JPH0457626B2 - - Google Patents

Info

Publication number
JPH0457626B2
JPH0457626B2 JP59049462A JP4946284A JPH0457626B2 JP H0457626 B2 JPH0457626 B2 JP H0457626B2 JP 59049462 A JP59049462 A JP 59049462A JP 4946284 A JP4946284 A JP 4946284A JP H0457626 B2 JPH0457626 B2 JP H0457626B2
Authority
JP
Japan
Prior art keywords
water
sheet
ceramic
parts
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59049462A
Other languages
Japanese (ja)
Other versions
JPS60195053A (en
Inventor
Isoo Shimizu
Yasuo Matsumura
Yoshihisa Inomata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP59049462A priority Critical patent/JPS60195053A/en
Priority to KR1019850001667A priority patent/KR920000160B1/en
Publication of JPS60195053A publication Critical patent/JPS60195053A/en
Priority to US07/168,863 priority patent/US4836966A/en
Publication of JPH0457626B2 publication Critical patent/JPH0457626B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、セラミツクスシート成形に使用する
水溶性有機結合剤に関する。 セラミツクスの成形法のひとつに、セラミツク
ス微粉と溶媒を混合し、スラリー状となして、た
とえばドクターブレートなどによりシート引き
し、これを加熱乾燥しセラミツクスシート(生シ
ート、グリーンシート)を得るシート成形法があ
る。このようにして得られたシートは、その後打
ち抜きなどにより所望の形状となした後に焼成さ
れるのであるために、打ち抜きや焼成時の形状を
保持させるべく有機結合剤が使用される。 たとえば、従来のシート成形法においては、ブ
チラール樹脂、酢酸ビニル樹脂などの有機結合剤
を、メチルエチルケトン、酢酸ブチル、酢酸エチ
ル、トルエン、アルコールなどの有機溶媒に溶解
させ、これをセラミツクス微粉末と長時間混合し
てスラリー状となし、スラリー内の空気を脱泡し
てから一定の厚みをもつたブレードでキヤリアフ
イルム上にシート状にシート引きし、これを加熱
乾燥しセラミツクスシートとする方法が採用され
ている。 しかし、この有機溶媒を用いる方法では (1) 有機溶媒の人体衛生上に与える害、 (2) 可燃性の有機溶媒を用いることによる爆発な
どの危険および (3) 高価な有機溶媒を用いることによる経済性な
どの点で問題があつた。 そこで、ポリビニルアルコール、ポリ酢酸ビニ
ルなどの水溶性有機結合剤や、結合剤としてのポ
リアクリル酸エステル、エチレンと有機酸の共重
合体などの水性エマルジヨンを用いるなどの方法
が提案されている。 しかしこれら提案された方法においては、水を
溶媒として用いるために、前記(1),(2),(3)の問題
は解決されたものの、完全なものとは云いがた
く、セラミツクス微粉末と長時間混合する段階
で、水の存在のためセラミツクス微粉末がスラリ
ー中で凝集しやすくなり、スラリーの粘性がニユ
ートニアン流動から著しくはずれ、スラリーの流
動性および、セラミツクスの分散性が悪く高密度
かつ平滑な表面を有するシートが得にくい等、す
べての問題が解決されたとは云いがたい。 すなわち、セラミツクスシート成形について
は、上記(1),(2),(3)の課題に加え (4) 乾燥後のセラミツクスシート表面が平滑であ
ること (5) 成形されたシートが圧着積層成形、テープ巻
取のため適度の柔軟性を有する事 (6) 成形されたシートが再度スラリーに容易にも
どること などが要求される。 ところが、エマルジヨン型の有機結合剤では、
スラリーに再生することが困難であるので、シー
ト成形には適さない。 また、水溶性有機結合剤を用いて、水を溶媒と
して成形するならば、再生も可能であるので好ま
しい。 しかるに、水溶性有機結合剤として多用されて
いるアクリル酸などのカルボン酸を含む重合体
は、水酸化ナトリウムや水酸化カリウムなどのア
ルカリやアンモニウムでカルボン酸基(カルボキ
シル基)を中和し、水溶化されているが、このよ
うな中和によつては、柔軟性のあるシートが得ら
れないという欠点があつた。 本発明の目的は上述の事情に鑑み、水を溶媒と
して使用でき、かつ、凝集体を含まない平滑な表
面を有する高密度で柔軟なセラミツクスシートが
得られる水溶性有機結合剤を提供するにある。 すなわち本発明は、(A)アクリル酸およびメタア
クリル酸からなるα,β−不飽和カルボン酸の少
なくとも1種を5〜45モル%および(B)下記式
()または()であらわされるビニル化合物
の少なくとも1種を95〜55モル%含有する共重合
体であつて、かつ該共重合体中に含まれるカルボ
キシル基の少なくとも85モル%が、その有する3
個の置換基に含まれる炭素原子の合計が6〜9で
ある第3級アミンで中和されてなることを特徴と
する水溶性セラミツクス結合剤に関する。 一般式() R1:Hまたはメチル R2:ヒドロキシ基を有することのあるC1〜C18
のアルキル基体 式() R3〜R5:H、メチルまたはエチル基、n:0
〜2の整数、R3+R4+n個のR5の炭素数は2
以下 次に本発明をさらに説明する。 本発明のα,β−不飽和カルボン酸はアクリル
酸またはメタアクリル酸であり、各々単独でも、
また混合されてあつてもよい。 このα,β−不飽和カルボン酸と共重合すべき
モノマーのひとつは前記式(1)であらわされるアク
リレートまたはメタアクリレートであるビニル化
合物である。このアクリレートまたはメタアクリ
レートはアクリル酸またはメタアクリル酸とC1
〜C18のアルコールとのエステルである。このよ
うなアルコールとしてはメタノール、エタノー
ル、イソプロパノール、n−プロパノール、sec
−ブタノール、iso−ブタノール、n−ブタノー
ル、iso−アミルアルコール、n−アミルアルコ
ール、iso−ヘキシルアルコール、n−ヘキシル
アルコール、2−エチルヘキシルアルコール、オ
クチルアルコール、オクタデシルアルコールなど
のアルカンモノオールや、エチレングリコール、
2−ヒドロキシプロパノールなどのアルカンジオ
ールなどである。これらアクリレートまたはメタ
アクリレートは各々単独でも、また混合されてい
てもよい。 さらに、また、上記α,β−不飽和カルボン酸
と共重合すべきモノマーは前記式()であらわ
されるビニル化合物である。このビニル化合物
は、スチレン、α−メチルスチレン、β−メチル
スチレン、α−エチルスチレン、β−エチルスチ
レン、α,β−ジメチルスチレン、ビニルトルエ
ン、エチルスチレン、ビニルキシレンなどのスチ
レン、またはスチレンにメチル基あるいはエチル
基が置換したビニル化合物である。これらビニル
化合物は各々単独でも混合されていてもよい。 本発明においては、前記α,β−不飽和カルボ
