧が所定電圧以下であるときは、
第1の緩衝増幅器51の出力電圧が第2の緩衝増
幅器61の出力電圧よりも大きく、また電極2,
2′間の電圧が所定電圧を越えたときには第2の
緩衝増幅器61の出力電圧が第1の緩衝増幅器5
1の出力電圧よりも大きくなるように選定されて
いる。ここで上記の所定電圧の大きさは、例えば
電極間2,2′に介在する被処理水が標準水質状
態であるときにおける電極2,2′間の電圧の大
きさとされる。
FIG. 2 is a circuit diagram showing an embodiment of the present invention, and the same reference numerals as in FIG. 1 indicate the same or equivalent parts. Reference numeral 5 denotes a current detection circuit for detecting the current flowing between the electrodes 2 and 2 '. It consists of a first buffer amplifier 51 whose ends are connected. 6 is electrode 2, 2'
This is a voltage detection circuit for detecting the voltage between
In this example, it consists of a resistor R 3 connected in parallel to the electrodes 2 and 2', and a second buffer amplifier 61 whose input ends are connected to both ends of this resistor R 3 , respectively. Reference numeral 7 denotes an error amplifier, and one input terminal of the error amplifier 7 is connected to the output terminals of each of the first buffer amplifier 51 and the second buffer amplifier 61. Further, the other input terminal of the error amplifier 7 is connected to a reference power source E2 that generates a preset reference voltage,
The output end of the error amplifier 7 is connected to the current control means 3. Regarding the ratings of the circuit components of the current detection circuit 5 and voltage detection circuit 6, when the voltage between the electrodes 2 and 2' is below a predetermined voltage,
The output voltage of the first buffer amplifier 51 is higher than the output voltage of the second buffer amplifier 61, and the electrode 2,
2' exceeds a predetermined voltage, the output voltage of the second buffer amplifier 61 changes to the first buffer amplifier 5.
The output voltage is selected to be greater than the output voltage of 1. Here, the magnitude of the above-mentioned predetermined voltage is, for example, the magnitude of the voltage between the electrodes 2, 2' when the water to be treated interposed between the electrodes 2, 2' is in a standard water quality state.

