JPH0457449B2 - - Google Patents

Info

Publication number
JPH0457449B2
JPH0457449B2 JP17424383A JP17424383A JPH0457449B2 JP H0457449 B2 JPH0457449 B2 JP H0457449B2 JP 17424383 A JP17424383 A JP 17424383A JP 17424383 A JP17424383 A JP 17424383A JP H0457449 B2 JPH0457449 B2 JP H0457449B2
Authority
JP
Japan
Prior art keywords
workpiece
wire
power source
wire electrode
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17424383A
Other languages
Japanese (ja)
Other versions
JPS6067030A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP17424383A priority Critical patent/JPS6067030A/en
Publication of JPS6067030A publication Critical patent/JPS6067030A/en
Publication of JPH0457449B2 publication Critical patent/JPH0457449B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • B23H7/10Supporting, winding or electrical connection of wire-electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 本発明はワイヤカツト放電加工装置に関する。[Detailed description of the invention] The present invention relates to a wire cut electric discharge machining apparatus.

本発明は特に平行に設置した電線に電流を流し
た際に夫々の電線を流れる電流の方向によつて平
行な電線が互いに反発したり、吸引したりする、
いわゆるフレミングの法則を利用して、被加工体
に供給した励磁電流とワイヤ電極と被加工体とに
流れる加工のための放電電流とにより生ずる電磁
力が、互いに吸引し合うようにしてワイヤ電極に
被加工体に接近する力を与えることによつて、放
電加工の際に、被加工体から離れる方向に撓むワ
イヤ電極の撓みを打消して真直にさせることによ
り、加工精度を向上させることを目的としたもの
である。
In particular, the present invention is characterized in that when current is passed through electric wires installed in parallel, the parallel electric wires repel or attract each other depending on the direction of the current flowing through each wire.
Utilizing the so-called Fleming's law, the electromagnetic force generated by the excitation current supplied to the workpiece and the discharge current for machining flowing between the wire electrode and the workpiece attracts each other to the wire electrode. By applying a force that approaches the workpiece, the wire electrode deflects in the direction away from the workpiece during electrical discharge machining, and by straightening it, it improves machining accuracy. This is the purpose.

ワイヤ電極を使用したワイヤカツト放電加工装
置では、通常ワイヤ電極を一方の貯蔵リールから
引き出し、一対の位置決めガイドを有する加工部
を所定の張力を付与した状態で移動させた後他方
のリールに巻き取るようにし、この一対の位置決
めガイド間に於いてワイヤ電極の軸方向に更新移
動するワイヤ電極の軸に対してほぼ直角方向から
被加工体を対向させて放電加工間隙を形成させ、
この間隙に水、油等の加工液を供給するとともに
間歇的な電圧パルスを繰り返し供給して放電パル
スを発生させ、この放電を繰り返すことにより被
加工体を加工するが、このときワイヤ電極もしく
は被加工体に前記直角方向の平面上において相対
的に所定輪郭形状等の加工送りを与えることによ
つて諸種の形状の切断、抜き取り加工ができるも
のである。
In a wire-cut electrical discharge machining device that uses a wire electrode, the wire electrode is usually pulled out from one storage reel, moved while applying a predetermined tension to the processing section having a pair of positioning guides, and then wound onto the other reel. and between the pair of positioning guides, the workpiece is opposed from a direction substantially perpendicular to the axis of the wire electrode that is updated in the axial direction of the wire electrode to form an electrical discharge machining gap,
A machining fluid such as water or oil is supplied to this gap, and intermittent voltage pulses are repeatedly supplied to generate a discharge pulse. By repeating this discharge, the workpiece is machined. At this time, the wire electrode or workpiece is machined. By applying processing feed such as a predetermined contour shape relatively to the workpiece on the plane in the perpendicular direction, cutting and punching into various shapes can be performed.

しかしながら、このワイヤカツト放電加工では
加工中、放電時に生ずる放電圧力によつてワイヤ
電極は撓みを生じ、いわゆる弓なりに電極が曲つ
て加工が進行するようになる。
However, in this wire cut electric discharge machining, the wire electrode is bent due to the discharge pressure generated during the discharge, and the electrode is bent in a so-called arched shape as the machining progresses.

特に加工の送り方向が変わる部分の前後に於い
て、この弓なりの電極曲りによつて直接加工精度
が悪化することになる。今一対の位置決めガイド
の距離、いわゆるワイヤ電極のスパンを10cmと
し、該スパンの中央部に放電圧力20gが加わると
して0.2mmφの黄銅線から成るワイヤ電極に800g
の張力を加えて放電加工をした場合には、その中
央部に於いてワイヤ電極の心はそのあるべき位置
から約0.62mmも撓むようになり、加工精度上悪い
結果を示すことになる。
Particularly before and after the portion where the feeding direction of machining changes, this arcuate electrode bending directly deteriorates machining accuracy. Let's assume that the distance between the pair of positioning guides, or the so-called span of the wire electrode, is 10 cm, and that a discharge pressure of 20 g is applied to the center of the span, then 800 g will be applied to the wire electrode made of 0.2 mmφ brass wire.
When electrical discharge machining is performed with a tension of , the center of the wire electrode will be deflected by approximately 0.62 mm from its original position at the center, resulting in poor machining accuracy.

この角部の加工精度が低下する欠点を除き、前
記目的を達成する本発明を例示した図に基づいて
説明する。
The present invention, which achieves the above object while eliminating the drawback that the machining accuracy of the corner portion is reduced, will be explained based on the drawings illustrating the present invention.

