JPH0457659B2 - - Google Patents

Info

Publication number
JPH0457659B2
JPH0457659B2 JP61040833A JP4083386A JPH0457659B2 JP H0457659 B2 JPH0457659 B2 JP H0457659B2 JP 61040833 A JP61040833 A JP 61040833A JP 4083386 A JP4083386 A JP 4083386A JP H0457659 B2 JPH0457659 B2 JP H0457659B2
Authority
JP
Japan
Prior art keywords
mmol
compound
formula
present
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61040833A
Other languages
Japanese (ja)
Other versions
JPS62198639A (en
Inventor
Noboru Sayo
Hidenori Kumobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago International Corp
Original Assignee
Takasago Perfumery Industry Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Perfumery Industry Co filed Critical Takasago Perfumery Industry Co
Priority to JP61040833A priority Critical patent/JPS62198639A/en
Publication of JPS62198639A publication Critical patent/JPS62198639A/en
Publication of JPH0457659B2 publication Critical patent/JPH0457659B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、医薬品、食品添加物、香料等の合成
中間体として有用な次の一般式() (式中、R1及びR2は水素原子、低級アルキル
基又は低級アルコキシ基を示すか、または両者が
一緒になつてメチレンジオキシ基を示す。R3
びR4は水素原子又は低級アルキル基を示すか、
または両者が一緒になつて5〜7員のシクロアル
キル環を形成する) で表わされるα−アリールカルボニル誘導体を製
造する方法に関する。 〔従来の技術〕 従来、アリール化合物をアセトニル化してα−
アリールカルボニル誘導体を製造する方法として
は、次の方法が知られている。 〔ザ・ジヤーナル・オブ・オーガニツク・ケミ
ストリイ(J.Org.Chem.)、49、1603(1984)〕 〔ジヤーナル・オブ・ザ・アメリカン・ケミカ
ル・ソサイエテイ(J.Am.Chem.Soc.)、96
3250(1974)〕 〔ケミストリイ・レターズ(Chem.Lett.)、
1982、939〕 〔テトラヘドロン・レターズ(Tetrahedron
Lett.)、21、2325(1980)〕 〔ケミストリイ・レターズ(Chem.Lett.)、
1976、1239〕 〔発明が解決しようとする問題点〕 しかしながら、上記の従来法は収率が低いか、
あるいは収率を上げようとすると、有機Ni化合
物、有機Sn化合物、有機Li化合物、有機Si化合
物等の特殊で高価な原料を使用しなければならな
いという欠点があり、従来アリール化合物のアセ
トニル化反応によるアリールカルボニル誘導体の
製造法は困難であるとされていた。 従つて、本発明の目的は、安価な原料を使用し
て、簡便な操作で収率よくアリールカルボニル誘
導体を製造する方法を提供せんとするものであ
る。 〔問題点を解決するための手段〕 斯かる実状において、本発明者らは鋭意研究を
行つた結果、原料としてアリールハライドとイミ
ン化合物を用い、パラジウム化合物、第3級ホス
フイン及び塩基の存在下に反応させれば、容易に
アリール化合物のアセトニル化が達成されること
を見出し、本発明を完成した。 本発明方法は次の反応式によつて示される。 (式中、Xはハロゲン原子、R5は低級アルキ
ル基又はシクロヘキシル基を示す。R1,R2,R3
及びR4は前記と同じものを示す) すなわち、本発明は、アリールハライド()
とイミン化合物()とを、パラジウム化合物、
第3級ホスフイン及び塩基の存在下に縮合せし
め、次いでその成績体を加水分解してα−アリー
ルカルボニル誘導体()を製造する方法であ
る。 以下、本発明を更に詳細に説明する。 本発明の原料であるアリールハライド()と
してはアリールブロマイドが最も好適に用いら
れ、もう一つの原料であるイミン化合物()は
相当するアルデヒドまたはケトンと第1級アミン
との反応により容易に得られるものである。 本発明に用いられるパラジウム化合物は、パラ
ジウムに塩素が結合したもの、カルボニル化合物
が結合したもの、ジエン化合物が結合したの等が
用いられるが、その中でもカルボニル化合物が結
合したもの、例えば【式】Pd (acac)2〔acacはアセチルアセトネートを示す〕、
Pd(dba)〔dbaはジベンザルアセトンを示す〕等
が好適に用いられる。 第3級ホスフインとしては、アミノホスフイン
が好適であり、例えば、(Et2N―)3P、(i−Pr2N
)―3P、【式】 【式】 【式】等が用いられる。 また塩基としては、アルコール類のNaまたは
K塩、その中でもソジウムt−ブチラート(t−
BuONa)、ソジウムt−アミラート(t−
AmONa)が好適に用いられる。 本発明によりα−アリールカルボニル誘導体を
製造するには通常次のようにして行われる。すな
わち、N2置換した耐圧反応管にアリールハライ
ド100ミリモルに対し、イミン化合物150〜400ミ
リモル、パラジウム化合物0.05〜0.2ミリモル、
第3級ホスフイン0.2〜1.0ミリモル、塩基105〜
120ミリモル、溶媒(テトラヒドロフランまたは
トルエンが好ましい)50〜100mlを加え、加熱撹
拌する。反応温度は60〜140℃、好ましくは80〜
110℃が適当であり、反応時間は原料によつて異
るが、通常1時間〜15時間を要する。 斯くすると、上記一般式()で表わされる化
合物と推定される成積体が得られるが、これは単
離することなく、次の加水分解に付すことができ
る。 加水分解は、上記反応液に塩酸、酢酸、シユウ
酸、クエン酸等の水溶液を加えて微酸性(PH5〜
6)とし、数時間撹拌することによつて行われ
る。次いで、この反応液から有機層を分取し、乾
燥後、濃縮、蒸留を行えば目的物()が得られ
る。 このようにして本発明で得られるα−アリール
カルボニル誘導体は、医薬品、食品添加物、香料
等の合成中間体として有用であり、例えばフエニ
ルアセトアルデヒドは香料としてまたフエニルア
