JPH0457399A - Composite-type heat sink - Google Patents

Composite-type heat sink

Info

Publication number
JPH0457399A
JPH0457399A JP16670890A JP16670890A JPH0457399A JP H0457399 A JPH0457399 A JP H0457399A JP 16670890 A JP16670890 A JP 16670890A JP 16670890 A JP16670890 A JP 16670890A JP H0457399 A JPH0457399 A JP H0457399A
Authority
JP
Japan
Prior art keywords
heat
heat sink
fins
component
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16670890A
Other languages
Japanese (ja)
Inventor
Hisateru Akachi
赤地 久輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actronics KK
Original Assignee
Actronics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actronics KK filed Critical Actronics KK
Priority to JP16670890A priority Critical patent/JPH0457399A/en
Publication of JPH0457399A publication Critical patent/JPH0457399A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PURPOSE:To make it possible to manufacture a small-sized, high-efficiency composite-heat sink simply and at low cost by a method wherein a heat sink and a loop type fine tube heat pipe are formed integrally with each other. CONSTITUTION:A heat sink is used as a first constituent element, a zigzag loop type fine tube heat pipe is used as a second constituent element, prescribed parts of these elements are pressed into strip grooves 3, which are the first constituent element, are bonded to a fin 2 with said strip grooves formed therein, are formed integrally with the fin 2 and the heat sink and the heat pipe are formed into a composite heat sink. The heat pipe is a thin-walled fine tube and as soft copper or soft Al is generally used as the material for the heat pipe, it is easy to shape the heat pipe into a form suitable to press the heat pipe into the strip grooves 3 of the heat sink and the heat pipe can be deformed by press-fitting so as to closely adhere on the inner walls of the strip grooves 3. Accordingly, a group 5-1 of thin tube container pressed into the grooves 3 of the heat sink or each single tube is easily adhered closely to the fin 2 of the heat sink by press-fitting. Thereby, the heat dissipation of a heat dissipation characteristic several times or scones of times as good as that as the heat sink single body is obtained.

Description

【発明の詳細な説明】 イ11発明目的 〔産業上の利用分野] 本発明は放熱器の構造に関するもので特にヒートシンク
と蛇行ループ型細管ヒートパイプとの組合わせによる複
合型ヒートシンクの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (11) Purpose of the Invention [Field of Industrial Application] The present invention relates to the structure of a heat sink, and particularly to the structure of a composite heat sink formed by combining a heat sink and a meandering loop-type thin tube heat pipe.

〔従来の技術〕[Conventional technology]

従来のヒートシンクは第5図に例示の如く熱伝導性の良
好な金属板の所定の部分を受熱平面1とし、他の部分に
複数の平板状放熱フィン2と放熱フィン2により形成さ
れる条溝3を配設してなる。
In the conventional heat sink, as shown in FIG. 5, a predetermined portion of a metal plate with good thermal conductivity is used as a heat receiving plane 1, and other portions are provided with a plurality of flat radiation fins 2 and grooves formed by the radiation fins 2. 3 is installed.

大容量の放熱を必要とする場合はフィンの高さを高くし
、フィンの枚数を増加せしめて使用される。
When a large amount of heat radiation is required, the height of the fins is increased and the number of fins is increased.

又ループ型細管ヒートパイプは第6図及び第7図例示の
如く長尺のループ型細管コンテナ5は各種形状の螺旋状
又は直管部群を含む多数ターンの蛇行形状等に整形され
て、その一部に受熱板4、放熱板7等を装着して使用さ
れる。
In the loop type thin tube heat pipe, as shown in FIGS. 6 and 7, the long loop type thin tube container 5 is shaped into a meandering shape with many turns including a spiral shape of various shapes or a group of straight tube parts, and the It is used by attaching a heat receiving plate 4, a heat sink plate 7, etc. to a part.

〔発明が解決しようとする問題点] 第5図例示の如きヒートシンクは構造が単純で使用し易
い利点はあるものの、金属の熱伝導による放熱のみであ
るから放熱性能には限界があり、低い熱抵抗を得ること
が困難であった。又大容量の放熱には多数の放熱フィン
と多数の条溝を必要とし、大型大重量とならざるを得な
かった。これらがヒートシンクの有する問題点であった
[Problems to be Solved by the Invention] Although the heat sink as shown in FIG. It was difficult to meet resistance. In addition, large-capacity heat radiation requires a large number of heat-radiating fins and a large number of grooves, making the device large and heavy. These were the problems that the heat sink had.