本発明を備えたワイヤカツト放電加工装置の実
施例の概略を第1図で示すと、ベツト1に設けた
コラム2から上アーム3と下アーム4とが側方の
テーブル側へ出ている。この上アーム3の先端部
には上下に移動することができるヘツド5を支持
していて、このヘツド5の下部にはガイドホルダ
6を図示していない数値制御装置で水平面上を互
いに直角なXY方向に移動することができるよう
に支持している。貯蔵ドラム8に巻回せるワイヤ
電極7を数多くのガイドローラ9,10を介在
し、又ワイヤ電極送りに駆動に対してはブレーキ
制御を与えてワイヤ電極7に所定の張力を付与す
るピンチローラ11とブレーキローラ12に挟ま
れた部分と、該部分をへて加工部位置決め用の一
方の船型やダイス型等の位置決めガイド13をへ
て被加工体14と対向せしめられる。この被加工
体14はテーブル15に固定した台16にクラン
ププレート17により固定されている。そしてこ
のテーブル15はベツト1に支持されていて、図
示していない数値制御装置によつて水平面を互い
に直角なX,Y軸方向に移動するようになつてい
る。ワイヤ電極7と被加工体14間に後述するパ
ルス電源29よりの加工電圧パルスが印加され、
加工液18の噴射のもとで加工が行われる。被加
工体14との間で放電加工作用に供されたワイヤ
電極7は他方の船型やダイス型等の位置決めガイ
ド19と複数のガイドローラ20,21とガイド
ローラ20と21との間に設けたワイヤ電極7の
更新駆動用ピンチローラ22とキヤプスタン23
に挟まれた部分をへて巻き取りドラム24により
回収されるのである。
FIG. 1 schematically shows an embodiment of a wire-cut electrical discharge machining apparatus according to the present invention. An upper arm 3 and a lower arm 4 protrude from a column 2 provided on a bed 1 to the side of the table. A head 5 that can move up and down is supported at the tip of the upper arm 3, and a guide holder 6 is mounted at the bottom of the head 5 using a numerical control device (not shown) to move XY and Y at right angles to each other on a horizontal plane. It is supported so that it can be moved in any direction. The wire electrode 7 that can be wound around the storage drum 8 is interposed between a number of guide rollers 9 and 10, and a pinch roller 11 that applies brake control to drive the wire electrode to apply a predetermined tension to the wire electrode 7. The part sandwiched between the brake rollers 12 is opposed to the workpiece 14 through a positioning guide 13 such as a ship shape or a die shape for positioning the processing part. This workpiece 14 is fixed to a stand 16 fixed to a table 15 by a clamp plate 17. The table 15 is supported by the bed 1, and is moved on a horizontal plane in X and Y axes directions perpendicular to each other by a numerical control device (not shown). A processing voltage pulse from a pulse power source 29, which will be described later, is applied between the wire electrode 7 and the workpiece 14,
Machining is performed under the injection of machining fluid 18. The wire electrode 7 used for the electrical discharge machining action between the workpiece 14 and the workpiece 14 is provided between the other positioning guide 19 such as a boat shape or die shape, and a plurality of guide rollers 20 and 21. Pinch roller 22 and capstan 23 for updating the wire electrode 7
The paper passes through the sandwiched portion and is collected by the winding drum 24.

しかしてワイヤ電極7は、例えば約0.05〜0.5
mmφ程度の細線で、タングステン、モリブデン、
又はそれらの合金等の細線も使用されることがあ
るものの通常は銅又は黄銅等の銅系合金線が慣用
されており、又上記タングステン線が使用される
場合には約0.05mmφ前後のより細い細線である。
ワイヤ電極7による放電加工部を位置決めする位
置決めガイド13,19間に於いてワイヤ電極7
は約数Kg前後又はそれ以下の張力の付与を必要と
する。該ワイヤ電極7を通しての通電により被加
工体14との間で高周波(数10KHz前後又はそれ
以上の)の間歇放電に曝されているため、従来通
常形のワイヤカツト放電加工の際にもワイヤ電極
7は被加工体14部分の加工溝内に於いて、加工
の進行方向と反対方向に、通常は加工溝の後方方
向に弧状に彎曲した状態で加工が進行しているも
のである。この彎曲を少なくするためにはワイヤ
電極への付与張力を増大すればよいのであるが、
細いワイヤ電極に強い張力を加えると切断してし
まう。即ち、ワイヤ電極7の切断防止のためには
付与張力に限界があり、又ワイヤ電極7には付与
張力又は力に応ずる伸びもあるところから、上記
の如くワイヤ電極7が被加工体14の部分又はそ
の加工溝内に於いて或る程度弧状になることは避
けられないものであり、前記位置決めガイド1
3,19間の距離の増大に応じ弧状の曲率半径が
大きくなつて、加工部の位置は位置決めガイド間
の位置からより大きく変位することになる。
Thus, the wire electrode 7 may be approximately 0.05 to 0.5
Thin wire of about mmφ, tungsten, molybdenum,
Although fine wires made of copper or alloys of these wires are sometimes used, usually copper-based alloy wires such as copper or brass are used, and when the above tungsten wires are used, they are thinner wires of about 0.05 mmφ. It is a thin line.
The wire electrode 7 is placed between the positioning guides 13 and 19 for positioning the electrical discharge machining part by the wire electrode 7.
requires applying a tension of around several kilograms or less. Since the wire electrode 7 is exposed to intermittent electric discharge of high frequency (approximately several tens of kHz or more) between the workpiece 14 and the workpiece 14 due to the current flowing through the wire electrode 7, the wire electrode 7 is In the machining groove of the workpiece 14, machining is progressing in a direction opposite to the direction in which machining is progressing, usually in an arcuate state toward the rear of the machining groove. In order to reduce this curvature, it is sufficient to increase the tension applied to the wire electrode, but
If strong tension is applied to a thin wire electrode, it will break. That is, in order to prevent the wire electrode 7 from being cut, there is a limit to the tension that can be applied, and since the wire electrode 7 also stretches in response to the applied tension or force, as described above, the wire electrode 7 is attached to the workpiece 14. Or, it is unavoidable that the machining groove has a certain degree of arc shape, and the positioning guide 1
As the distance between the positioning guides 3 and 19 increases, the radius of curvature of the arc increases, and the position of the processed portion is displaced more greatly from the position between the positioning guides.

第2図は本発明の実施例の要部を拡大したとこ
ろの図であつて、被加工体14の上下両側の位置
決めガイド13,19を固着した上下の各ケース
30は図示していないが、上下方向と紙面に対し
て直角な方向に夫々微細に移動して、ワイヤ電極
7の位置を調整することができる構造になつてい
て、そのケース30はボルト等でガイドホルダ6
及び下アーム4に夫々取り付けられている。この
ケース30に加工液18を注入するキヤツプ31
を着脱自在に取り付け、その端部はケース30と
共に、上下の各ノズル32を形成している。次に
被加工体14を表裏方向に挟むように相対向させ
て前記各ケース30部に設けた前記被加工体表裏方
向の励磁電流通電手段について説明すると、上記
の各ケース30に必要に応じて絶縁材で作つた支
持部材33を固定し、同じく絶縁材で作つた支持
板34をネジ等で支持部材に固定する。この絶縁
材等で作つた支持部材33と支持板34との間
で、導電性の材料で作つた歯車35を回転自在に
支持するようにしてある。
FIG. 2 is an enlarged view of the main part of the embodiment of the present invention, and the upper and lower cases 30 to which the positioning guides 13 and 19 on both the upper and lower sides of the workpiece 14 are fixed are not shown. The structure is such that the position of the wire electrode 7 can be adjusted by fine movement in the vertical direction and in the direction perpendicular to the plane of the paper, and the case 30 is attached to the guide holder 6 with bolts or the like.
and the lower arm 4, respectively. Cap 31 for injecting machining fluid 18 into this case 30
is removably attached, and its ends, together with the case 30, form upper and lower nozzles 32. Next, the excitation current energization means for the front and back directions of the workpiece, which is provided in each of the 30 cases so as to sandwich the workpiece 14 in the front and back directions, will be described. A support member 33 made of an insulating material is fixed, and a support plate 34 also made of an insulating material is fixed to the support member with screws or the like. A gear 35 made of a conductive material is rotatably supported between the support member 33 made of an insulating material and the support plate 34.