ン酸が5〜45モル%、共重合体体中に含ませるこ
とが必要である。 α,β−不飽和カルボン酸の含有量が5モル%
未満ではセラミツクス結合剤が完全な水溶性にな
ず均一なスラリーを得る事がむずかしいと共に一
度成形したセラミツクスシート成形体を再度スラ
リーに再生する場合均一なスラリーへもどらな
い。又45モルパーセントを越える場合はセラミツ
クス結合剤のイオン性が増し、セラミツクス微粉
末と長時間粉砕混合する段階でセラミツクス微粉
体同志の凝集が生じ均一なスラリーを得る事がで
きなくなると共にセラミツクスシート成形体の柔
軟性がまつたくなくなる。 本発明の共重合体は、前記α,β−不飽和カル
ボン酸とビニル化合物とを重合開始剤により共重
合して得られる。 これら原料の共重合は、常法の重合法を適宜選
択できるが、共重合の進行に従い粘度が増加する
こと、共重合によつて発生する重合熱の除去等を
考慮し、重合溶媒を使用する方が好ましい。これ
ら溶媒は適宜選択してよいがメタノール、エタノ
ール、isoプロパノール、n−プロパノール等低
級アルコール、アセトン、メチルエチルケトン、
メチル−イソ−ブチルケトン、ジエチルケトン等
低級ケトン、酢酸メチル、酢酸エチル等低級エス
テル、及び1,4−ジオキサン、1,3−ジオキ
サン、テトラヒドロフラン等の環状エーテル等の
ようにそれ自身水溶性のものが有機結合剤の使用
形態を考えるとより好ましい。すなわちスラリー
とするセラミツクス微粉末との混合において上記
水溶性溶媒の場合重合溶媒、結合剤が完全に均一
に混合されるため、重合溶媒をあらかじめ除去す
ることなく使用できる。 重合開始剤は通常使用されるいわゆるラジカル
重合開始剤であれば良い。例えばメチルエチルケ
トンパーオキシド、メチルシクロヘキサノンパー
オキシド等のケトンパーオキシド、1,1−ビス
(t−ブチルパーオキシ)シクロヘキサン、2,
2−ビス(t−ブチルパーオキシ)ブタン等のパ
ーオキシケタール、t−ブチルヒドロパーオキシ
ド、キユメンヒドロパーオキシド等のヒドロパー
オキシド、ジ−t−ブチルパーオキシド、t−ブ
チル−キユミルパーオキシド、ジ−キユミルパー
オキシド等のジアルキルパーオキシド、アセチル
パーオキシド、ベンゾイルパーオキシド等のジア
シルパーオキシドなどの過酸化物の外、アゾビス
イソブチロニトリル等も使用できる。 重合は、常温〜150℃の温度であれば適宜選択
できるが重合溶媒の沸点以下で行なうのが加圧等
の必要がないため工業的には好ましい。又重合操
作は原料と必要に応じて使用する溶媒をあらかじ
め重合反応器に仕込み、徐々に重合開始剤を添加
する方法や、溶媒のみ重合反応器に仕込み、原料
と重合開始剤とを徐々に添加する方法等で行ない
うる。重合時間は重合温度、開始剤濃度によるが
通常は6時間〜30時間で充分である。 上述の如くして共重合体を得て、次に第3級ア
ミンで中和し、水溶化させる。 処理するアミンはその有する3個の置換基中に
含まれる炭素数の合計が6以上9以下の第3級ア
ミンである。これらアミンはトリエチルアミン、
ジエチルブチルアミン、ジメチルヘキシルアミン
の様に単なるアルキルアミンの外。トリエタノー
ルアミン、トリイソプロパノールアミンの様にヒ
ドロキシアルキルアミンのごとくアルキル基に水
酸基の導入されたものも使用できる。これらアミ
ンで中和処理することによつて本発明のセラミツ
クス結合剤がえられる。上記炭素数の合計が5以
下の場合得られたセラミツクス結合剤のアミン臭
が強く事実上使用できない事もあり、また乾燥に
よつて得られるセラミツクスシート成形体が巻取
りに耐えうる柔軟性を持たない。又10以上の場合
得られたセラミツクス結合剤の水溶性が劣り粉砕
混合に於いて均一なスラリーとなりにくくなる。 中和に使用するアミンは樹脂中に存在するカル
ボン酸基の85モル%以上中和する事が重要であ
る。カルボン酸基が15モル%を越えて残存する場
合はセラミツクス成形体が完全に同化しまつたく
柔軟性を示さず、シート成形にはまつたく適さな
くなる。中和の工程で、アミンを大過剰に使用し
ても何ら障害になる事はないが、実用するうえで
は経済性、操作性、アミン特有の臭気等から自ず
と限界がある。したがつて実用上アミンの使用量
は所望のカルボン酸基の中和当量の1.2当量以下
が好ましい。中和処理は得られた樹脂溶液に対し
所定量のアミンを添加する事によつて容易に行な
いうる。通常は重合温度で30分〜3時間で完全に
中和処理を行ないうる。 本発明の結合剤はそれ単独でも充分その性能を
発揮するものであるが、エチレングリコール、ジ
エチレングリコール、トリエチレングリコール、
プロピレングリコール、グリセリン等の高沸点水
溶性ポリオールを、水溶性可ソ剤として添加し
て、得られたセラミツクスシート成形体の柔軟性
を変化させる事も可能である。 以下、実施例で本発明を説明する。 以下では部はいずれも重量部を示す。 実施例 1 沸騰するイソプロピルアルコール(112.5部)
に、n−ブチルアクリレート(73.1部)、メタク
リル酸(28.1部)スチレン(11.25部)およびパ
ーオキサイド(0.1部)(商品名パーブチルO)
〔日本油脂製〕)の混合物を2時間にわたり滴下す
る。滴下終了後も同じ温度で5時間攪拌を続け
る。反応液を室温に冷やした後トリエタノールア
ミン(48.7部)に加え中和する。しかる後、この
溶液から減圧下イソプロピルアルコールを留出さ
せ、水溶性の樹脂が得られる。 アルミナ粉末100部(住友アルミニウム製練(株)
製、商品名AM−21)に対し、上記樹脂4部、イ
オン交換水45部を加え、ボールミルにて約10時間
混練してスラリーとし、しかる後脱泡処理をし
た。 該スラリーからドクターブレード法により混練
物シートを作り、これを2時間自然乾燥した後、
110℃で2時間乾燥し、表面の平滑なシートを得
た。 このシートは打ち抜き可能な弾性を有し、密度
を測定したところ2.40であつた。 さらに上記で得られたシート50部に対し、イオ
ン交換水23部を加え、ボールミルにて約8時間混
練して再びスラリーとし、脱泡処理後、上記の方
法でシートを作つた。このシートも表面が平滑で
かつ同様な柔軟性を持つものであつた。密度は
2.38でシートの再生が可能である事が明らかとな
つた。 実施例 2 実施例1と同様にして水溶性樹脂を得た。但し
重合溶媒であるイソプロピルアルコールを除去せ
ず、下記の処方でアルミナ粉末との混練操作を行
つた。 アルミナ粉末 100部 上記樹脂溶液 7部(樹脂分として4.1部) イオン交換水 45部 を実施例1と同様にして混練しシートを作つたと
ころ実施例1と同様に密度2.39の平滑で柔軟なシ
ートを得た。また、その再生もできた。 実施例 3〜6 重合溶媒として1,4−ジオキサン(112.5部)
を用い、メタアクリル酸の代りにアクリル酸
(23.5部)を用い実施例1と同様にシートを作成
し、さらに同様な方法で再生を行なつた。いずれ
も下表に示すごとく良好なシートが得られた。