ループ型細管ヒートパイプは細管コンテナ5内の作動液
が逆止弁6の作用により、熱量に対応した循環速度でル
ープ内を高速度で循環して熱量を運搬するのであるから
感度良好で且つ軽量であり、大熱量運搬用に構成しても
重量はヒートシンクとは比較にならない程に軽量であり
低熱抵抗で熱輸送することが可能である。然し放熱器と
して構成する場合、第6図(イ)における受熱板4、第
6図(ロ)における受熱板4−1.4−2.4−3の如
き通常の放熱器の受熱板の場合にも、第7図(イ)(ロ
)の如く高温連結細管5−4、低温連結細管5−5を介
して受熱部細管コンテナ5−1と放熱部細管コンテナ5
−3が分離されている放熱器の受熱板4、放熱板7の場
合にも、細管コンテナを整列せしめ、はんだ接着、接着
材接着等により、受熱板4、放熱板7と密に接着せしめ
る必要がある。この作業は比較的困難な時間を要する作
業である。又第6図(イ)から分かる様にループ上の一
部分に平板状の受熱板4を配設したのみでは充分な面積
の受熱平面を形成することは困難であり、第5図の如く
ループ型細管コンテナ5−1゜5−3を長円形螺旋形状
に形成しその片端に受熱板4−1.4−2.4−3を配
設して受熱平面を拡大する手段が一般に用いられる。然
しこの作業は第6図(イ)に比較して数倍の困難さと時
間を要することは図からも明らかである。この様にルー
プ型細管ヒートパイプには受放熱部の形成に困難な作業
を伴なうという問題があった。
The loop type capillary heat pipe has good sensitivity and is lightweight because the working fluid in the capillary container 5 circulates at high speed within the loop at a circulation speed corresponding to the heat amount due to the action of the check valve 6, thereby transporting the heat amount. Even if configured to transport a large amount of heat, the weight is incomparably lighter than a heat sink, and it is possible to transport heat with low thermal resistance. However, when configured as a heat radiator, in the case of a heat receiving plate of a normal heat radiator such as the heat receiving plate 4 in FIG. 6(a) and the heat receiving plate 4-1.4-2.4-3 in FIG. 6(b). Also, as shown in FIGS. 7(a) and 7(b), the heat receiving section capillary container 5-1 and the heat dissipating section capillary container 5 are connected via the high temperature connecting capillary tube 5-4 and the low temperature connecting capillary tube 5-5.
- Even in the case of the heat receiving plate 4 and the heat sink 7 of a heat sink in which the heat sinks 3 are separated, it is necessary to align the thin tube containers and closely adhere them to the heat receiving plate 4 and the heat sink 7 by soldering, adhesive bonding, etc. There is. This work is relatively difficult and time consuming. Furthermore, as can be seen from FIG. 6(a), it is difficult to form a heat receiving plane with a sufficient area by simply disposing a flat heat receiving plate 4 on a portion of the loop, and the loop type as shown in FIG. Generally, means is used to enlarge the heat receiving plane by forming the thin tube container 5-1.degree. However, it is clear from the figure that this work is several times more difficult and time consuming than that shown in Figure 6 (a). As described above, the loop type thin tube heat pipe has a problem in that forming the heat receiving and dissipating portion requires difficult work.

口0発明の構成 〔問題点を解決するための手段〕 受熱部及び放熱部を有する放熱手段としてヒートシンク
及びループ型細管ヒートパイプは夫々には前述の如き大
きな問題点を有するが、それ等を組み合わせ、複合ヒー
トシンクとすることによりそれ等の問題点は完全に解決
され、両者の長所を活用して秀れた新規の放熱手段とす
ることが出来る。即ち第5図例示の如きヒートシンクを
複合ヒートシンクの第1構成要素とし、蛇行ループ型細
管ヒートパイプを第2の構成要素とし、第2の構成要素
の所定の部分が第1の構成要素の条溝の中に圧入され、
該条溝を形成しているフィンと所定の手段により接着一
体化されて、複合ヒートシンクとする所が本発明に係る
問題点解決の為の手段の基本構造である。
Structure of the Invention [Means for Solving the Problems] Heat sinks and loop-type thin tube heat pipes as heat radiating means having a heat receiving part and a heat radiating part each have the above-mentioned major problems, but they can be combined. By using a composite heat sink, these problems can be completely solved, and the advantages of both can be utilized to provide an excellent new heat dissipation means. That is, the heat sink as illustrated in FIG. 5 is the first component of the composite heat sink, the serpentine loop tube heat pipe is the second component, and a predetermined portion of the second component is in the groove of the first component. is press-fitted into the
The basic structure of the means for solving the problems of the present invention is that the heat sink is integrated with the fins forming the grooves by adhesion by a predetermined means to form a composite heat sink.