この歯車35に接点36を取り付けた板ばね3
6Aをねじ37で取り付け、接点36の先端部は
被加工体14の表裏面に弾力的に接するようにな
つている。この接点36を保持する板ばね36A
を取り付けた歯車35は絶縁材等で作つた歯車3
8Aかみ合い、歯車38はガイドホルダ6及び下
アーム4とに夫々固定したサーボモータ39の軸
に固定されている。ガイドホルダ6及び下アーム
4に取り付けたブラケツト42のブラツシユ挿入
孔43には、ブラツシユ44をスプリング45の
弾力に抗して挿入してあり、そのブラツシユ44
の後端部に2つのナツト46を互いに締め合つて
固定し、ブラツシユ44の先端部はスプリング4
5の弾力で回動する歯車35に常時当接する。そ
して各ブラツシユ44はナツト46を介し極性を
有する励磁電源40の両出力に極性切換スイツチ
17を介して接続され、接点36間に被加工体1
4を介して励磁電流を流すようになつている。
A leaf spring 3 with a contact 36 attached to this gear 35
6A is attached with screws 37, and the tips of the contacts 36 are adapted to come into elastic contact with the front and back surfaces of the workpiece 14. A leaf spring 36A that holds this contact 36
The gear 35 to which is attached is the gear 3 made of insulating material etc.
8A meshing, the gear 38 is fixed to the shaft of a servo motor 39 fixed to the guide holder 6 and the lower arm 4, respectively. A brush 44 is inserted into the brush insertion hole 43 of the bracket 42 attached to the guide holder 6 and the lower arm 4 against the elasticity of the spring 45.
Two nuts 46 are tightened and fixed at the rear end of the brush 44, and the tip of the brush 44 is attached to the spring 4.
It is always in contact with the gear 35 which rotates with the elastic force of 5. Each brush 44 is connected via a nut 46 to both outputs of an excitation power source 40 having a polarity via a polarity changeover switch 17.
The excitation current is made to flow through 4.

第3図に示したように、被加工体14の加工面
又は加工間隙面の断面輪郭線14Bは、加工送り
の向きに図示の如く円弧凸状等となる傾向にあ
る。これはワイヤ電極7がパルス放電による圧力
に加えて更に流通介在する加工液の作用により加
工間隙に発生する圧力に押されて彎曲した状態で
更新送りされるからである。尚第3図で14Aは
被加工体14をワイヤ電極7で加工し終わつた部
分を示すもので、加工送り方向に対応する被加工
体14の加工溝の一方の切断面である。18A,
18Bは加工液18がその噴射ノズル32の開口
からワイヤ電極7にそつて同軸状に噴出された後
の流れ方向を矢印をもつて示しているもので、加
工液18が加工間隙の輪郭線14Bの影響を受け
て、加工溝内で指向する噴流を示している。
As shown in FIG. 3, the cross-sectional contour line 14B of the machining surface or machining gap surface of the workpiece 14 tends to have an arcuate convex shape or the like in the direction of machining feed, as shown in the figure. This is because the wire electrode 7 is pushed and renewed in a curved state by the pressure generated in the machining gap due to the action of the working fluid flowing through the wire in addition to the pressure caused by the pulse discharge. In FIG. 3, reference numeral 14A indicates a portion of the workpiece 14 that has been completely machined with the wire electrode 7, which is one cut surface of the processing groove of the workpiece 14 corresponding to the processing feed direction. 18A,
18B indicates the flow direction of the machining fluid 18 after it is coaxially jetted from the opening of the jet nozzle 32 along the wire electrode 7, and the machining fluid 18 flows along the contour line 14B of the machining gap. The figure shows the jet flow directed within the machined groove under the influence of

一方、第4図aのように2つの導線l1,l2を平
行に適宜の間隔に設け、いずれも上の+側から下
の−側に向けて、つまり同方向に電流を流すと、
第4図bのように右ねじの法則により磁力線模様
が形成され、2つの導線l1,l2の間に引き合う電
磁力Fが発生し、従つて導線l1,l2に拘束張力等
が付与されていないと両者が互いに接近するよう
になることは周知である。
On the other hand, if two conductive wires l 1 and l 2 are placed in parallel at an appropriate interval as shown in Fig. 4a, and current is passed in both from the upper + side to the lower - side, that is, in the same direction,
As shown in Fig. 4b, a magnetic field line pattern is formed according to the right-handed screw rule, and an attractive electromagnetic force F is generated between the two conducting wires l 1 and l 2 , so that a restraining tension, etc. is applied to the conducting wires l 1 and l 2 . It is well known that if they are not provided, the two will approach each other.