The present invention relates to a water-soluble organic binder used in ceramic sheet molding. One of the ceramic molding methods is a sheet molding method in which fine ceramic powder and a solvent are mixed to form a slurry, which is then drawn into a sheet using a doctor blade, for example, and then heated and dried to obtain a ceramic sheet (green sheet, green sheet). There is. Since the sheet thus obtained is then punched into a desired shape and then fired, an organic binder is used to maintain the shape during punching and firing. For example, in the conventional sheet molding method, an organic binder such as butyral resin or vinyl acetate resin is dissolved in an organic solvent such as methyl ethyl ketone, butyl acetate, ethyl acetate, toluene, or alcohol, and this is mixed with fine ceramic powder for a long period of time. A method is adopted in which the slurry is mixed to form a slurry, the air in the slurry is defoamed, and then a sheet is drawn onto a carrier film using a blade with a certain thickness, and this is heated and dried to form a ceramic sheet. ing. However, this method using organic solvents poses (1) harm to human health due to organic solvents, (2) dangers such as explosions due to the use of flammable organic solvents, and (3) dangers due to the use of expensive organic solvents. Problems arose in terms of economic efficiency. Therefore, methods have been proposed that use water-soluble organic binders such as polyvinyl alcohol and polyvinyl acetate, and water-based emulsions such as polyacrylic esters and copolymers of ethylene and organic acids as binders. However, in these proposed methods, water is used as a solvent, so although problems (1), (2), and (3) above are solved, they cannot be said to be perfect. During the long mixing stage, the presence of water tends to cause the ceramic fine powder to aggregate in the slurry, and the viscosity of the slurry deviates significantly from Newtonian flow, resulting in poor fluidity of the slurry and poor dispersibility of the ceramics, resulting in high density and smoothness. It is difficult to say that all the problems have been solved, such as the difficulty in obtaining sheets with a uniform surface. In other words, regarding ceramic sheet molding, in addition to the above issues (1), (2), and (3), (4) the surface of the ceramic sheet after drying must be smooth, (5) the molded sheet must be laminated by pressure bonding, It must have appropriate flexibility for tape winding (6) The formed sheet must be able to easily return to slurry again. However, with emulsion-type organic binders,
It is difficult to regenerate into slurry, so it is not suitable for sheet molding. Further, it is preferable to mold the molded product using a water-soluble organic binder and water as a solvent, since it is possible to reproduce the molded product. However, polymers containing carboxylic acids such as acrylic acid, which are often used as water-soluble organic binders, become water-soluble by neutralizing the carboxylic acid groups (carboxyl groups) with alkali or ammonium such as sodium hydroxide or potassium hydroxide. However, such neutralization has the disadvantage that a flexible sheet cannot be obtained. In view of the above-mentioned circumstances, an object of the present invention is to provide a water-soluble organic binder that can be used as a solvent and that can yield a high-density, flexible ceramic sheet having a smooth surface free of aggregates. . That is, the present invention provides (A) 5 to 45 mol% of at least one α,β-unsaturated carboxylic acid consisting of acrylic acid and methacrylic acid, and (B) a vinyl compound represented by the following formula () or (). A copolymer containing 95 to 55 mol% of at least one of