〔作 用〕[For production]

ヒートシンクの条溝及びフィンの本来の形成の目的は放
熱に在り、放熱面積の拡大と良好な熱伝達を目的とする
ものである。又ループ型細管ヒートパイプは薄肉の細管
であり一般には軟鋼、軟アルミをその材質としている。
The original purpose of forming the grooves and fins of a heat sink is to dissipate heat, and the purpose is to expand the heat dissipation area and improve heat transfer. Moreover, a loop-type thin tube heat pipe is a thin-walled thin tube, and its material is generally made of mild steel or soft aluminum.

従って条溝に圧入するに最も適した形状に整形すること
は極めて容易であり、又単管であっても条溝内壁に密着
する様圧入により変形される。従ってヒートシンクの条
溝内に圧入された細管コンテナ群又は単管は圧入により
容易にヒートシンクのフィンと密着する。
Therefore, it is extremely easy to shape the tube into the most suitable shape for press-fitting into the groove, and even a single tube can be deformed by press-fitting so as to fit closely against the inner wall of the groove. Therefore, the thin tube containers or single tubes press-fitted into the grooves of the heat sink easily come into close contact with the fins of the heat sink.

この際にはんだ又は熱伝導性接着材を併用して圧入した
場合、熱抵抗が零に近い状態に一体化せしめられ、又接
触面積は充分に拡大される。従って圧入接着後のヒート
シンクは複合ヒートシンクの理想的な受熱部として変身
させられる。同時にループ型細管ヒートパイプの残余の
部分はヒートシンク単体としての放熱特性に対し数倍又
は数10倍も良好な特性の放熱部として変身させられる
At this time, if solder or a thermally conductive adhesive is used and press-fitted, the thermal resistance will be close to zero and the contact area will be sufficiently expanded. Therefore, the heat sink after press-fitting and bonding can be transformed into an ideal heat receiving part of a composite heat sink. At the same time, the remaining portion of the loop-type thin tube heat pipe is transformed into a heat dissipation section with heat dissipation properties several times or tens of times better than that of a single heat sink.

複合ヒートシンクは放熱能力が極めて大きくなるのでヒ
ートシンクは大型のものを使用する必要はなく極めて小
型のもので充分となる。ヒートシンクとループ型細管ヒ
ートパイプの組合わせの為の圧入接合は極めて容易であ
るから、ループ型細管ヒートパイプに受熱平面や放熱平
面を形成するより極めて容易で作業工程は単純化される
Since the heat dissipation capacity of the composite heat sink is extremely large, it is not necessary to use a large heat sink, and an extremely small heat sink is sufficient. Since press-fitting for the combination of a heat sink and a loop-type thin tube heat pipe is extremely easy, it is much easier and the work process is simpler than forming a heat-receiving plane and a heat-radiating plane on a loop-type thin-tube heat pipe.

〔実施例〕〔Example〕

第1実施例 第1図は複合ヒートシンクの最も効果的な小型複合ヒー
トシンクにおける実施例を示す。受熱部を形成する第1
構成要素のヒートシンクは受熱平面1と3枚のフィン2
とフィンで形成された2本の条溝3から成っている。受
熱平面1は幅25.4m、長さ35mである。条溝3は
幅8.2閣、長さ35閣である。フィン2は厚さ3■、
高さ12mm、長さ35mであり、ヒートシンクの受熱
平面からの高さは15閣である。
First Embodiment FIG. 1 shows an embodiment of the most effective compact composite heat sink. The first part forming the heat receiving part
The heat sink component consists of a heat receiving plane 1 and three fins 2.
It consists of two grooves 3 formed by fins and fins. The heat receiving plane 1 has a width of 25.4 m and a length of 35 m. Groove 3 is 8.2 kaku in width and 35 kaku in length. Fin 2 has a thickness of 3■,
The height is 12 mm and the length is 35 m, and the height from the heat receiving plane of the heat sink is 15 m.