このような点を考慮して本発明は種々試作や実
験を重ねた結果、加工のための放電により被加工
体14とワイヤ電極7に放電電流が流れるとき
に、被加工体14に励磁電流が流れるか、流れて
いるようにしておき、前記放電電流と励磁電流と
によつてワイヤ電極7と被加工体14との間に加
工送り進行方向の電磁吸引力を生じるようにして
第3図のようなワイヤ電極7の加工済の加工溝後
方側への撓みを矯正し、ガイド13及び19間の
加工部のワイヤ電極7を真直にしようとするもの
である。尚ワイヤ電極7へパルス電源29を接続
し電圧パルスを供給して放電電流を流通させる通
電ピン25,26へは、切換スイツチ27を介し
てワイヤ電極7の上下、つまり被加工体14の両
側のいずれか一方、又は両方から同時に電圧パル
スを供給するようにパルス電源29の負極に接続
し、被加工体14は正極を接続する。被加工体1
4とワイヤ電極7との間の放電発生箇所或は放電
点は、一箇所に固定されずにワイヤ電極7の軸方
向及びワイヤ電極7の周りの特に加工の進行方向
前方の左右に約120度前後の或る角度の範囲内に
於いて、経時的にランダムは移り変わりつつ発生
するもので、従つてその際ワイヤ電極7の両通電
ピン又はローラ25,26を介する加工放電電流
の流し方、即ち上下何れの通電ピンからの給電と
するか切換えを必要とするもので、更にかかる点
を考慮し、被加工体に供給する励磁電流の側もス
イツチ27により、接点36,36間に於ける被
加工体14表裏方向の通電励磁電流の向きを、放
電発生点の、特に被加工体板厚方向の位置等によ
り切換えるように構成すると共に、更に加工用の
パルス電源の出力電圧パルスと同期して高速で切
換え得るように構成することが望ましい。このよ
うに本発明では、被加工体14に一対の接点36
を介して励磁用直流電源40より、加工の為の放
電電流とは別の励磁電流を、ワイヤ電極7に流れ
る加工のための放電電流とほぼ平行な同一方向の
電流として流すものであり、又接点36をへて被
加工体14に加わる励磁電流電圧極性をスイツチ
41で随時交互等に切換えることにより、被加工
体14中を流れる励磁電流によりワイヤ電極7に
作用する電磁力の、ワイヤ電極7軸方向又は被加
工体14板厚方向に於ける偏りをなくすように
し、この励磁電流は特に被加工体14の一部、即
ち、加工の進行方向の前方直前の部分を中心とし
て左右に所定の角度内の部分に於いてワイヤ電極
7の軸とほぼ平行な同一方向の電流として集中的
に流すことにより、ワイヤ電極7に流れる放電電
流との間に相引き合う力を生じさせ、ワイヤ電極
7を加工の進行方向の前方に引張つてその撓みを
小さくすることができる。このように、ワイヤ電
極7を貯蔵ドラム8より引き出して加工部のガイ
ド間を張架状態で走行した後巻取ドラム24に向
かつて走行せしめ、被加工体14との間に微小間
隙を保たせておき、電圧パルスをパルス電源29
よりスイツチを介して通電ピン25,26のいず
れか一方又は両方に印加すると共に、被加工体1
4に両側から弾力的に接する一対の接点36は、
図示していない数値制御装置によつて制御回動す
るサーボモータ39により、歯車38,35を介
して回動され、被加工体14と接する位置が被加
工体14の予定されている加工線上、即ち加工の
進行方向の前方直前の部分、又は進向方向の前方
を中心として左右に所定角度内の前記部分の近傍
部分にあるように制御される。
Taking these points into consideration, the present invention has been developed through various trial production and experiments, and as a result, when a discharge current flows through the workpiece 14 and the wire electrode 7 due to discharge for machining, an excitation current is applied to the workpiece 14. The electromagnetic attraction force in the machining feed direction is generated between the wire electrode 7 and the workpiece 14 by the discharge current and excitation current, as shown in FIG. This is intended to correct the bending of the wire electrode 7 toward the rear side of the processed groove and straighten the wire electrode 7 in the processed portion between the guides 13 and 19. A pulse power supply 29 is connected to the wire electrode 7 to supply voltage pulses to the current-carrying pins 25 and 26 through which discharge current flows. It is connected to the negative electrode of the pulse power source 29 so that voltage pulses are supplied from either one or both simultaneously, and the positive electrode of the workpiece 14 is connected. Workpiece 1
4 and the wire electrode 7 is not fixed in one place, but is approximately 120 degrees to the left and right in the axial direction of the wire electrode 7 and around the wire electrode 7, especially in the forward direction of machining. Randomness occurs over time within a certain angular range, and therefore, at that time, the machining discharge current is caused to flow through both current-carrying pins of the wire electrode 7 or rollers 25 and 26, i.e. It is necessary to switch whether the power is supplied from the upper or lower current-carrying pin, and in consideration of this point, the excitation current supplied to the workpiece is also switched between the contacts 36 and 36 by the switch 27. The direction of the excitation current flowing in the front and back directions of the workpiece 14 is configured to be switched depending on the position of the discharge generation point, particularly in the thickness direction of the workpiece, and further in synchronization with the output voltage pulse of the pulse power source for machining. It is desirable that the configuration be such that it can be switched at high speed. In this way, in the present invention, a pair of contacts 36 are provided on the workpiece 14.
An excitation current different from the discharge current for machining is passed from the excitation DC power supply 40 through the wire electrode 7 as a current in the same direction almost parallel to the discharge current for machining. By alternately switching the voltage polarity of the excitation current applied to the workpiece 14 through the contact point 36 using the switch 41, the electromagnetic force acting on the wire electrode 7 due to the excitation current flowing through the workpiece 14 can be changed to the wire electrode 7. The excitation current is designed to eliminate deviation in the axial direction or the thickness direction of the workpiece 14, and the excitation current is applied to a predetermined direction from side to side centering on a part of the workpiece 14, that is, the part immediately in front of the workpiece 14 in the direction of progress of machining. By intensively flowing a current in the same direction that is substantially parallel to the axis of the wire electrode 7 within the angle, a mutually attractive force is generated between the discharge current flowing through the wire electrode 7 and the wire electrode 7 The deflection can be reduced by pulling it forward in the direction of progress of processing. In this way, the wire electrode 7 is pulled out from the storage drum 8, runs in tension between the guides of the processing section, and then runs toward the winding drum 24 to maintain a minute gap with the workpiece 14. Then, apply the voltage pulse to the pulse power supply 29.
The current is applied to one or both of the energizing pins 25 and 26 via the switch, and the workpiece 1
A pair of contacts 36 that elastically contact 4 from both sides are
It is rotated via gears 38 and 35 by a servo motor 39 controlled and rotated by a numerical control device (not shown), and the position in contact with the workpiece 14 is on the planned machining line of the workpiece 14. That is, it is controlled so that it is located at a portion immediately before the front in the direction of progress of processing, or at a portion near the said portion within a predetermined angle to the left and right with respect to the front in the direction of processing.

そしてこの導電性の材料で作られた一対の歯車
35には励磁用直流電源40の電圧がスイツチ4
1及びブラツシユ44を介してその正負の極性が
必要に応じて互いに切換えられながら印加され、
この印加された電圧は歯車35に取り付けた接点
36を介して被加工体14に加えられ、前記部分
に於いてワイヤ電極7と平行な励磁電流が流れる
ことになる。そして被加工体14の前記所望の位
置に直流電源40より励磁電流を集中的に流すこ
とにより、この被加工体14中を流れる励磁電流
と、放電により被加工体14より間隙をへてワイ
ヤ電極7に流れるパルス放電電流との間に第4図
で説明したような電磁力を生じさせることがで
き、この電磁力は流れる電流の向きを一致させる
ことにより互いに引き合う力とすることができ、
しかも被加工体14はワイヤ電極7に比して質量
が大きく、台16に固定してあるので、結局ワイ
ヤ電極7が被加工体14の加工溝中に於いて加工
の進行方向に引きよせられることになり、前述の
撓みを打ち消して真直に矯正されることとなる。
即ち、加工の進行方向に引きよせられれば、当該
部分の加工間隙が狭まつて加工が行われるから、
ワイヤ電極7に弓状の撓みが生ずる要因及び程度
と、前記の電磁力による矯正作用の程度とほぼ平
衡させることにより目的を達することができる。
The voltage of the excitation DC power source 40 is applied to the pair of gears 35 made of this conductive material by the switch 4.
1 and the brush 44, the positive and negative polarities of which are switched between each other as necessary, are applied,
This applied voltage is applied to the workpiece 14 through a contact 36 attached to the gear 35, and an excitation current parallel to the wire electrode 7 flows in said portion. Then, by intensively passing an excitation current from the DC power source 40 to the desired position of the workpiece 14, the excitation current flowing through the workpiece 14 and the electric discharge cause the wire electrode to pass through the gap from the workpiece 14. An electromagnetic force as explained in FIG. 4 can be generated between the pulsed discharge current flowing through the electrode 7, and this electromagnetic force can be made into a force that attracts each other by matching the directions of the flowing currents.
Moreover, since the workpiece 14 has a larger mass than the wire electrode 7 and is fixed to the table 16, the wire electrode 7 is eventually drawn into the machining groove of the workpiece 14 in the direction of machining progress. As a result, the above-mentioned deflection is canceled out and the object is straightened.
In other words, if it is pulled in the direction of progress of machining, the machining gap in that part narrows and machining is performed.
The purpose can be achieved by approximately balancing the cause and degree of arcuate deflection of the wire electrode 7 with the degree of the corrective action by the electromagnetic force.