ラニンの合成中間体として用いられ、3,4−ジ
メトキシフエニルアセトンは血圧降下剤として重
要なα−メチルドーパの合成中間体として用いら
れる。 〔実施例〕 以下に実施例をあげて本発明をさらに詳しく説
明する。 実施例 1 フエニルアセトンの合成: N2置換した耐圧反応管にブロムベンゼン15.7
g(100ミリモル)、2−プロピリデンシクロヘキ
シルイミン41.7g(300ミリモル)、Pd
(acac)230.5mg(0.1ミリモル)、
【式】147mg(0.4ミリモル)、t −BuONa10.5g(110ミリモル)、テトラヒドロ
フラン80mlを加え、90℃で8時間反応させた。反
応終了後、トルエン200ml、水200mlを加え、氷水
冷却下に2N−シユウ酸水溶液を滴下してPH5.5に
調整し、2時間撹拌を続けて加水分解を完了させ
た。有機層を分液し、乾燥、濃縮後、蒸留を行つ
て本化合物9.1g(収率67.9%)を沸点86〜87
℃/6mmHgの留分として得た。 本化合物のMS,NMRは次の通りであつた。 MS(m/e):134(M+),91,43 NMR(CDCl3,ppm):2.10(3H,s,
【式】)3.60(2H,s,−C 2−)7.09 (5H,ブロードs,ベンゼン環のC) 実施例 2 フエニルアセトアルデヒドの合成: N2置換した耐圧反応管にヨウ化ベンゼン20.4
g(100ミリモル)、エチリデンシクロヘキシルイ
ミン37.2g(300ミリモル)、Pd(acac)230.5mg
(0.1ミリモル)、【式】147mg (0.4ミリモル)、t−BuONa10.5g(110ミリモ
ル)、テトラヒドロフラン80mlを加え、90℃で8
時間反応させた。以後の操作は実施例1と同様に
行い、本化合物6.2g(収率51.7%)を沸点77〜
78℃/10mmHgの留分として得た。 本化合物のNMRは次の通りであつた。 NMR(CDCl3,ppm):2.67(2H,d,−C 2
CHO)7.00〜7.70(5H,m,ベンゼン環のC
H)9.71(1H,t,−CH2・CO) 実施例 3 2−フエニルシクロヘキサンの合成: N2置換した耐圧反応管にブロムベンゼン15.7
g(100ミリモル)、シクロヘキシリデンシクロヘ
キシルイミン27.1g(150ミリモル)、Pd
(acac)230.5mg(0.1ミリモル)、(i−Pr2N―)
3P132mg(0.4ミリモル)、t−AmONa12.1g
(110ミリモル)、テトラヒドロフラン80mlを加え、
90℃で8時間反応させた。以後の操作は実施例1
と同様に行い、本化合物8.2g(収率47.1%)を
沸点93〜95℃/0.1mmHgの留分として得た。 本化合物のMSは次の通りであつた。 MS(m/e):184(M+)、107,77 実施例 4 3,4−ジメトキシフエニルアセトンの合成: N2置換した耐圧反応管に3,4−ジメトキシ
フエニルブロミド21.7g(100ミリモル)、2−プ
ロピリデンシクロヘキシルイミン41.7g(300ミ
リモル)、【式】22.5mg(0.1ミリモ ル)、【式】130mg(0.4ミリモ ル)、t−BuONa10.5g(110ミリモル)、テトラ
ヒドロフラン80mlを加え、100℃で10時間反応さ
せた。以後の操作は実施例1と同様に行い本化合
物13.5g(収率69.6%)を沸点146〜147℃/6mm
Hgの留分として得た。 本化合物のNMRは次の通りであつた。 NMR(CDCl3,ppm):2.13(3H,s,
【式】)3.62(2H,s,−C 2−)3.89 (6H,s,C 3O−)6.68〜6.90(3H,m,ベ
ンゼン環のC) 実施例 5 3,4−メチレンジオキシフエニルアセトンの
合成: N2置換した耐圧反応管に3,4−メチレンジ
オキシフエニルブロミド20.1g(100ミリモル)、
2−プロピリデンシクロヘキシルイミン41.7g
(300ミリモル)、Pd(acac)230.5mg(0.1ミリモ
ル)、【式】147mg(0.4ミリモ ル)、t−AmONa12.1g(110ミリモル)、テト
ラヒドロフラン80mlを加え、100℃で10時間反応
させた。以後の操作は実施例1と同様に行い、本
化合物12.6g(収率70.8%)を沸点101〜104℃/
0.1mmHgの留分として得た。 本化合物のNMRは次の通りであつた。 NMR(CDCl3,ppm):2.15(3H,s,
【式】)3.80(2H,s,−C 2−)5.96 (2H,s,−C 2O−)6.60〜6.84(3H,m,ベ
ンゼン環のC) 〔発明の効果〕 本発明によれば、安価な原料により、簡便にか
つ収率よくアリール化合物のアセトニル化を行う
ことができ、医薬品、食品添加物、香料等の合成
中間体として有用なα−アリールカルボニル誘導
体を経済的に得ることができる。 【特許請求の範囲】 1 (a) 1,9−アルカジエンを製造するのに好
適な温度−20から650℃の範囲で、不均化用触
媒の存在下において、シクロオクテンと炭素原
子3〜12個を有するα−オレフインとを不均化
し; (b) 1−メタロ−9−アルケンを形成するのに好
適な条件下で、工程(a)における1,9−アルカ
ジエンを金属化剤で金属化し; (c) 9−アルケニル−1−オキシメタロ化合物を
形成するのに好適な条件下で、前記の1−メタ
ロ−9−アルケンと酸素とを接触させ; そして、 (d) 前記の9−アルケニル−1−オキシメタロ化
合物をエステル化剤でエステル化して所望の9
−アルケニルエステルを製造することを特徴と
する9−アルケニルエステルの合成方法。 2 前記の不均化用触媒が: (i) タングステンもしくはモリブデンの酸化物ま
たは〓焼によつて酸化物に転化しうる化合物ま
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the following general formula () useful as a synthetic intermediate for pharmaceuticals, food additives, fragrances, etc. (In the formula, R 1 and R 2 represent a hydrogen atom, a lower alkyl group, or a lower alkoxy group, or both represent a methylenedioxy group together. R 3 and R 4 represent a hydrogen atom or a lower alkyl group. or
or both of them together form a 5- to 7-membered cycloalkyl ring. [Prior art] Conventionally, aryl compounds were acetonylated to form α-
The following methods are known as methods for producing arylcarbonyl derivatives. [The Journal of Organic Chemistry (J.Org.Chem.), 49 , 1603 (1984)] [J.Am.Chem.Soc., 96 ,