第2構成要素のループ型細管ヒートパイプは受熱部細管
コンテナ5−1及び放熱部細管コンテナ5−3からなり
、細管コンテナの直径は外径1.6醜、内径1.2籠で
短径8.3m、長径40m、ターン数21の長円形螺旋
に形成されたユニットが2ユニツト使用され、夫々の両
端末は連結細管5−2により夫々に連結されてループに
構成されてある。
The second component, the loop type thin tube heat pipe, consists of a heat receiving section thin tube container 5-1 and a heat radiation section thin tube container 5-3. Two units are used, each having an oval spiral shape of .3 m in length, 40 m in major diameter, and 21 turns.The two ends of each unit are connected to each other by a connecting capillary tube 5-2 to form a loop.

ループ内に封入された作動液は逆止弁6−1゜6−2の
作用により自ら矢印の方向に循環し、受熱部5−1で吸
収した熱量を放熱部5−3に移送し放熱せしめる。該ル
ープ型細管ヒートパイプは受熱部5−1においてヒート
シンクの条溝3の中に圧入され且つはんだ接着又は熱伝
導性接着材により接着されフィン2と一体化されてある
。又図示はされていないが放熱部細管コンテナは左右に
千鳥目に展開されてある。この様な複合ヒートシンクは
フィン2及び条溝3により充分に拡大された受熱面によ
り受熱平面1から受熱した熱量を吸収し、放熱部細管コ
ンテナ5−3により効率良く放熱する。放熱は対流風が
実線矢印又は破線矢印の如く流れることによりなされる
。本実施例による複合ヒートシンクは風速3m/秒、受
熱熱量50Wにて熱抵抗0.24”C/Wにて放熱せし
める能力を発揮した。これは受熱部の温度上昇が僅かに
12°Cと云うことで、この様な小型ヒートシンクとし
ては画基的な高性能である。
The hydraulic fluid sealed in the loop circulates by itself in the direction of the arrow by the action of the check valves 6-1 and 6-2, and the amount of heat absorbed by the heat receiving part 5-1 is transferred to the heat radiating part 5-3, where it is radiated. . The loop-type thin tube heat pipe is press-fitted into the groove 3 of the heat sink in the heat receiving part 5-1, and is integrated with the fin 2 by being bonded with solder or a thermally conductive adhesive. Although not shown in the drawings, the heat dissipating tube containers are spread out in a staggered pattern from left to right. Such a composite heat sink absorbs the amount of heat received from the heat receiving plane 1 by the heat receiving surface sufficiently expanded by the fins 2 and the grooves 3, and efficiently radiates the heat through the heat radiating portion thin tube container 5-3. Heat radiation is achieved by convective wind flowing as shown by solid arrows or broken arrows. The composite heat sink according to this example exhibited the ability to dissipate heat with a thermal resistance of 0.24"C/W at a wind speed of 3m/sec and a received heat amount of 50W. This means that the temperature rise of the heat receiving part was only 12°C. This means that it has exceptionally high performance for such a small heat sink.

第2実施例 第2回路図に例示の第2実施例は第1構成要素であるヒ
ートシンクが複数個使用されてある例である。即ち第1
実施例における放熱部の一部も第2のヒートシンクに圧
入接着されてある。この場合の放熱部5−3としては図
の如く両ヒートシンクの中間部が使用される。放熱部5
−3は細管コンテナ1本おきに、図の様に展開されて千
鳥目配列になって通風を良好ならしめである。第1実施
例図においては図面節略の為図示は省略されてあるが第
1図においても実際はこの様に展開して実施する。第2
実施例は複数の受熱部工から熱量を吸収して放熱するが
、他の作用として複数の受熱部の温度を均一化せしめる
特徴がある。
Second Embodiment The second embodiment illustrated in the second circuit diagram is an example in which a plurality of heat sinks as the first component are used. That is, the first
A part of the heat dissipation section in the embodiment is also press-fitted and bonded to the second heat sink. In this case, the intermediate portion between the two heat sinks is used as the heat dissipation portion 5-3 as shown in the figure. Heat dissipation part 5
-3, every other thin tube container is unfolded as shown in the figure in a staggered arrangement to ensure good ventilation. In the drawings of the first embodiment, illustrations are omitted for the sake of brevity, but in reality, the system is developed and implemented in this manner in FIG. 1 as well. Second
The embodiment absorbs and radiates heat from a plurality of heat-receiving parts, but has another feature of making the temperature of the plurality of heat-receiving parts uniform.