The present invention relates to a water-soluble ceramic binder which is neutralized with a tertiary amine whose substituents contain 6 to 9 carbon atoms in total. General formula () R 1 : H or methyl R 2 : C 1 to C 18 which may have a hydroxy group
Alkyl base of formula () R3 to R5 : H, methyl or ethyl group, n: 0
An integer of ~2, the number of carbon atoms in R 3 + R 4 + n R 5 is 2
The present invention will be further explained below. The α,β-unsaturated carboxylic acid of the present invention is acrylic acid or methacrylic acid, and each alone can also be used as
They may also be mixed. One of the monomers to be copolymerized with this α,β-unsaturated carboxylic acid is a vinyl compound which is an acrylate or methacrylate represented by the above formula (1). This acrylate or methacrylate is acrylic acid or methacrylic acid and C 1
It is an ester with ~ C18 alcohol. Such alcohols include methanol, ethanol, isopropanol, n-propanol, sec.
- Alkane monools such as butanol, iso-butanol, n-butanol, iso-amyl alcohol, n-amyl alcohol, iso-hexyl alcohol, n-hexyl alcohol, 2-ethylhexyl alcohol, octyl alcohol, octadecyl alcohol, and ethylene glycol. ,
These include alkanediols such as 2-hydroxypropanol. These acrylates or methacrylates may be used alone or in combination. Furthermore, the monomer to be copolymerized with the above α,β-unsaturated carboxylic acid is a vinyl compound represented by the above formula (). This vinyl compound is a styrene compound such as styrene, α-methylstyrene, β-methylstyrene, α-ethylstyrene, β-ethylstyrene, α,β-dimethylstyrene, vinyltoluene, ethylstyrene, vinylxylene, or styrene with methyl It is a vinyl compound substituted with a group or an ethyl group. These vinyl compounds may be used alone or in combination. In the present invention, it is necessary that the copolymer contains 5 to 45 mol% of the α,β-unsaturated carboxylic acid. α,β-unsaturated carboxylic acid content is 5 mol%
If it is less than that, the ceramic binder will not become completely water-soluble and it will be difficult to obtain a uniform slurry, and when the ceramic sheet molded body that has been molded once is regenerated into slurry, it will not return to a uniform slurry. If it exceeds 45 mole percent, the ionicity of the ceramic binder will increase, and during long-term pulverization and mixing with the ceramic fine powder, the fine ceramic powder will aggregate, making it impossible to obtain a uniform slurry and causing a ceramic sheet molded product. flexibility is lost. The copolymer of the present invention is obtained by copolymerizing the α,β-unsaturated carboxylic acid and a vinyl compound using a polymerization initiator. For the copolymerization of these raw materials, conventional polymerization methods can be selected as appropriate, but a polymerization solvent should be used, taking into consideration the fact that the viscosity increases as the copolymerization progresses and the removal of the polymerization heat generated by copolymerization. is preferable. These solvents may be selected as appropriate, including lower alcohols such as methanol, ethanol, isopropanol, and n-propanol, acetone, methyl ethyl ketone,