加工用パルス電源29の一方の端子の負極は、
被加工体14の両側の通電ピン又はローラ25,
26を介して常時ワイヤ電極7へ接続されている
のが普通であつて、図示実施例の場合切換スイツ
チ27を介して何れか一方の通電ピン又はローラ
25又は26に切換え接続されるように構成され
ているのは、例えば励磁用直流電源40が切換ス
イツチ41を介することなく、接点36,36に
接続されていて被加工体14に常に上面から下面
に向かう励磁電流が流れていたとした場合、加工
間隙に放電点よりもワイヤ電極7軸方向下方のワ
イヤ電極部分が前述の如く電磁吸引力が発生する
のに対し、前記放電点よりも上方のワイヤ電極部
分に対しては電磁反発力が発生作用している可能
性があり、そしてこの状態はスイツチ27によつ
て通電ピン又はローラ25又は26に切換えられ
るか、前記で設けられていないものと仮定した切
換スイツチ41を設け、該スイツチ41によつて
励磁電流の向きが被加工体14の下面から上面へ
の向きへ切換えられない限り一定であつて、前記
放電点の位置がワイヤ電極軸方向、即ち被加工体
板厚方向に移動するに留まるからで切換スイツチ
41によつて所定の周期、例えば約2KHzで励磁
電流の向きが切換えられるものであれば、通電ピ
ン又はローラ25及び26間の切換えは必ずしも
必要でなく被加工体14の両側からワイヤ電極7
に通電する構成であつて良いが、よりランダムな
吸引、反発の状態としてワイヤ電極7の平均的な
直線性をより確実に得るようにするには、スイツ
チ27とスイツチ41とにより、種々な異なる状
態の切換え状態をランダムに切換え進行させるよ
うに構成しておくことが好ましい。
The negative electrode of one terminal of the processing pulse power supply 29 is
energizing pins or rollers 25 on both sides of the workpiece 14;
Usually, it is always connected to the wire electrode 7 via the wire 26, and in the illustrated embodiment, it is configured to be switched and connected to either one of the energizing pins or rollers 25 or 26 via the changeover switch 27. For example, if the excitation DC power source 40 is connected to the contacts 36, 36 without going through the changeover switch 41, and an excitation current always flows through the workpiece 14 from the top surface to the bottom surface, In the machining gap, an electromagnetic attractive force is generated in the wire electrode portion below the discharge point in the axial direction of the wire electrode 7, as described above, whereas an electromagnetic repulsion force is generated in the wire electrode portion above the discharge point. This state may be switched to the energizing pin or roller 25 or 26 by a switch 27, or by providing a changeover switch 41, which was assumed not to be provided above, and turning the switch 41 on. Therefore, the direction of the excitation current remains constant unless the direction is switched from the lower surface to the upper surface of the workpiece 14, and as the position of the discharge point moves in the wire electrode axis direction, that is, in the workpiece thickness direction. If the direction of the excitation current can be changed by the changeover switch 41 at a predetermined frequency, for example about 2KHz, switching between the current-carrying pins or rollers 25 and 26 is not necessarily necessary, and both sides of the workpiece 14 From wire electrode 7
However, in order to more reliably obtain the average linearity of the wire electrode 7 as a state of more random attraction and repulsion, the switch 27 and the switch 41 may be configured to conduct various different It is preferable to configure the switching state so that the state switching progresses randomly.

上記の場合、図示実施例に於いては切換スイツ
チ27及び41が機械的スイツチの如く示されて
いるが、前述の如く数KHz又はそれ以上の高速で
切換えたい場合には、例えばトランジスタ等の電
子スイツチ素子を用いる必要があり、又かかる高
速の場合は勿論のこと、秒オーダ、又はミリ秒オ
ーダの低速で切換える場合の何れにしろその切換
えは、加工用パルス電源29からの供給電圧パル
スの休止時間又は休止期間中に同期させて行うこ
とが望ましく、電源29は例えば、特公昭44−
13196号公報記載の如き、加工用の高周波の電圧
パルス列が比較的低周波で断続する類のものが好
ましく、又励磁電源40は直流ではなく、加工用
パルス電源29の電圧パルスの一部以上の電圧パ
ルスとほぼ同期するパルス電源として、励磁電流
の損失を少なくすると共に、該電流による被加工
体14の加熱を少なくすることができ、更に電源
40が正負等極性の異なるパルス電流を供給する
電源であれば、出力部の切換スイツチ41を省略
することができる。又励磁電流を被加工体14に
供給する一対の接点36,36の位置は数値制御
加工指令等によつてモータ36が制御され、加工
の進行方向前のほぼ直前の部分の位置にあるよう
に制御する場合につき説明を加えたが、加工間隙
は加工の進行方向に約180度以内の範囲で、主た
る領域は、例えば70度〜120度の範囲にわたつて
広がつているものであるから接点36の位置も前
述の角度範囲の領域を、例えば両端側では中央
(加工の進行方向直前の部分)領域よりも早い速
度で動くように速度を制御した状態で、例えば数
Hz前後又はそれ以下の周波数の往復移動をさせつ
つ加工を行うようにする等の制御も有効である。
In the above case, in the illustrated embodiment, the changeover switches 27 and 41 are shown as mechanical switches, but if it is desired to switch at a high speed of several KHz or higher, as described above, electronic switches such as transistors or the like may be used. It is necessary to use a switch element, and in any case, not only at such high speeds but also at low speeds on the order of seconds or milliseconds, the switching is performed by stopping the supply voltage pulse from the processing pulse power source 29. It is desirable that the power supply 29 is synchronized with the time or during the rest period, and the power supply 29 is
It is preferable that the high-frequency voltage pulse train for machining is intermittent at a relatively low frequency, as described in Publication No. 13196, and the excitation power source 40 is not a direct current, but a voltage pulse train that is a part or more of the voltage pulses of the pulse power source 29 for machining. As a pulse power source that is almost synchronized with the voltage pulse, it is possible to reduce the loss of excitation current and to reduce the heating of the workpiece 14 due to the current, and the power source 40 supplies pulse currents with different polarities of equal positive and negative polarity. If so, the output section changeover switch 41 can be omitted. Further, the positions of the pair of contacts 36, 36 for supplying the excitation current to the workpiece 14 are set so that the motor 36 is controlled by numerically controlled machining commands, etc., so that they are located almost immediately before the front in the machining direction. As explained above, the machining gap is within a range of about 180 degrees in the direction of machining progress, and the main area is, for example, spread over a range of 70 degrees to 120 degrees, so the contact point The position 36 is also controlled to move at a faster speed on both ends than in the center (the part immediately in front of the machining direction) in the above-mentioned angular range.
Control such as performing processing while reciprocating at a frequency of around Hz or lower is also effective.