第3実施例 第1及び第2実施例においては各条溝3の中に多数のル
ープ型細管コンテナが圧入接着された実施例であったが
第3実施例以降においては多数の細い条溝の各々に各1
本の細管コンテナが圧入接着される。第3実施例は受熱
部と放熱部が分離配置されて使用され両者間が作動液循
環の為の連結細管で連結されてある型の複合ヒートシン
クであって、第3図の各略図に示しである2−1は受熱
用ヒートシンクのフィン群、2−24;!放熱用ヒート
シンクのフィン群である。受放熱面1−1(又は1−2
)及び条溝3−1(又は3−2)は図面には現われてい
ない。5−1.5−3は夫々ループ型細管コンテナの受
熱部細管コンテナ群及び放熱部細管コンテナ群である。
Third Embodiment In the first and second embodiments, a large number of loop-type thin tube containers were press-fitted into each groove 3, but in the third and subsequent embodiments, a large number of thin tube containers were press-fitted into each groove 3. 1 each for each
A thin tube container for books is press-fitted and glued. The third embodiment is a composite heat sink of a type in which a heat receiving part and a heat radiating part are arranged separately and are connected by a connecting capillary tube for circulating the working fluid, and is shown in each schematic diagram in FIG. 2-1 is a group of fins of a heat sink for receiving heat, 2-24;! This is a group of fins for a heat sink for heat dissipation. Heat receiving and dissipating surface 1-1 (or 1-2
) and the groove 3-1 (or 3-2) do not appear in the drawing. 5-1 and 5-3 are a heat receiving section thin tube container group and a heat radiating section thin tube container group, respectively, of the loop type thin tube container.

第3図(イ)においては細管コンテナのターン毎に高温
連結細管54及び低温連結細管5−5によって受放熱部
が連結され多数の連結細管が用いられである。これに対
し第3図(ロ)においては細管コンテナ5−1及び5−
3は夫々受熱部、放熱部毎に1本の細管コンテナが多数
回のターンを繰返して受放熱部を形成している。従って
受放熱部を連結する細管は高温連結細管5−4と低温連
結細管5−5の2本だけで良いことになる。第3図(ハ
)は受熱部又は放熱部におけるヒートシンクに対する細
管コンテナ5−1(又は5−3)の圧入接着状態を示す
断面図である。夫々のヒートシンクは受熱部の受熱面1
−13条溝群3−1.フィン群2−1からなり、又は放
熱部の放熱面1−29条溝群 3−2 フィン群2−2
からなっている。細管コンテナ5−1(又は5−3)の
1本づつが夫々条溝群3−1(又は3−2)に圧入され
、同時にはんだ接着か熱伝導性接着材による接着がなさ
れてフィン群2−1 (又は2−2)と一体化されてあ
る。
In FIG. 3(a), a large number of connecting tubes are used, with the heat receiving and discharging parts being connected by high temperature connecting tubes 54 and low temperature connecting tubes 5-5 for each turn of the tube container. On the other hand, in FIG. 3(b), the thin tube containers 5-1 and 5-
Reference numeral 3 indicates a heat receiving and dissipating section in which one thin tube container is repeatedly turned many times for each of the heat receiving section and the heat dissipating section. Therefore, only two thin tubes, the high-temperature connecting tube 5-4 and the low-temperature connecting tube 5-5, are required to connect the heat receiving and radiating parts. FIG. 3(c) is a cross-sectional view showing a state in which the thin tube container 5-1 (or 5-3) is press-fitted and bonded to the heat sink in the heat receiving section or the heat dissipating section. Each heat sink is the heat receiving surface 1 of the heat receiving part.
-13 groove group 3-1. Consisting of fin group 2-1, or heat radiation surface 1-29 groove group of heat radiation part 3-2 Fin group 2-2
It consists of Each of the thin tube containers 5-1 (or 5-3) is press-fitted into the groove group 3-1 (or 3-2), and at the same time, they are bonded with solder or a thermally conductive adhesive to form the fin group 2. -1 (or 2-2).

本実施例は受放熱部の形成が極めて容易となる特徴があ
ると共に伝熱特性が良好となる利点がある。
This embodiment has the advantage that the formation of the heat receiving and dissipating section is extremely easy and that the heat transfer characteristics are excellent.

