JPH0457398B2 - - Google Patents

Info

Publication number
JPH0457398B2
JPH0457398B2 JP59011720A JP1172084A JPH0457398B2 JP H0457398 B2 JPH0457398 B2 JP H0457398B2 JP 59011720 A JP59011720 A JP 59011720A JP 1172084 A JP1172084 A JP 1172084A JP H0457398 B2 JPH0457398 B2 JP H0457398B2
Authority
JP
Japan
Prior art keywords
sludge
turbidity
svi
meter
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59011720A
Other languages
Japanese (ja)
Other versions
JPS60153996A (en
Inventor
Hiroshi Tsukura
Shotaro Urushibara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP59011720A priority Critical patent/JPS60153996A/en
Publication of JPS60153996A publication Critical patent/JPS60153996A/en
Publication of JPH0457398B2 publication Critical patent/JPH0457398B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、活性汚泥プロセスにより被処理水を
処理する場合に用いられる汚泥管理装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sludge management device used when treating water by an activated sludge process.

一般に活性汚泥プロセスによる水処理において
は、被処理水を最初沈殿池に導入し、次いで曝気
槽にて活性汚泥と混合してここで曝気を行い、そ
の後最終沈殿池にて固液分離して上澄水を処理水
として放流し、以つて水処理を行うようにしてい
る。
Generally, in water treatment using the activated sludge process, the water to be treated is first introduced into a settling tank, then mixed with activated sludge in an aeration tank and aerated there, and then solid-liquid separated in the final settling tank. The clear water is discharged as treated water and used for water treatment.

このようなプロセスにおいては、良好な処理水
を得るために最終沈殿池から曝気槽に返送される
返送汚泥流量や曝気槽への流入汚水流量を制御す
るようにしているが、これらの制御は従来SVIを
考慮して行われている。このSVIは、30分沈降後
の汚泥容積(SV30)と活性汚泥浮遊物濃度
(MLSS)との比で表わされる汚泥容量指標とい
われるものであり、曝気槽から採水された混合液
を汚泥沈降管内に採水し、回分的に沈降試験を行
うことによつて求められる。
In such processes, in order to obtain good treated water, the flow rate of return sludge returned from the final settling tank to the aeration tank and the flow rate of sewage flowing into the aeration tank are controlled, but these controls are not conventional methods. This is done with SVI in mind. This SVI is called a sludge capacity index expressed as the ratio of the sludge volume after 30 minutes of settling (SV 30 ) and the activated sludge suspended solids concentration (MLSS). It is determined by sampling water into a sedimentation tube and performing a batch sedimentation test.

ところでSVIを用いた汚泥管理では、汚泥沈降
の途中経過から得られる汚泥沈降制に関する情報
がないために、詳細な汚泥性状の把握ができなく
なり、このためだれくらいの時間で上部に清澄な
層が現われるか、或いは放流水中への汚泥の流出
を防ぐには最終沈殿池の表面負荷率をどのように
制御したらよいか等が不明であつた。また汚泥性
状が異なればSV30及びMLSSの値が異なるが、
SVIはこれらの値の比であるため汚泥性状が異な
つても揃つた値になることもある。このようなこ
とから高度な汚泥管理が困難であり、例えば放流
水中の汚泥の流出の抑制が困難であつた。
By the way, in sludge management using SVI, there is no information on sludge settling control that can be obtained from the progress of sludge settling, so detailed sludge properties cannot be grasped. It was unclear how to control the surface loading rate of the final settling tank in order to prevent sludge from appearing or flowing into the effluent water. Also, if the sludge properties differ, the SV 30 and MLSS values will differ.
Since SVI is the ratio of these values, it may be the same value even if the sludge properties are different. For these reasons, sophisticated sludge management has been difficult, for example, it has been difficult to control the outflow of sludge in effluent water.

発明の目的 本発明はこのような事情のもとになされたもの
であつて、汚泥管理の向上を図ることのできる汚
泥管理装置を提供することを目的とする。
Purpose of the Invention The present invention was made under the above circumstances, and an object of the present invention is to provide a sludge management device that can improve sludge management.