以上、既に本発明の大略を説明したが、更に本
発明の実施態様の2〜3の具体的な装置構成等に
ついて述べれば次の如くである。
The outline of the present invention has already been explained above, and the specific device configurations of the second and third embodiments of the present invention will be described as follows.

先ず、励磁電源40が、実施例の説明の如く電
流値の調整設定が可能な直流電源の場合、ワイヤ
電極に対する加工用パルス電源からの電圧パルス
の給電を一対の給電手段の内の何れか一方から
(好ましくはワイヤ電極の送り込み側から)のみ
行なうこととすると、前記直流の励磁電源40か
ら一対の接点を介して被加工体に通電される励磁
電流は、固定の一方の方向から通電で良い言うこ
とになるが、ワイヤ電極に対する電圧パルスの給
電を一方側からのみ行なうのは加工電流を増大し
て加工速度を増大させる上で極めて不利であつ
て、ワイヤ電極の断線も多く、又集中放電の発生
頻度が増大して放電状態が不安定化し、結局加工
速度が低下することとなるから、ワイヤ電極に対
する電圧パルスの給電は、被加工体の両側に設け
た給電手段から行なうか、又は、例えば所望複数
放電パルス又は所定期間毎に交互に切換えるよう
にし、又はこの両者を組合わせる等して放電状態
を安定させて加工するのが良い。
First, if the excitation power supply 40 is a DC power supply whose current value can be adjusted and set as described in the embodiment, the voltage pulses from the processing pulse power supply to the wire electrode are supplied to one of the pair of power supply means. (preferably from the feeding side of the wire electrode), the excitation current applied to the workpiece from the DC excitation power source 40 through the pair of contacts may be applied from one fixed direction. Needless to say, feeding voltage pulses to the wire electrode only from one side is extremely disadvantageous in increasing the machining current and machining speed, and also causes many wire electrode breakages, as well as concentrated discharge. The frequency of occurrence of this will increase, the discharge state will become unstable, and the machining speed will eventually decrease. Therefore, the voltage pulses are supplied to the wire electrode from power supply means provided on both sides of the workpiece, or For example, it is preferable to perform machining by stabilizing the discharge state by alternating a desired plurality of discharge pulses, by switching alternately at every predetermined period, or by combining the two.

そして、この一対の給電手段に対する同時給
電、及び何れか一方の給電手段を選択するように
切換える切換手段27としては、高速の切換手段
が必要となるが、例えばパルス電源29の通常負
極端子と各給電手段25,26間に夫々FET等
のスイツチング素子を放電電流容量に応じて挿入
し、該スイツチング素子のゲート・ソース間に素
子ドレイン・ソース間のオン・オフ制御信号を供
給するドライブ用制御回路を設け、該制御回路に
より所望のドライブ信号、例えば、一方側のスイ
ツチング素子にドライブ信号を供給して加工を行
ない、前記被加工体中を流れる励磁電流と同一方
向の電流をワイヤ電極に流通させる放電パルスを
50個カウントすると、他方のスイツチング素子に
オンドライブ信号を切換え供給するように構成
し、この状態で反対方向の放電パルスを20個カウ
ントすると、再び上記同一方向の放電パルスを生
じさせるように切換えて以後これを繰返すとか、
或いは上記一対のスイツチング素子切換えの間又
は所定回数切換え後に両スイツチング素子に同時
にドライブ信号を与えて両方の給電手段から、所
望の数の放電パルスの発生する間、給電をするモ
ードを設けるようにしても良い。
A high-speed switching means is required for simultaneous power supply to the pair of power supply means and for switching to select one of the power supply means. A drive control circuit that inserts switching elements such as FETs between the power supply means 25 and 26 according to the discharge current capacity, and supplies an on/off control signal between the element drain and source between the gate and source of the switching element. The control circuit supplies a desired drive signal, for example, a drive signal to the switching element on one side to perform processing, and causes a current in the same direction as the excitation current flowing through the workpiece to flow through the wire electrode. discharge pulse
When counting 50, the on-drive signal is switched and supplied to the other switching element, and when 20 discharge pulses in the opposite direction are counted in this state, the switch is switched to generate the discharge pulse in the same direction again. Do you want to repeat this from now on?
Alternatively, a mode may be provided in which a drive signal is simultaneously applied to both switching elements during switching of the pair of switching elements or after switching a predetermined number of times, and power is supplied from both power supply means while a desired number of discharge pulses are generated. Also good.

又、前記励磁電源40から前記一対の通電手段
の接点に対する通電極性を高速で切換えるには、
その構成は、例えば電源40が前述正負等極性の
異なるパルス電流を供給する電源の場合と同様な
構成のもので実施することが可能であつて、具体
的には直流電源とスイツチング素子と安全抵抗と
好ましくは整流器とから成る直列回路2個を前記
一対の通電手段間に互いに逆向きに接続して設
け、この各直列回路の各スイツチング素子に対し
前記制御回路又は該制御回路と類似の制御回路か
ら所望のドライブ信号、例えば加工電圧パルスの
休止期間又は切換のために設定した休止期間中に
オンドライブ中の一方のスイツチング素子をオフ
した後他方のスイツチング素子に該素子を設定さ
れた所定の期間又は所望数の放電パルスをカウン
トする期間オン・ドライブする信号を出力し、励
磁電流の流通方向を切換え流通させるようにすれ
ば良い。
Further, in order to switch the conduction polarity from the excitation power source 40 to the contacts of the pair of current supply means at high speed,
The configuration can be implemented by, for example, the power source 40 having a configuration similar to that of the power source that supplies pulse currents with different polarities of positive and negative, and specifically includes a DC power source, a switching element, and a safety resistor. and preferably a rectifier, connected in opposite directions between the pair of current-carrying means, and for each switching element of each series circuit, the control circuit or a control circuit similar to the control circuit. From the desired drive signal, for example, during the rest period of the machining voltage pulse or the rest period set for switching, after turning off one switching element that is in drive, the other switching element is turned off for a predetermined period set for the switching element. Alternatively, it is possible to output a signal that is turned on and driven for a period of counting a desired number of discharge pulses, and to switch the direction of flow of the excitation current.