3250 (1974)] [Chemistry Letters (Chem.Lett.),
1982, 939] [Tetrahedron Letters]
Lett.), 21 , 2325 (1980)] [Chemistry Letters (Chem.Lett.),
1976, 1239] [Problems to be solved by the invention] However, the above conventional methods have low yields or
Alternatively, if you try to increase the yield, you have to use special and expensive raw materials such as organic Ni compounds, organic Sn compounds, organic Li compounds, and organic Si compounds. The method for producing arylcarbonyl derivatives has been considered difficult. Therefore, an object of the present invention is to provide a method for producing arylcarbonyl derivatives in good yields using inexpensive raw materials and simple operations. [Means for Solving the Problems] Under such circumstances, the present inventors conducted intensive research and found that using an aryl halide and an imine compound as raw materials, a palladium compound, a tertiary phosphine, and a base were used. The inventors have discovered that acetonylation of aryl compounds can be easily achieved by reaction, and have completed the present invention. The method of the present invention is shown by the following reaction formula. (In the formula, X represents a halogen atom, R 5 represents a lower alkyl group or a cyclohexyl group. R 1 , R 2 , R 3
and R 4 are the same as above) That is, the present invention provides an aryl halide ()
and imine compound () and palladium compound,
This method involves condensation in the presence of a tertiary phosphine and a base, and then hydrolyzing the resulting product to produce an α-arylcarbonyl derivative (). The present invention will be explained in more detail below. Aryl bromide is most preferably used as the aryl halide (), which is the raw material of the present invention, and the imine compound (), which is another raw material, can be easily obtained by reaction of the corresponding aldehyde or ketone with a primary amine. It is something. The palladium compounds used in the present invention include those in which chlorine is bonded to palladium, those in which a carbonyl compound is bonded to palladium, and those in which a diene compound is bonded to palladium.Among these, those in which a carbonyl compound is bonded to palladium, such as [Formula] Pd (acac) 2 [acac indicates acetylacetonate],
Pd(dba) [dba represents dibenzalacetone] and the like are preferably used. As the tertiary phosphine, aminophosphine is suitable; for example, (Et 2 N-) 3 P, (i-Pr 2 N
)― 3 P, [Formula] [Formula] [Formula], etc. are used. Bases include Na or K salts of alcohols, especially sodium t-butyrate (t-butyrate).
BuONa), sodium t-amylate (t-
AmONa) is preferably used. The production of α-arylcarbonyl derivatives according to the present invention is generally carried out as follows. That is, in a pressure-resistant reaction tube substituted with N2 , for 100 mmol of aryl halide, 150 to 400 mmol of imine compound, 0.05 to 0.2 mmol of palladium compound,
Tertiary phosphine 0.2-1.0 mmol, base 105-