Lower ketones such as methyl-iso-butyl ketone and diethyl ketone, lower esters such as methyl acetate and ethyl acetate, and cyclic ethers such as 1,4-dioxane, 1,3-dioxane, and tetrahydrofuran, which are themselves water-soluble. This is more preferable considering the usage form of the organic binder. That is, in the case of the above water-soluble solvent, the polymerization solvent and binder are mixed completely and uniformly when mixed with the fine ceramic powder to form a slurry, so that it can be used without removing the polymerization solvent in advance. The polymerization initiator may be any commonly used so-called radical polymerization initiator. For example, ketone peroxides such as methyl ethyl ketone peroxide and methyl cyclohexanone peroxide, 1,1-bis(t-butylperoxy)cyclohexane, 2,
Peroxy ketals such as 2-bis(t-butylperoxy)butane, hydroperoxides such as t-butyl hydroperoxide and cumene hydroperoxide, di-t-butyl peroxide, t-butyl-cumyl peroxide In addition to peroxides such as oxides, dialkyl peroxides such as dikyumyl peroxide, diacyl peroxides such as acetyl peroxide and benzoyl peroxide, azobisisobutyronitrile and the like can also be used. Polymerization can be carried out at any temperature from normal temperature to 150°C, but it is industrially preferable to carry out the polymerization at a temperature below the boiling point of the polymerization solvent since there is no need for pressurization. In addition, the polymerization operation can be carried out by charging the raw materials and the solvent to be used as necessary into a polymerization reactor in advance and gradually adding the polymerization initiator, or by charging only the solvent into the polymerization reactor and gradually adding the raw materials and polymerization initiator. This can be done in the following manner. The polymerization time depends on the polymerization temperature and initiator concentration, but 6 to 30 hours is usually sufficient. A copolymer is obtained as described above and then neutralized with a tertiary amine to make it water-soluble. The amine to be treated is a tertiary amine in which the total number of carbon atoms contained in its three substituents is 6 or more and 9 or less. These amines are triethylamine,
In addition to simple alkyl amines such as diethylbutylamine and dimethylhexylamine. Those in which a hydroxyl group is introduced into an alkyl group such as hydroxyalkylamine such as triethanolamine and triisopropanolamine can also be used. The ceramic binder of the present invention can be obtained by neutralizing with these amines. If the total number of carbon atoms is less than 5, the resulting ceramic binder may have a strong amine odor and may be virtually unusable, and the ceramic sheet molded product obtained by drying may not have enough flexibility to withstand winding. do not have. When the number is 10 or more, the resulting ceramic binder has poor water solubility, making it difficult to form a uniform slurry during pulverization and mixing. It is important that the amine used for neutralization neutralizes 85 mol% or more of the carboxylic acid groups present in the resin. If more than 15 mol % of carboxylic acid groups remain, the ceramic molded product will not be completely assimilated and will not exhibit flexibility, making it unsuitable for sheet molding. Although there is no problem in using a large excess of amine in the neutralization process, there are limits to its practical use due to