又、このように、励磁電源43から一対の通電
手段の接点に対する通電極性の比較的高速の切換
えが可能であると、斯種ワイヤカツト放電に於て
は、ワイヤ電極と被加工体間の放電が、上下両方
又は何れか一方の給電手段からどれだけ離れたワ
イヤ電極上に於て行なわれたか、即ち、被加工体
の板厚方向のどの位置での放電であつたのか、所
謂放電位置の検出判別が周知のように可能であ
り、又他方斯種ワイヤカツト放電加工に於ては、
ワイヤ電極と被加工体間で被加工体板厚方向のあ
る位置で放電が発生すると、該放電が両者の近接
部位であると言う場合もあるが、前記放電が発生
したことにより当該放電位置の回り近傍に被加工
体加工屑や電極消耗屑が存在する状態となること
から、続いて間〓に供給される電圧パルスの数個
又はそれ以上が前記放電位置の近くで次々と放電
するのが普通であり、そしてこの通常複数個の放
電によリ加工したことや、放電圧力及び介在発生
ガス圧により当該部分の間〓が離隔等して、放電
発生位置が被加工体板厚方向の他の部分へと移動
して行くと言う加工進行の態様を有するものであ
るから、例えば前記の放電発生位置を検出して、
励磁電流の流通方向を必要ならば切換え、そして
続く所望の放電パルスの発生期間中その切換状態
を保つた後、次の放電パルスにつき放電発生位置
を検出して、必要ならば切換える制御の態様も可
能となるものである。
In addition, if the excitation power source 43 can switch the conductivity of the contacts of the pair of current-carrying means at a relatively high speed, in this type of wire-cut discharge, the discharge between the wire electrode and the workpiece can be changed at a relatively high speed. How far away the wire electrode was from both the upper and lower power supply means or from either one of them, that is, at what position in the thickness direction of the workpiece was the discharge performed, the so-called discharge position. Detection and discrimination are possible as is well known, and on the other hand, in this type of wire cut electrical discharge machining,
When a discharge occurs between the wire electrode and the workpiece at a certain position in the thickness direction of the workpiece, the discharge may be said to be in the vicinity of the two, but due to the occurrence of the discharge, the discharge position Since machining debris from the workpiece and electrode consumable debris are present in the vicinity of the circumference, several or more voltage pulses that are subsequently supplied in the interval may be discharged one after another near the discharge position. This is normal, and the fact that the remachining process is performed using multiple electrical discharges, and the distance between the parts due to the discharge pressure and intervening gas pressure, causes the discharge generation position to be located in a direction other than the thickness direction of the workpiece. Since the machining progresses in such a manner that the machining progresses from one point to another, for example, by detecting the position where the discharge occurs,
There is also a control mode in which the direction of excitation current flow is switched if necessary, the switched state is maintained during the generation period of the subsequent desired discharge pulse, and then the discharge generation position is detected for the next discharge pulse and the direction is switched if necessary. It is possible.

実験によれば、被加工体14の厚さが100mmの
ものを加工するに際して、放電パルス幅(ゲート
信号)を2μs、電圧パルス間休止幅を8μsに設定
し、ワイヤ電極7に平均加工電流22アンペアを
流したときに、ワイヤ電極7の軸心方向と直角の
方向に約16g程度の圧力が発生し、それによつて
被加工体14のほぼ中央部分におけるワイヤ電極
7の撓み量は0.2mmとなつた。これに対して、被
加工体14に接点36を介して平均電流20アンペ
アを、前記加工電流と同位相で流しながら120mm
/minの加工速度で加工したときのワイヤ電極
7の撓み量は、僅か0.03mm程度となり、その撓み
量を減少することができた。しかも被加工体14
にワイヤ電極7の撓みを減少させるために電流を
流すので、それによつてワイヤ電極7が発熱する
こともなく、長時間にわたり、ワイヤ電極7の撓
みを修正しながらワイヤカツト放電加工を続ける
ことができる効果を有するものである。
According to experiments, when machining a workpiece 14 with a thickness of 100 mm, the discharge pulse width (gate signal) was set to 2 μs, the pause width between voltage pulses was set to 8 μs, and an average machining current of 22 μs was applied to the wire electrode 7. When amperage is applied, a pressure of approximately 16 g is generated in a direction perpendicular to the axial direction of the wire electrode 7, and the amount of deflection of the wire electrode 7 at approximately the center of the workpiece 14 is 0.2 mm. Summer. On the other hand, while an average current of 20 amperes is applied to the workpiece 14 through the contact 36 in the same phase as the machining current,
The amount of deflection of the wire electrode 7 when processed at a processing speed of 2 /min was only about 0.03 mm, and the amount of deflection could be reduced. Moreover, the workpiece 14
Since a current is applied to reduce the deflection of the wire electrode 7, the wire electrode 7 does not generate heat, and wire cut electrical discharge machining can be continued for a long time while correcting the deflection of the wire electrode 7. It is effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例装置の概略構成図、第
2図は本発明の要部の拡大図第3図、第4図a,
bは説明のための部分図である。 7はワイヤ電極、14は被加工体、18は加工
液、25,26は通電ピン、27はスイツチ、2
9はパルス電源、36は接点、40は励磁電流、
41はスイツチ、44はブラツシユ。
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, and FIG. 2 is an enlarged view of the main parts of the present invention.
b is a partial diagram for explanation. 7 is a wire electrode, 14 is a workpiece, 18 is a machining liquid, 25 and 26 are energizing pins, 27 is a switch, 2
9 is a pulse power supply, 36 is a contact, 40 is an exciting current,
41 is a switch, 44 is a brush.

Claims (1)