次に実施例の作用について説明する。先ず電極
2,2′間の被処理水がスケール成分量の多いも
のであつて標準水質状態よりも劣つた不良水質の
ものである場合には、被処理水の電導度が大き
く、電極2,2′間の電圧が所定電圧よりも低い。
従つて第1の緩衝増幅器51の出力電圧の方が第
2の緩衝増幅器61の出力電圧よりも大きく、当
該第1の緩衝増幅器51の出力電圧が誤差増幅器
7に入力され、この誤差増幅器7より、入力電圧
と基準電圧との差に対応した電圧が出力される。
そして誤差増幅器7の出力電圧によつて電流制御
手段3が作動し、誤差増幅器7の入力電圧と基準
電圧との差が零となるように電極2,2′間に流
れる電流が制御される。即ち電極2,2′間に流
れる電流が定電流となるように制御されることに
なる。こうして被処理水中に電流が流れることに
よつて被処理水中のスケール成分の除去が進み、
被処理水の電導度が小さくなつて電極2,2′間
の電圧が大きくなつていく。そして被処理水が標
準水質状態になると、電極2,2′間の電圧が所
定電圧を越えるので、第2の緩衝増幅器61の出
力電圧の方が第1の緩衝増幅器51の出力電圧よ
りも大きくなり、当該第2の緩衝増幅器61の出
力電圧が誤差増幅器7に入力される。これにより
同様にして誤差増幅器7の入力電圧と基準電圧と
の差が零となるように、電流制御手段3が作動
し、電極2,2′間の電流が制御される。この場
合には電極2,2′間の電圧が定電圧となるよう
に電流が制御されることになる。定電流制御から
定電圧制御に移行するときの電極2,2′間の電
圧は、水の分解電圧以下に設定することが必要で
あり、こうすることによつて水の電気分解が避け
られる。また定電圧制御に移行したときには電極
2,2′間に流れる電流は減少するが、このとき
は被処理水は良質なものとなつているため、小さ
な電流であつてもスケール除去作用が有効に働
く。尚ここにいう水の分解電圧とは、電極による
活性化過電圧及びその他の過電圧をも含めた大き
さの電圧である。第3図Aは実施例の水処理装置
について、電極2,2′間の電圧と電極2,2′間
に流れる電流との関係を示す特性図、第3図Bは
第1図の従来の水処理装置について、同様の関係
を示す特性図である。図中V0は水の分解電圧で
ある。第3図A,Bから判るようにスケール成分
の除去が進められて水の電導度が小さくなり、電
極2,2′間の電圧が上昇していくと、従来のも
のでは水質が良好になつてもそのまま電圧が上昇
して水の分解電圧を越え、水が電気分解を起こす
のに対し、実施例のものでは、水の分解電圧に達
する前に電流が減少して所定電圧に維持され、水
の電気分解が起こらない。
Next, the operation of the embodiment will be explained. First, if the water to be treated between the electrodes 2 and 2' contains a large amount of scale components and is of poor quality that is inferior to the standard water quality state, the conductivity of the water to be treated is high and the electrodes 2, 2'2' voltage is lower than the predetermined voltage.
Therefore, the output voltage of the first buffer amplifier 51 is higher than the output voltage of the second buffer amplifier 61, and the output voltage of the first buffer amplifier 51 is input to the error amplifier 7, and the output voltage of the first buffer amplifier 51 is inputted to the error amplifier 7. , a voltage corresponding to the difference between the input voltage and the reference voltage is output.
The current control means 3 is activated by the output voltage of the error amplifier 7, and the current flowing between the electrodes 2 and 2' is controlled so that the difference between the input voltage of the error amplifier 7 and the reference voltage becomes zero. That is, the current flowing between the electrodes 2 and 2' is controlled to be a constant current. In this way, as the current flows through the water to be treated, the removal of scale components in the water to be treated progresses.
As the electrical conductivity of the water to be treated decreases, the voltage between the electrodes 2 and 2' increases. When the water to be treated reaches the standard water quality state, the voltage between the electrodes 2 and 2' exceeds a predetermined voltage, so the output voltage of the second buffer amplifier 61 is higher than the output voltage of the first buffer amplifier 51. The output voltage of the second buffer amplifier 61 is input to the error amplifier 7. As a result, the current control means 3 is activated and the current between the electrodes 2 and 2' is controlled so that the difference between the input voltage of the error amplifier 7 and the reference voltage becomes zero. In this case, the current is controlled so that the voltage between the electrodes 2 and 2' becomes a constant voltage. The voltage between the electrodes 2 and 2' when shifting from constant current control to constant voltage control needs to be set below the water decomposition voltage, thereby avoiding water electrolysis. Furthermore, when switching to constant voltage control, the current flowing between electrodes 2 and 2' decreases, but at this time the water to be treated is of good quality, so even a small current can effectively remove scale. work. Note that the water decomposition voltage referred to herein is a voltage that includes activation overvoltages due to electrodes and other overvoltages. FIG. 3A is a characteristic diagram showing the relationship between the voltage between electrodes 2 and 2' and the current flowing between electrodes 2 and 2' for the water treatment device of the embodiment, and FIG. 3B is a characteristic diagram of the conventional water treatment device shown in FIG. It is a characteristic diagram which shows the same relationship about a water treatment device. In the figure, V 0 is the water decomposition voltage. As can be seen from Figure 3A and B, as the scale components are removed, the conductivity of the water decreases, and the voltage between electrodes 2 and 2' increases, the water quality improves with the conventional method. However, in the example, the current decreases before reaching the water decomposition voltage and is maintained at a predetermined voltage. Water electrolysis does not occur.

上述の実施例によれば、被処理水がスケール成
分の多い不良な水質なものである間は定電流制御
を行い、被処理水がスケール成分の少ない標準水
質状態のものになると定電圧制御を行うようにし
ているため、スケール成分の多い被処理水につい
ては水質の良化に必要な大きな電流が流れるのに
対し、スケール成分の少ない被処理水については
小さな電流が流れるから、通電によるスケール成
分の除去能力が被処理水のスケール成分量に対し
ていわば自動的に追従するようになる。この結果
循環冷却水系の水処理を行う場合にも、冷却水の
負荷変動等によるスケール成分量の変動に対して
スケール成分の除去能力の過不足が生じないか
ら、常に良好な水処理を行うことができてスケー
ル障害を起こすおそれがなく、しかも水の電気分
解が起こらないので腐食作用やガスの発生を招く
こともない。更に被処理水が良質なものになつた
後は電流が減少するので消費電力が小さくて済
み、これによりランニングコストが低くなり、省
エネルギー化を図ることができる。また従来では
不良水質となつた冷却水素に水処理装置を取り付
ける場合、冷却水を標準水質状態のものに入れ替
える必要があつたが、上述実施例によれば、冷却
水が標準水質状態になるまでは流量に見合つた以
上の電流を流して急速にスケール成分を除去し、
冷却水が標準水質状態になつた後は定電圧制御に
移行して電流を減じることができ、冷却水の入れ
替えを行うことなく、不良水質から良好な水質に
速かに変えることができる。
According to the above embodiment, constant current control is performed while the water to be treated is of poor quality with many scale components, and constant voltage control is performed when the water to be treated is of standard water quality with few scale components. As a result, a large current necessary to improve water quality flows for treated water with many scale components, whereas a small current flows for treated water with few scale components, so the scale components due to energization are reduced. The removal ability automatically follows the amount of scale components in the water to be treated. As a result, even when performing water treatment in a circulating cooling water system, there is no excess or deficiency in the scale component removal ability due to fluctuations in the amount of scale components due to changes in the cooling water load, etc., so good water treatment can always be performed. There is no risk of scale failure, and since water electrolysis does not occur, there is no corrosion or gas generation. Furthermore, after the water to be treated is of good quality, the current is reduced, so power consumption is small, which reduces running costs and saves energy. In addition, in the past, when installing a water treatment device to cooled hydrogen that had become of poor water quality, it was necessary to replace the cooling water with one of standard water quality, but according to the above embodiment, until the cooling water reaches standard water quality, The scale component is rapidly removed by passing a current higher than the flow rate,
After the cooling water reaches the standard water quality state, the current can be reduced by shifting to constant voltage control, and the water quality can be quickly changed from poor water quality to good water quality without replacing the cooling water.