economic efficiency, operability, odor peculiar to amines, etc. Therefore, in practice, the amount of amine used is preferably 1.2 equivalents or less of the neutralization equivalent of the desired carboxylic acid group. Neutralization can be easily carried out by adding a predetermined amount of amine to the obtained resin solution. Normally, complete neutralization can be carried out in 30 minutes to 3 hours at the polymerization temperature. The binder of the present invention can sufficiently exhibit its performance when used alone, but it can also be used with ethylene glycol, diethylene glycol, triethylene glycol,
It is also possible to change the flexibility of the obtained ceramic sheet molded article by adding a high-boiling water-soluble polyol such as propylene glycol or glycerin as a water-soluble solubilizing agent. The present invention will be explained below with reference to Examples. In the following, all parts indicate parts by weight. Example 1 Boiling isopropyl alcohol (112.5 parts)
, n-butyl acrylate (73.1 parts), methacrylic acid (28.1 parts), styrene (11.25 parts) and peroxide (0.1 parts) (trade name Perbutyl O).
[Nippon Oil & Fats Co., Ltd.]) was added dropwise over 2 hours. After completion of the dropwise addition, stirring was continued at the same temperature for 5 hours. After cooling the reaction solution to room temperature, triethanolamine (48.7 parts) was added to neutralize it. Thereafter, isopropyl alcohol is distilled out from this solution under reduced pressure to obtain a water-soluble resin. 100 parts of alumina powder (Sumitomo Aluminum Smelting Co., Ltd.)
4 parts of the above resin and 45 parts of ion-exchanged water were added to 4 parts of the above-mentioned resin and 45 parts of ion-exchanged water, and kneaded in a ball mill for about 10 hours to form a slurry, which was then defoamed. A kneaded material sheet was made from the slurry by the doctor blade method, and after air drying this for 2 hours,
It was dried at 110°C for 2 hours to obtain a sheet with a smooth surface. This sheet was elastic enough to be punched out, and the density was measured to be 2.40. Further, 23 parts of ion-exchanged water was added to 50 parts of the sheet obtained above, and the mixture was kneaded in a ball mill for about 8 hours to form a slurry again. After defoaming treatment, a sheet was produced by the above method. This sheet also had a smooth surface and similar flexibility. The density is
It became clear in 2.38 that it was possible to play the sheet. Example 2 A water-soluble resin was obtained in the same manner as in Example 1. However, the polymerization solvent, isopropyl alcohol, was not removed, and the mixture was kneaded with alumina powder according to the following recipe. 100 parts of alumina powder 7 parts of the above resin solution (4.1 parts as resin content) and 45 parts of ion-exchanged water were kneaded in the same manner as in Example 1 to make a sheet. As in Example 1, a smooth and flexible sheet with a density of 2.39 was obtained. I got it. It was also possible to reproduce it. Examples 3-6 1,4-dioxane (112.5 parts) as polymerization solvent
A sheet was prepared in the same manner as in Example 1 using acrylic acid (23.5 parts) in place of methacrylic acid, and recycled in the same manner. In all cases, good sheets were obtained as shown in the table below.