本実施例は使用時には分離配設された発熱体及び熱吸収
体に夫々のヒートシンクの受熱面1−1及び放熱面1−
2を接着して実施される。第3図(イ)の例は高性能が
要求される場合に使用されるが連結細管が多数である為
装着作業が煩雑となる問題点がある。第3図(ロ)はそ
の問題点を解決するもので装着は極めて容易であるが、
循環作動液の総てが2本の連結細管に集中されて循環す
る為、管の抵抗による熱抵抗増加があり若干の性能低下
を覚悟して適用する必要がある。
In this embodiment, when in use, the heat receiving surface 1-1 and the heat dissipating surface 1- of the heat sink are connected to the heat generating element and the heat absorbing body which are separately arranged.
This is done by gluing 2. The example shown in FIG. 3(a) is used when high performance is required, but there is a problem in that the installation work is complicated because there are a large number of connecting tubes. Figure 3 (b) solves this problem and is extremely easy to install.
Since all of the circulating working fluid is concentrated in the two connecting thin tubes and circulated, there is an increase in thermal resistance due to the resistance of the tubes, so it is necessary to be prepared for a slight decrease in performance when applying this method.

第4実施例 本実施例は第4図に略図で例示しである如(、イ 第2構成要素である蛇行ループ型細管ヒートパデブは細
管コンテナ5−3の蛇行により形成されてある風冷放熱
部と、第1構成要素であるヒートシンクの条溝3−1 
(第3図(ハ)参照)に圧入されフィン2−1に接着し
一体化されてある受熱部と、受熱部と放熱部を連結する
高温連結細管5−4及び低温連結細管5−5との三部分
がループを為して一体化されてあることを特徴としてい
る。この実施例も受熱部の形成が容易であると同時にヒ
ートシンクとの一体化による高性能受熱部の助けにより
、風冷放熱にもかかわらず複合ヒートシンクの性能が大
幅に向上する。適用時の配設作業が容易な点は第3実施
例と同様である。
Fourth Embodiment This embodiment is schematically illustrated in FIG. and grooves 3-1 of the heat sink, which is the first component.
(See Fig. 3 (C)) A heat receiving part that is press-fitted into the fin 2-1 and integrated with the fin 2-1, and a high-temperature connecting capillary 5-4 and a low-temperature connecting capillary 5-5 that connect the heat receiving part and the heat radiating part. It is characterized by its three parts being integrated in a loop. In this embodiment as well, the heat receiving part is easy to form, and at the same time, the performance of the composite heat sink is greatly improved despite air-cooled heat dissipation due to the high performance heat receiving part integrated with the heat sink. Similar to the third embodiment, the installation work at the time of application is easy.

図における放熱部の矢印は冷却風を示す。The arrow on the heat dissipation section in the figure indicates the cooling air.

ハ1発明の効果 本発明はヒートシンクとループ型細管ヒートパイプが一
体化されることにより両者の利点が共に有効に作用し、
小型高性能の複合型ヒートシンクを簡易安価に製作する
ことが可能となる。又適用に際しての配設も容易である
C1 Effects of the invention In the present invention, the heat sink and the loop-type thin tube heat pipe are integrated, so that the advantages of both work effectively.
It becomes possible to easily and inexpensively manufacture a compact, high-performance composite heat sink. Furthermore, it is easy to arrange when used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る複合型ヒートシンクの第1実施例
の斜視図である。 第2図は同第2実施例の正面略図である。 第3図(イ)(ロ)は同第3実施例の正面略図である。 第3図(ハ)は同(イ)(ロ)の一部断面図である。 第4図は同第4実施例の正面略図である。 第5図は従来のヒートシンクの斜視図である。 第6図(イ)(ロ)はループ型細管ヒートバイブ応用放
熱器の従来例斜視図である。 第7図(イ)(ロ)はループ型細管ヒートパイプ応用の
受放熱部分離型放熱器の従来例略図である。 1・・・受熱平面、2・・・放熱フィン、3・・・条溝
、4・・・受熱板、5−1・・・受熱部細管コンテナ、
5−3・・・放熱部細管コンテナ、5−4・・・高温連
結細管、5−5・・・低温連結細管、6・・・逆止弁。
FIG. 1 is a perspective view of a first embodiment of a composite heat sink according to the present invention. FIG. 2 is a schematic front view of the second embodiment. FIGS. 3A and 3B are schematic front views of the third embodiment. FIG. 3(C) is a partial sectional view of FIGS. 3(A) and 3(B). FIG. 4 is a schematic front view of the fourth embodiment. FIG. 5 is a perspective view of a conventional heat sink. FIGS. 6(a) and 6(b) are perspective views of a conventional example of a loop type thin tube heat vibable heat radiator. FIGS. 7(a) and 7(b) are schematic diagrams of a conventional example of a heat radiator with separate heat receiving and dissipating parts applied to a loop-type thin tube heat pipe. DESCRIPTION OF SYMBOLS 1... Heat receiving plane, 2... Radiation fin, 3... Groove, 4... Heat receiving plate, 5-1... Heat receiving part thin tube container,
5-3... Heat radiation part thin tube container, 5-4... High temperature connecting thin tube, 5-5... Low temperature connecting thin tube, 6... Check valve.