Add 120 mmol and 50-100 ml of a solvent (preferably tetrahydrofuran or toluene) and heat and stir. The reaction temperature is 60~140℃, preferably 80~
A temperature of 110°C is appropriate, and the reaction time varies depending on the raw materials, but usually takes 1 to 15 hours. In this way, a product presumed to be the compound represented by the above general formula () is obtained, but this can be subjected to the next hydrolysis without isolation. Hydrolysis is carried out by adding an aqueous solution of hydrochloric acid, acetic acid, oxalic acid, citric acid, etc. to the above reaction solution to make it slightly acidic (PH5~
6) and stirring for several hours. Next, the organic layer is separated from this reaction solution, dried, concentrated, and distilled to obtain the desired product (). The α-arylcarbonyl derivatives thus obtained in the present invention are useful as synthetic intermediates for pharmaceuticals, food additives, fragrances, etc. For example, phenylacetaldehyde is used as a fragrance and as a synthetic intermediate for phenylalanine. 3,4-dimethoxyphenylacetone is used as an intermediate in the synthesis of α-methyldopa, which is important as an antihypertensive agent. [Example] The present invention will be explained in more detail with reference to Examples below. Example 1 Synthesis of phenylacetone: 15.7% of bromobenzene was added to a pressure-resistant reaction tube substituted with N2 .
g (100 mmol), 2-propylidenecyclohexylimine 41.7 g (300 mmol), Pd
(acac) 2 30.5 mg (0.1 mmol),
[Formula] 147 mg (0.4 mmol), 10.5 g (110 mmol) of t-BuONa, and 80 ml of tetrahydrofuran were added, and the mixture was reacted at 90°C for 8 hours. After the reaction was completed, 200 ml of toluene and 200 ml of water were added, and while cooling with ice water, a 2N aqueous oxalic acid solution was added dropwise to adjust the pH to 5.5, and stirring was continued for 2 hours to complete hydrolysis. The organic layer was separated, dried, concentrated, and then distilled to obtain 9.1 g (yield 67.9%) of this compound with a boiling point of 86-87.
Obtained as a fraction at °C/6 mmHg. MS and NMR of this compound were as follows. MS (m/e): 134 (M + ), 91, 43 NMR (CDCl 3 , ppm): 2.10 (3H, s,
[Formula]) 3.60 (2H, s, -C H 2 -) 7.09 (5H, broad s, C H of benzene ring) Example 2 Synthesis of phenylacetaldehyde: 20.4 iodized benzene was placed in a pressure-resistant reaction tube substituted with N2 .
g (100 mmol), ethylidenecyclohexylimine 37.2 g (300 mmol), Pd (acac) 2 30.5 mg
(0.1 mmol), [Formula] 147 mg (0.4 mmol), t-BuONa 10.5 g (110 mmol), and 80 ml of tetrahydrofuran were added, and
Allowed time to react. The subsequent operations were carried out in the same manner as in Example 1, and 6.2 g (yield 51.7%) of this compound was heated to a boiling point of 77 to 77.
Obtained as a fraction at 78°C/10mmHg. The NMR of this compound was as follows. NMR ( CDCl3 , ppm): 2.67 (2H, d, -CH2
CHO) 7.00~7.70 (5H, m, C of benzene ring
H) 9.71 (1H, t, -CH 2・C H O) Example 3 Synthesis of 2-phenylcyclohexane: Bromobenzene 15.7 in a pressure-resistant reaction tube substituted with N2