【表】 実施例 7〜11 表1に示す反応溶媒、α,β−不飽和カルボン
酸、ビニル化合物により実施例1と同様に有機結
合剤を合成しセラミツクスシートの評価を行なつ
た。いずれの場合でも再生可能な平滑柔軟なシー
トが得られた。
[Table] Examples 7 to 11 Organic binders were synthesized in the same manner as in Example 1 using the reaction solvents, α, β-unsaturated carboxylic acids, and vinyl compounds shown in Table 1, and ceramic sheets were evaluated. In both cases, recyclable smooth and flexible sheets were obtained.

【表】 実施例12〜16及び比較例1〜2 沸騰するイソプロピルアルコール(100部)に
n−ブチルアクリレートとメタアクリル酸および
重合開始剤であるアゾビスイソブチロニトリル
(0.1部)の混合物を2時間にわたつて滴加した。
滴加終了後も同一温度で5時間攪拌し反応液を室
温まで加えトリエタノールアミンを加え中和処理
した。 このようにして得られた樹脂溶液を実施例2と
同様にしてシートの評価を行つた。結果は表2に
示す。
[Table] Examples 12 to 16 and Comparative Examples 1 to 2 A mixture of n-butyl acrylate, methacrylic acid, and azobisisobutyronitrile (0.1 part) as a polymerization initiator was added to boiling isopropyl alcohol (100 parts). It was added dropwise over a period of 2 hours.
After the completion of the dropwise addition, the mixture was stirred at the same temperature for 5 hours, and the reaction solution was heated to room temperature, and triethanolamine was added for neutralization. Using the thus obtained resin solution, sheets were evaluated in the same manner as in Example 2. The results are shown in Table 2.