【特許請求の範囲】 1 所定の間隔をおいて配置した一対の位置決め
ガイド間にワイヤ電極を軸方向に更新送り移動せ
しめつつ、前記電極軸方向と直角の方向から被加
工体を微小間〓を介して相対向せしめ、該間〓に
加工液を介在させた状態で被加工体とワイヤ電極
間にパルス電源から供給される電圧パルスを印加
してパルス放電を発生させ、前記ワイヤ電極と被
加工体との間に前記直角方向の平面上に於ける相
対的な加工送りを与えるワイヤカツト放電加工機
に於て、前記パルス電源とワイヤ電極間の給電接
続として被加工体の両側に於て夫々ワイヤ電極と
接続給電する一対の給電手段と、該一対の給電手
段から同時に又は何れか一方から給電し得るよう
に接続可能な接続手段と、前記被加工体の前記電
極軸方向の表裏両面に相対向して加圧当接可能に
且つ電極軸心を中心としてその周りに回動可能に
支持された接点を有する一対の通電手段と、該各
通電手段を加工の進行方向の前方を中心として左
右に所定の角度ほぼ同期させて同時に旋回移動さ
せる駆動装置と、前記一対の通電手段に股がつて
接続され前記一対の接点間の被加工体部分に所定
の方向の励磁電流を流通させる励磁電源とを備
え、前記被加工体中を流れる励磁電流は、前記パ
ルス放電による放電電流がワイヤ電極中を流通す
る際に被加工体中を流通し得ると共に、前記被加
工体中を流通する励磁電流の方向とワイヤ電極中
を流通する放電電流の方向とを一致させるように
前記パルス電源から一対の給電手段に対する給電
接続を何れか一方の給電手段を選択するように切
換える前記接続手段の切換手段及び前記励磁電源
から前記一対の通電手段の接点に対する通電極性
を切換える極性切換手段の両方又は何れか一方を
設けて成ることを特徴とするワイヤカツト放電加
工装置。 2 前記励磁電源が直流電源であつて、前記一対
の通電手段に対し切換制御可能な極性切換手段を
介して接続される成ることを特徴とする特許請求
の範囲第1項記歳のワイヤカツト放電加工装置。 3 前記加工用パルス電源の負極出力端子が、給
電切換手段を介して前記一対の給電手段の一方に
切換接続されるように構成して成ることを特徴と
する特許請求の範囲第1項記載のワイヤカツト放
電加工装置。 4 前記励磁電源による励磁電流が被加工体に供
給、流通せしめられた状態で、前記ワイヤ電極と
被加工体間に電圧パルスを印加して従来慣用のワ
イヤカツト放電加工を行なうものであることを特
徴とする特許請求の範囲第1項記載のワイヤカツ
ト放電加工装置。 5 前記励磁電源による被加工体中の励磁電流
が、前記ワイヤ電極と被加工体間に繰返し印加さ
れる電圧パルスと同期して供給流通せしめられる
ものであることを特徴とする特許請求の範囲第1
項記載のワイヤカツト放電加工装置。 6 前記励磁電源が直流電源であつて前記一対の
通電手段に対し切換制御可能な極性切換手段を介
して接続されると共に、前記被加工体中を流通す
る励磁電流の方向がワイヤカツト放電加工中前記
極性切換手段の切換制御により所定の周期で切換
えられるように構成して成ることを特徴とする特
許請求の範囲第1項記載のワイヤカツト放電加工
装置。 7 前記励磁電源が正負の電極パルスを交互に出
力するパルス電源であることを特徴とする特許請
求の範囲第1項記載のワイヤカツト放電加工装
置。
[Claims] 1. While a wire electrode is renewedly moved in the axial direction between a pair of positioning guides arranged at a predetermined interval, a workpiece is moved a minute distance from a direction perpendicular to the axial direction of the electrode. A voltage pulse supplied from a pulse power source is applied between the workpiece and the wire electrode with a machining fluid interposed therebetween to generate a pulse discharge, and the wire electrode and the workpiece In a wire-cut electrical discharge machine that provides a relative machining feed on the perpendicular plane between the workpiece and the workpiece, wires are connected to each side of the workpiece as a power supply connection between the pulse power source and the wire electrode. a pair of power supply means connected to the electrodes to supply power; a connection means connectable so that power can be supplied from the pair of power supply means simultaneously or from either one; A pair of energizing means each having a contact point that can be brought into contact with the electrode under pressure and rotatable around the electrode axis, and each of the energizing means can be moved to the left and right from the front in the direction of machining. A drive device that rotates and moves at the same time by a predetermined angle in substantially synchronization; and an excitation power source that is connected across the pair of current supply means and that supplies an excitation current in a predetermined direction to a portion of the workpiece between the pair of contacts. The excitation current flowing through the workpiece can flow through the workpiece when the discharge current due to the pulse discharge flows through the wire electrode, and the direction of the excitation current flowing through the workpiece switching means for the connection means for switching the power supply connection from the pulse power source to the pair of power supply means to select one of the power supply means so as to match the direction of the discharge current flowing through the wire electrode; and the excitation. A wire-cut electrical discharge machining apparatus characterized in that it is provided with both or either one of polarity switching means for switching the polarity of conduction from a power source to the contacts of the pair of current-carrying means. 2. The wire cut electric discharge machining according to claim 1, wherein the excitation power source is a DC power source, and is connected to the pair of energizing means via a polarity switching means that can be switched and controlled. Device. 3. The method according to claim 1, wherein the negative output terminal of the processing pulse power source is configured to be switched and connected to one of the pair of power supply means via a power supply switching means. Wire cut electrical discharge machining equipment. 4. A conventional wire cut electric discharge machining is performed by applying a voltage pulse between the wire electrode and the workpiece while the excitation current from the excitation power supply is supplied to and flowing through the workpiece. A wire cut electric discharge machining apparatus according to claim 1. 5. The excitation current in the workpiece by the excitation power source is supplied and distributed in synchronization with voltage pulses repeatedly applied between the wire electrode and the workpiece. 1
The wire cut electric discharge machining apparatus described in 2. 6. The excitation power source is a DC power source and is connected to the pair of energizing means via a polarity switching means that can be switched and controlled, and the direction of the excitation current flowing through the workpiece is set during wire cut electrical discharge machining. 2. The wire-cut electric discharge machining apparatus according to claim 1, characterized in that the polarity can be switched at a predetermined cycle by switching control of a polarity switching means. 7. The wire-cut electric discharge machining apparatus according to claim 1, wherein the excitation power source is a pulse power source that alternately outputs positive and negative electrode pulses.
JP17424383A 1983-09-22 1983-09-22 Wire-cut electric-discharge device Granted JPS6067030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17424383A JPS6067030A (en) 1983-09-22 1983-09-22 Wire-cut electric-discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17424383A JPS6067030A (en) 1983-09-22 1983-09-22 Wire-cut electric-discharge device

Publications (2)

Publication Number Publication Date
JPS6067030A JPS6067030A (en) 1985-04-17
JPH0457449B2 true JPH0457449B2 (en) 1992-09-11

Family

ID=15975216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17424383A Granted JPS6067030A (en) 1983-09-22 1983-09-22 Wire-cut electric-discharge device

Country Status (1)

Country Link
JP (1) JPS6067030A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2722867B2 (en) * 1991-07-01 1998-03-09 三菱電機株式会社 Wire electric discharge machine
CN102513625B (en) * 2011-12-23 2013-12-04 清华大学 Electromagnetism driving high-frequency excitation auxiliary wire feeding mechanism for micro electric discharge machining

Also Published As

Publication number Publication date
JPS6067030A (en) 1985-04-17

Similar Documents

Publication Publication Date Title
US4418263A (en) Electroerosive wire-cutting method and apparatus with a shaped wire electrode
US4471199A (en) EDM Of a roll using segmented electrode short-circuited in the rough machine step
US4427870A (en) Method of and apparatus for electroerosively machining a conductive workpiece with a continuous wire electrode
US4725706A (en) Tw-electroerosion utilizing cyclically reduced cutting feed rate
JPH0457449B2 (en)
US4479045A (en) Traveling-wire electroerosive cutting method and apparatus
JPH03478A (en) Method and device for plasma cutting
JPH06143043A (en) Minute hole electric discharge machining method and device
JPH0440126B2 (en)
JPS6034219A (en) Electric discharge machine
JP2000084743A (en) Wire cut electrical discharge machining method and device
JPH0453648B2 (en)
JP4132609B2 (en) Wire electrode guide device for fine processing
JPS5851019A (en) Wire cut electric discharge machining device
JPH0455808B2 (en)
JPS63306829A (en) Wire cut electric discharge machining device
JPH0545370B2 (en)
JP2812163B2 (en) Wire electric discharge machine
JPS63120030A (en) Wire-cut electric discharge machining
JPH0545368B2 (en)
KR20200094536A (en) Wire electric discharge device
JPH0248121A (en) Conducting device for wire electric spark machine
JPS60177824A (en) Wire electrode decision apparatus
JPS62124822A (en) Wire cut electric spark machine
JPS61236431A (en) Wire cut electric discharge machine