g (100 mmol), cyclohexylidenecyclohexylimine 27.1 g (150 mmol), Pd
(acac) 2 30.5 mg (0.1 mmol), (i-Pr 2 N-)
3 P132mg (0.4 mmol), t-AmONa12.1g
(110 mmol), add 80 ml of tetrahydrofuran,
The reaction was carried out at 90°C for 8 hours. The subsequent operations are as in Example 1.
In the same manner as above, 8.2 g (yield 47.1%) of this compound was obtained as a fraction with a boiling point of 93-95°C/0.1 mmHg. The MS of this compound was as follows. MS (m/e): 184 (M + ), 107,77 Example 4 Synthesis of 3,4-dimethoxyphenylacetone: 21.7 g of 3,4-dimethoxyphenyl bromide (100 Add 41.7 g (300 mmol) of 2-propylidenecyclohexylimine, 22.5 mg (0.1 mmol), 130 mg (0.4 mmol), 10.5 g (110 mmol) of t-BuONa, and 80 ml of tetrahydrofuran. The reaction was carried out at 100°C for 10 hours. The subsequent operations were carried out in the same manner as in Example 1, and 13.5 g (yield 69.6%) of this compound was heated to a boiling point of 146-147°C/6 mm.
Obtained as a Hg fraction. The NMR of this compound was as follows. NMR (CDCl 3 , ppm): 2.13 (3H, s,
[Formula]) 3.62 (2H, s, -C H 2 -) 3.89 (6H, s, C H 3 O -) 6.68-6.90 (3H, m, C H of benzene ring) Example 5 3,4-methylene Synthesis of dioxyphenylacetone: 20.1 g (100 mmol) of 3,4-methylenedioxyphenyl bromide was placed in a pressure-resistant reaction tube substituted with N2 .
2-propylidenecyclohexylimine 41.7g
(300 mmol), 30.5 mg (0.1 mmol) of Pd(acac) 2 , 147 mg (0.4 mmol) of the formula, 12.1 g (110 mmol) of t-AmONa, and 80 ml of tetrahydrofuran were added, and the mixture was reacted at 100°C for 10 hours. The subsequent operations were carried out in the same manner as in Example 1, and 12.6 g (yield 70.8%) of this compound was heated to a boiling point of 101-104°C/
Obtained as a 0.1 mmHg fraction. The NMR of this compound was as follows. NMR (CDCl 3 , ppm): 2.15 (3H, s,
[Formula]) 3.80 (2H, s, -C H 2 -) 5.96 (2H, s, -C H 2 O-) 6.60 to 6.84 (3H, m, C H of benzene ring) [Effects of the invention] The present invention According to , it is possible to acetonylate aryl compounds easily and with high yield using inexpensive raw materials, and to economically produce α-aryl carbonyl derivatives useful as synthetic intermediates for pharmaceuticals, food additives, fragrances, etc. Obtainable. [Scope of Claims] 1 (a) cyclooctene and 3 to 12 carbon atoms in the presence of a disproportionation catalyst at temperatures ranging from -20 to 650°C suitable for producing 1,9-alkadienes. (b) metallizing the 1,9-alkadiene in step (a) with a metallating agent under conditions suitable to form a 1-metallo-9-alkene; (c) contacting said 1-metallo-9-alkene with oxygen under conditions suitable to form a 9-alkenyl-1-oxymetallo compound; and (d) contacting said 9-alkenyl-1-oxymetallo compound with oxygen; Esterifying the 1-oxymetallo compound with an esterifying agent to obtain the desired 9
- A method for synthesizing a 9-alkenyl ester, which comprises producing an alkenyl ester. 2. The disproportionation catalyst is: (i) an oxide of tungsten or molybdenum, or a compound that can be converted into an oxide by calcination;