【表】 実施例 17〜19 実施例15と同様にして共重合を行ない、各種ア
ミン処理を行ない、得られた樹脂溶液を実施例2
におけると同様に用いてセラミツクスシートを作
成した。
[Table] Examples 17 to 19 Copolymerization was carried out in the same manner as in Example 15, various amine treatments were carried out, and the resulting resin solution was used in Example 2.
A ceramic sheet was prepared in the same manner as in .

【表】 和。
実施例20〜22、比較例3 実施例15と同様にして共重合を行ない、トリエ
タノールアミン処理を行ない、樹脂溶液を実施例
2と同様にしてシートを作成した。
[Table] Sum.
Examples 20 to 22, Comparative Example 3 Copolymerization was performed in the same manner as in Example 15, triethanolamine treatment was performed, and the resin solution was used in the same manner as in Example 2 to prepare sheets.

【表】【table】

Claims (1)

【特許請求の範囲】 1(A) アクリル酸およびメタアクリル酸からなる
α,β−不飽和カルボン酸の少なくとも1種を 5〜45モル% および (B) 下記一般式()または() R1:Hまたはメチル R2:ヒドロキシ基を有することのあるC1〜C18
のアルキル基 R3〜R5:H、メチルまたはエチル基であり、
かつ合計の炭素数が2以下、nは0〜2の
整数 で表わされるビニル化合物の少なくとも1種を 95〜55モル% 含有する共重合体であつて、かつ該共重合体中
に含まれるカルボキシル基の少なくとも85%モ
ル%が、その有する3個の置換基の合計の炭素
数が6〜9である第3級アミンで中和されてな
ることを特徴とする水溶性セラミツクス結合
剤。 2 前記一般式()のビニル化合物が、スチレ
ン、α−メチルスチレン、ビニルトルエンである
ことを特徴とする特許請求の範囲第1項記載の水
溶性セラミツクス結合剤。 3 前記第3級アミンがトリエチルアミン、ジメ
チルヘキシルアミン、トリエタノールアミン、ト
リイソプロパノールアミンであることを特徴とす
る特許請求の範囲第1項および第2項のいずれか
一つに記載の水溶性セラミツクス結合剤。
[Scope of Claims] 1(A) 5 to 45 mol% of at least one α,β-unsaturated carboxylic acid consisting of acrylic acid and methacrylic acid, and (B) the following general formula () or () R 1 : H or methyl R 2 : C 1 to C 18 which may have a hydroxy group
alkyl group of R3 to R5 : H, methyl or ethyl group,
and a copolymer containing 95 to 55 mol% of at least one vinyl compound having a total number of carbon atoms of 2 or less, where n is an integer of 0 to 2, and a carboxyl compound contained in the copolymer. A water-soluble ceramic binder characterized in that at least 85% by mole of the groups are neutralized with a tertiary amine whose three substituents have a total of 6 to 9 carbon atoms. 2. The water-soluble ceramic binder according to claim 1, wherein the vinyl compound of the general formula () is styrene, α-methylstyrene, or vinyltoluene. 3. The water-soluble ceramic bond according to any one of claims 1 and 2, wherein the tertiary amine is triethylamine, dimethylhexylamine, triethanolamine, or triisopropanolamine. agent.
JP59049462A 1984-03-15 1984-03-15 Water-soluble ceramic binder Granted JPS60195053A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59049462A JPS60195053A (en) 1984-03-15 1984-03-15 Water-soluble ceramic binder
KR1019850001667A KR920000160B1 (en) 1984-03-15 1985-03-15 A preparing method of water-soluble copolymer bind for the ceramic
US07/168,863 US4836966A (en) 1984-03-15 1988-03-16 Binder for ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59049462A JPS60195053A (en) 1984-03-15 1984-03-15 Water-soluble ceramic binder

Publications (2)

Publication Number Publication Date
JPS60195053A JPS60195053A (en) 1985-10-03
JPH0457626B2 true JPH0457626B2 (en) 1992-09-14

Family

ID=12831806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59049462A Granted JPS60195053A (en) 1984-03-15 1984-03-15 Water-soluble ceramic binder

Country Status (1)

Country Link
JP (1) JPS60195053A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2627068B2 (en) * 1987-09-29 1997-07-02 株式会社小松製作所 Manufacturing method of green sheet for ceramic substrate
US5401695A (en) * 1994-01-24 1995-03-28 Rohm And Haas Company Process for preparing ceramic products

Also Published As

Publication number Publication date
JPS60195053A (en) 1985-10-03

Similar Documents

Publication Publication Date Title
KR920000160B1 (en) A preparing method of water-soluble copolymer bind for the ceramic
JP6804989B2 (en) Binder for manufacturing inorganic sintered body
JP2014005192A (en) Binder for producing inorganic sintered body
JP3378133B2 (en) Ceramic molding binder
JP3080691B2 (en) Water-soluble organic binder
JPH0153233B2 (en)
JP3051281B2 (en) Ceramic molding binder
JPH0457626B2 (en)
JP5456552B2 (en) Polymer with both low hygroscopicity and alkaline water solubility
JPH05294712A (en) Binder for molding ceramic
JPH0470266B2 (en)
JPH10167836A (en) Binder resin for compacting ceramic
JPH06313004A (en) Production of aqueous polymer solution of low molecular weight
JP2013100389A (en) Binder for producing inorganic sintered body
JP2001139381A (en) Ceramic caking agent
JP2691380B2 (en) Binder for forming ceramics
JPS5825345A (en) Polymer composition
JP2587399B2 (en) Ceramic binder
JPH0617266B2 (en) Binder for ceramic injection molding
JPS5742706A (en) Production of acrylic copolymer
JPH0220581B2 (en)
JP3080665B2 (en) Ceramic molding binder
JP5456553B2 (en) Binder for molding including a sintering process having toughness
JPS6259072B2 (en)
EP0098908B1 (en) Method of producing a water-soluble, acid-curing resin for lacquers