Claims (5)

【特許請求の範囲】[Claims] (1)熱伝導性の良好な金属板の所定の面に複数並列の
平板状フィンと該並列フィンのフィン間隙として形成さ
れる条溝とが配設されてあり、これらを放熱手段とする
ヒートシンクを第1構成要素とし、多数のターン部と直
管部群とからなる長尺の蛇行細管コンテナの両端末が相
互に連結されてループ型細管コンテナが形成されてあり
、該コンテナ内を作動液が所定の手段により所定の方向
に自ら循環して、コンテナの受熱部から放熱部に向って
熱量を運搬する様に構成された蛇行ループ型細管ヒート
パイプを第2構成要素とし、第1及び第2の両構成要素
が組合わせられて構成されてあり、第2構成要素の所定
の部分が第1構成要素の条溝の中に圧入され、該条溝を
形成しているフィンと所定の手段により接着一体化され
てあることを特徴とする複合型ヒートシンク。
(1) A heat sink in which a plurality of parallel flat fins and grooves formed as fin gaps between the parallel fins are arranged on a predetermined surface of a metal plate with good thermal conductivity, and these serve as heat dissipation means. is the first component, and both ends of a long meandering capillary container consisting of a large number of turns and a group of straight pipes are connected to each other to form a loop-type capillary container. The second component is a meandering loop thin tube heat pipe configured to circulate in a predetermined direction by a predetermined means and transport heat from the heat receiving part to the heat radiating part of the container, and 2 components are combined, a predetermined portion of the second component is press-fitted into a groove of the first component, and a fin forming the groove and a predetermined means are formed. A composite heat sink characterized by being integrated with adhesive.
(2)所定の部分が第1構成要素の条溝の中に圧入され
、条溝を形成しているフィンと接着一体化された第2構
成要素の残余の部分は第1構成要素であるヒートシンク
のフィン部から突出せしめられ、通風良好な形状に展開
整列されて、ヒートシンクのフィンの放熱を補助する放
熱補助フィン群として形成されてあることを特徴とする
特許請求の範囲第1項に記載の複合型ヒートシンク。
(2) A predetermined portion is press-fitted into the groove of the first component, and the remaining portion of the second component is integrated with the fins forming the groove, and the remaining portion is the heat sink of the first component. The fins protrude from the fin portion of the heat sink and are arranged in a shape with good ventilation to form a group of auxiliary heat dissipation fins that assist the heat dissipation of the fins of the heat sink. Composite heat sink.
(3)複数の第1構成要素と単数の第2構成要素が組合
わせられて構成されてあり、所定の部分が複数の第1構
成要素の条溝の中に圧入され、条溝を形成しているフィ
ンと接着一体化された第2構成要素の残余の部分は第1
構成要素であるヒートシンクのフィン部から突出せしめ
られ、通風良好な形状に展開整形されてヒートシンクの
フィンの放熱を補助する放熱補助フィン群として形成さ
れてあることを特徴とする特許請求の範囲第1項に記載
の複合型ヒートシンク。
(3) It is constructed by combining a plurality of first components and a single second component, and a predetermined portion is press-fitted into the grooves of the plurality of first components to form the grooves. The remaining portion of the second component that is adhesively integrated with the fins that are attached to the first
Claim 1, characterized in that the fins are formed as a group of auxiliary heat radiation fins that protrude from the fin portion of the heat sink, which is a component, and are developed and shaped into a shape with good ventilation to assist the heat radiation of the fins of the heat sink. Composite heat sink described in section.
(4)複数の第1構成要素と単数の第2構成要素が組合
わせられて構成されてあり、第1構成要素である複数の
ヒートシンクは所定の数の受熱用(又は加熱用)ヒート
シンクと所定の数の放熱用(又は冷却用)ヒートシンク
の2種類からなり、所定の部分が複数の第1構成要素の
条溝の中に圧入され、条溝を形成するフィンと接着一体
化された第2構成要素の残余の部分は受熱用(又は加熱
用)ヒートシンクと放熱用(又は冷却用)ヒートシンク
の間に高温作動液と低温作動液を交換する為の高温連結
細管及び低温連結細管として構成されてあることを特徴
とする特許請求の範囲第1項に記載の複合型ヒートシン
ク。
(4) It is configured by combining a plurality of first components and a single second component, and the plurality of heat sinks that are the first components have a predetermined number of heat receiving (or heating) heat sinks and a predetermined number of heat sinks. There are two types of heat sinks for heat dissipation (or cooling), the predetermined portions of which are press-fitted into the grooves of the plurality of first components, and the second heat sinks are integrally bonded with the fins forming the grooves. The remaining components are configured as high-temperature connecting capillaries and low-temperature connecting capillaries for exchanging high-temperature working fluid and low-temperature working fluid between the heat receiving (or heating) heat sink and the heat dissipating (or cooling) heat sink. A composite heat sink according to claim 1, characterized in that:
(5)第2構成要素である蛇行ループ型細管ヒートパイ
プは細管コンテナの蛇行により形成されてある風冷放熱
部と、第1構成要素の条溝に圧入され条溝を形成するフ
ィンに接着し一体化されてある受熱部と、受熱部と放熱
部を連結する高温連結細管及び低温連結細管との三部分
がループを形成して一体化されてあることを特徴とする
特許請求の範囲第1項に記載の複合型ヒートシンク。
(5) The second component, the serpentine loop-type capillary heat pipe, is bonded to the air-cooled heat dissipation part formed by the meandering of the capillary container and to the fins that are press-fitted into the grooves of the first component and form the grooves. Claim 1, characterized in that the three parts of the integrated heat receiving part, the high temperature connecting capillary tube and the low temperature connecting capillary tube that connect the heat receiving part and the heat radiating part are integrated to form a loop. Composite heat sink described in section.
JP16670890A 1990-06-27 1990-06-27 Composite-type heat sink Pending JPH0457399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16670890A JPH0457399A (en) 1990-06-27 1990-06-27 Composite-type heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16670890A JPH0457399A (en) 1990-06-27 1990-06-27 Composite-type heat sink