次に本発明に係る水処理装置により水処理を行
つた実験例について説明する。第4図は、冷却水
の流量が毎時90トンであり、補給水としてある市
の市水を用いた循環冷却水系に水処理装置を配設
し、57年7月から同年8月にかけて水処理を行つ
たときの結果を示すグラフである。図中1〜3
は、夫々スケール成分濃度(Ca(HCO32濃度)、
及び消費電力並びに水素イオン濃度(PH)を示
す。スケール成分濃度は水処理の開始時には約
130mg/であるが、その後急激に低下して7月
の末項には約40mg/になりその後略この値に維
持されている。一方消費電力は7月の中端項は
0.8Kwhを越えているが、その後急激に小さくな
り、7月の末項には0.1Kwhになりその後略この
値に維持されている。この結果から水処理開始前
には不良水質であつた冷却水が、水処理装置を動
作することによつて速やかに良好な水質のものへ
と変わつていつたことが理解され、また良好な水
質になつた後には、電流が減少して消費電力の低
減化を図れることがわかる。そして水素イオン濃
度は水処理開始時からその後ずつと略7〜8の間
に維持されていておよそ一定であり、従つて水の
電気分解が行つていないことがわかる。
Next, an experimental example in which water treatment was performed using the water treatment apparatus according to the present invention will be explained. Figure 4 shows that the flow rate of cooling water was 90 tons per hour, and a water treatment device was installed in a circulating cooling water system that used city water as make-up water. This is a graph showing the results when performing the following. 1 to 3 in the diagram
are the scale component concentration (Ca(HCO 3 ) 2 concentration),
and power consumption and hydrogen ion concentration (PH). The concentration of scale components is approximately at the beginning of water treatment.
It was 130mg/, but after that it rapidly decreased to about 40mg/ at the end of July, and has remained at approximately this value since then. On the other hand, the middle term for power consumption in July is
Although it exceeded 0.8Kwh, it decreased rapidly after that, reached 0.1Kwh at the end of July, and has remained at approximately this value since then. From this result, it is understood that the cooling water, which had poor water quality before the start of water treatment, quickly changed to good water quality by operating the water treatment equipment, and also that the cooling water had good water quality. It can be seen that after the current is reached, the current decreases and power consumption can be reduced. The hydrogen ion concentration was maintained between approximately 7 and 8 from the start of the water treatment and thereafter, and was approximately constant, indicating that water was not electrolyzed.

以上のように本発明によれば、被処理水がスケ
ール成分の多い不良な水質なものである間は定電
流制御を行い、被処理水がスケール成分の少ない
良質なものになると定電圧制御に移行するように
しているため、不良水質の被処理水については水
質の良化に必要な大きな電流が流れ、良質の被処
理水について有効にスケール成分の除去が作用す
る程度の小さな電流が流れるから、スケール成分
量の変動に対してスケール成分の除去能力の過不
足が生じない。従つて常に良好な水処理を行うこ
とができてスケール障害を起こすおそれがなく、
しかも水の電気分解が起こらないので腐食作用や
ガスの発生を生じることがない。このため例えば
循環冷却水系の水処理に好適に用いることができ
る。
As described above, according to the present invention, constant current control is performed while the water to be treated is of poor quality with many scale components, and constant voltage control is performed when the water to be treated is of good quality with few scale components. As a result, a large current necessary to improve the water quality flows for treated water with poor quality, and a small current necessary for effective removal of scale components flows for high quality treated water. Therefore, there is no excess or deficiency in the ability to remove scale components due to fluctuations in the amount of scale components. Therefore, it is possible to always perform good water treatment and there is no risk of scale failure.
Moreover, since water electrolysis does not occur, corrosion and gas generation do not occur. Therefore, it can be suitably used, for example, for water treatment in a circulating cooling water system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の水処理装置を示す回路図、第2
図は本発明の実施例に係る水処理装置を示す回路
図、第3図A,Bは、夫々実施例の水処理装置に
おける電流−電圧特性図、及び従来の水処理装置
における電流−電圧特性図、第4図は本発明の実
施例の結果を示すグラフである。 1……直流電源、2,2′……電極、3……電
流制御手段、5……電流検出回路、6……電圧検
出回路、51,61……緩衝増幅器、7……誤差
増幅器、E2……基準電源、R2,R3……抵抗。
Figure 1 is a circuit diagram showing a conventional water treatment device, Figure 2
The figure is a circuit diagram showing a water treatment device according to an embodiment of the present invention, and FIGS. 3A and 3B are current-voltage characteristic diagrams of the water treatment device of the embodiment and current-voltage characteristics of a conventional water treatment device, respectively. 4 are graphs showing the results of Examples of the present invention. 1... DC power supply, 2, 2'... Electrode, 3... Current control means, 5... Current detection circuit, 6... Voltage detection circuit, 51, 61... Buffer amplifier, 7... Error amplifier, E 2 ...Reference power supply, R2 , R3 ...Resistance.