Claims (1)

(式中、R1,R2,R3及びR4は前記と同じもの
を示す) で表わされるα−アリールカルボニル誘導体の製
造法。
(In the formula, R 1 , R 2 , R 3 and R 4 are the same as described above.) A method for producing an α-arylcarbonyl derivative represented by the following.
JP61040833A 1986-02-26 1986-02-26 Production of alpha-arylcarbonyl derivative Granted JPS62198639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61040833A JPS62198639A (en) 1986-02-26 1986-02-26 Production of alpha-arylcarbonyl derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61040833A JPS62198639A (en) 1986-02-26 1986-02-26 Production of alpha-arylcarbonyl derivative

Publications (2)

Publication Number Publication Date
JPS62198639A JPS62198639A (en) 1987-09-02
JPH0457659B2 true JPH0457659B2 (en) 1992-09-14

Family

ID=12591637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61040833A Granted JPS62198639A (en) 1986-02-26 1986-02-26 Production of alpha-arylcarbonyl derivative

Country Status (1)

Country Link
JP (1) JPS62198639A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3926390B2 (en) * 1995-10-26 2007-06-06 三菱ウェルファーマ株式会社 Phenylethanolamine compounds useful as β3 agonists, their production and intermediates in their production

Also Published As

Publication number Publication date
JPS62198639A (en) 1987-09-02

Similar Documents

Publication Publication Date Title
JPS6113449B2 (en)
CN1421429A (en) Process for producing 2-alkyl-2-cyclopentenone
JPH0457659B2 (en)
JP4020141B2 (en) Method for producing 1-acetoxy-3- (substituted phenyl) propene compound
JP3663229B2 (en) Process for producing 4-halo-2'-nitrobutyrophenone compound
JPS62201842A (en) Manufacture of 3-hydroxycyclopent-4-ene-1-ones
JP4087329B2 (en) Muscon manufacturing method
EP0412551B1 (en) Process for producing alpha, beta-unsaturated aldehyde
JPH07188094A (en) Preparation of 3,5-di-t-butylsalicylaldehyde
JP2004506628A (en) Intermediates for use in preparing vitamin E
EP0872466B1 (en) Process for the synthesis of 1,7-diaryl or 1,7-heteroarylheptan-4-ols and synthetic intermediates
JP2586949B2 (en) Method for producing p- or m-hydroxybenzaldehyde
JP3918120B2 (en) Method for producing 3,7-dimethyl-2,6-octadiene-4-olide
JP4428086B2 (en) Method for producing 1-acetoxy-3- (3,4-methylenedioxyphenyl) propene derivative
JP3563424B2 (en) Method for producing 4H-pyran-4-one
JP2001335529A (en) Method for producing 2-(1-hydroxyalkyl)cycloalkanone
JP4311241B2 (en) Process for producing 1-alkylcarbonyloxy-3-substituted phenyl-propene compound
JP2002069026A (en) Method for manufacturing (e)-3-methyl-2- cyclopentadecenone
JPH0761948A (en) Production of alpha,beta-unsaturated aldehyde
JPH053859B2 (en)
JP4800933B2 (en) Process for producing cyclopropane monoacetal derivative and its intermediate
JP2589564B2 (en) Preparation of styrene derivatives
JPS6254411B2 (en)
KR20030049024A (en) A method of preparing oxaziclomefone or derivative thereof
JPH0669984B2 (en) Process for producing cyclopentenone derivative