Publications (1)

Publication Number Publication Date
JPH0457399A true JPH0457399A (en) 1992-02-25

Family

ID=15836290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16670890A Pending JPH0457399A (en) 1990-06-27 1990-06-27 Composite-type heat sink

Country Status (1)

Country Link
JP (1) JPH0457399A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088127A (en) * 2007-09-28 2009-04-23 Panasonic Corp Cooling apparatus
JP4707840B2 (en) * 2001-01-12 2011-06-22 ティーエス ヒートロニクス 株式会社 Radiator and manufacturing method thereof
CN102712027A (en) * 2009-10-21 2012-10-03 冰管有限公司 Method for manufacturing a heat-pipe-type heat-dissipating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4707840B2 (en) * 2001-01-12 2011-06-22 ティーエス ヒートロニクス 株式会社 Radiator and manufacturing method thereof
JP2009088127A (en) * 2007-09-28 2009-04-23 Panasonic Corp Cooling apparatus
CN102712027A (en) * 2009-10-21 2012-10-03 冰管有限公司 Method for manufacturing a heat-pipe-type heat-dissipating device
JP2013506811A (en) * 2009-10-21 2013-02-28 アイスパイプ コーポレーション Manufacturing method of heat pipe type heat dissipation device

Similar Documents

Publication Publication Date Title
US6714413B1 (en) Compact thermosiphon with enhanced condenser for electronics cooling
EP1383170B1 (en) Thermosiphon for electronics cooling with nonuniform airflow
US20030151896A1 (en) Loop thermosyphon using microchannel etched semiconductor die as evaporator
JP2001223308A (en) Heat sink
CN106766404B (en) Micro-channel condenser
CN206540340U (en) Micro-channel condenser
JP4707840B2 (en) Radiator and manufacturing method thereof
JPH0457399A (en) Composite-type heat sink
JP2002141449A (en) Boiling cooler
JP2951116B2 (en) Heating element cooling device
TWI305132B (en)
JP3093441B2 (en) Heat sink for high power electronic equipment
CN110198611B (en) Heat sink device
JP2014115054A (en) Self-excited vibration type heat pipe
JP3959428B2 (en) Stereo heat pipe radiator
JPH10185466A (en) Heat pipe type heat sink
JP3364758B2 (en) Heat sink for flat heating element
JP2004153001A (en) Cooling fin and boiling cooler using the same
JPH0936284A (en) Heat sink and heat exchanger
CN221887021U (en) Heat abstractor that heat conduction efficiency is high
JP4332261B2 (en) Heat transport equipment
JPH0396261A (en) Heat-pipe type cooler
JP2009264719A (en) Heat exchanger
JPS62152147A (en) Radiator for semiconductor element
JP4358963B2 (en) heatsink