【特許請求の範囲】[Claims]

1 電解槽内において、一対の電型ゲージを、相
互の先端を上下突合わせ状態に支持させて電着を
行い、所望の電着層が得られたらこれを取出して
突合わせ部で切断し、各々を製品寸法に仕上げ加
工することを特徴とするブツシユ等管状物の電鋳
加工法。
1 Electrodeposition is carried out by supporting a pair of electrolytic type gauges with their tips abutting each other in an electrolytic bath, and when the desired electrodeposited layer is obtained, it is taken out and cut at the butt part, An electroforming method for tubular objects such as bushings, which is characterized by finishing each piece to the product dimensions.

JP17870083A 1983-09-27 1983-09-27 Water treating device Granted JPS6070191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17870083A JPS6070191A (en) 1983-09-27 1983-09-27 Water treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17870083A JPS6070191A (en) 1983-09-27 1983-09-27 Water treating device

Publications (2)

Publication Number Publication Date
JPS6070191A JPS6070191A (en) 1985-04-20
JPH0457750B2 true JPH0457750B2 (en) 1992-09-14

Family

ID=16053022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17870083A Granted JPS6070191A (en) 1983-09-27 1983-09-27 Water treating device

Country Status (1)

Country Link
JP (1) JPS6070191A (en)

Also Published As

Publication number Publication date
JPS6070191A (en) 1985-04-20

Similar Documents

Publication Publication Date Title
DE69608579T2 (en) ELECTROLYTIC METHOD FOR CLEANING ELECTRICALLY CONDUCTING SURFACES
DE69622167T2 (en) ELECTROCHEMICAL SYSTEM AND METHOD FOR REMOVING CHARGED TYPES OF LIQUID AND SOLID WASTE
US6706168B2 (en) Wastewater treatment method and apparatus
ATE283934T1 (en) METHOD AND DEVICE FOR THE ELECTROLYTICAL TREATMENT OF ELECTRICALLY INSULATED, ELECTRICALLY CONDUCTIVE STRUCTURES ON SURFACES OF ELECTRICALLY INSULATING FILM MATERIAL AND APPLICATIONS OF THE METHOD
JPH0457750B2 (en)
KR920012924A (en) Method and apparatus for analyzing the protection against corrosion of the workpiece under the cathodic protection method
WO2009147856A1 (en) Electric discharge machining apparatus and electric discharge machining method
KR890015811A (en) Electrolytic finishing process
US4391685A (en) Process for electrolytically pickling steel strip material
EP0545092B1 (en) An apparatus and method for controlling an electrolytic treatment of a subject material
JP3135776B2 (en) Galvanic anode method
JPH04110499A (en) Method and device for controlling stray current
JPH11165174A (en) Method for controlling energization of ionic water generator
US6261438B1 (en) Method and apparatus for roughening a support for radiation-sensitive coatings
KR101895991B1 (en) Apparatus and method of treating waste water
JP3700476B2 (en) Electrolysis method
JPH05261376A (en) Water cleaning apparatus by metal ion
KR20230161703A (en) Apparatus for optimizing power consumption of electrolytic separation electrodes in water treatment system through artificial intelligence reinforcement learning
JPS58137524A (en) Discharge machining device
JP2715346B2 (en) Electrolytic treatment of aluminum support for printing plate
SU1507887A1 (en) Device for controlling pickling process in iron-plating
JP2005226146A (en) Method for electropolishing metallic surface
JPH09136088A (en) Antiseptic method for water soluble oiling agent
JP2007070680A (en) Cathodic electrodeposition coating method
JPH03228521A (en) Electric discharge machining method