発明の概要 本発明は、SVI計の他に、採水した混合液を固
液分離して得られる上澄水の濁度を検出する濁度
計を設け、SVI計及び濁度計から夫々SVI信号及
び濁度信号を演算部に入力し、ここで返送汚泥流
量の設定信号を求め、この設定信号に基づいて返
送汚泥ポンプを制御する点に特徴がある。
Summary of the invention In addition to the SVI meter, the present invention includes a turbidity meter that detects the turbidity of supernatant water obtained by solid-liquid separation of a sampled water mixture, and receives SVI signals from the SVI meter and the turbidity meter, respectively. The present invention is characterized in that the sludge and turbidity signals are input to the calculation section, where a setting signal for the return sludge flow rate is determined, and the return sludge pump is controlled based on this setting signal.

実施例 以下図面によつて本発明の実施例を説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例を示す図である。1は
曝気槽であり、この曝気槽1には図示しない最初
沈殿池から汚水流入ポンプP1及び管路11を介
して汚水が流入する。2は最終沈殿池であり、曝
気槽1より管路12を介して送られた混合液を固
液分離して上澄水を放流管路13より放流する。
3は放流水の濁度を測定するための放流水用濁度
計である。14は返送汚泥管であり、最終沈殿池
2に堆積された汚泥はこの返送汚泥管14を介し
て返送汚泥ポンプP2によつて曝気槽1に返送さ
れる。4はSVI計であり、曝気槽1の出口付近よ
り採水された混合液のSVIを測定する。5はSVI
計に取り付けられた濁度計であり、前記採水され
た混合液の濁度を測定する。40は濁度計5を
SVI計4に取り付けて成る装置全体(以下濁度計
付SVI計という。)を示す。6は演算部であり、
濁度計5よりの濁度信号及びSVI計よりのSVI信
号並びに放流水用濁度計3よりの濁度信号に基づ
いて、返送汚泥流量設定信号と曝気槽1内への汚
水流量の設定信号とを演算して求める。7は制御
部であり、演算部6で求められた設定信号と放流
水用濁度計3よりの濁度信号とに基づいて、汚水
流入ポンプP1及び返送汚泥ポンプP2を制御する。
FIG. 1 is a diagram showing an embodiment of the present invention. Reference numeral 1 denotes an aeration tank, into which sewage flows from a first settling tank (not shown) via a sewage inflow pump P 1 and a pipe 11. 2 is a final settling tank, which separates the liquid mixture sent from the aeration tank 1 through the pipe line 12 into solid and liquid, and discharges the supernatant water through the discharge pipe line 13.
3 is a turbidity meter for effluent water for measuring the turbidity of effluent water. 14 is a return sludge pipe, and the sludge deposited in the final settling tank 2 is returned to the aeration tank 1 via this return sludge pipe 14 by a return sludge pump P2 . 4 is an SVI meter, which measures the SVI of the mixed liquid sampled near the outlet of the aeration tank 1. 5 is SVI
This is a turbidity meter attached to the meter, and measures the turbidity of the sampled mixed liquid. 40 is turbidity meter 5
The entire device (hereinafter referred to as SVI meter with turbidity meter) attached to SVI meter 4 is shown. 6 is an arithmetic unit;
Based on the turbidity signal from the turbidity meter 5, the SVI signal from the SVI meter, and the turbidity signal from the effluent water turbidity meter 3, a return sludge flow rate setting signal and a sewage flow rate setting signal into the aeration tank 1 are sent. Calculate and find. Reference numeral 7 denotes a control unit, which controls the sewage inflow pump P 1 and the return sludge pump P 2 based on the setting signal determined by the calculation unit 6 and the turbidity signal from the effluent water turbidity meter 3.

前記濁度計付SVI計40の構成について第2図
により説明するが、濁度計のないSVI計の構造は
公知のものである。41は汚泥沈降管、42は検
水注入管、43は下端が曝気槽1に浸漬されたエ
アリフトポンプである。44A,44Bは夫々投
光器、受光器であつて支持部材45に取り付けら
れており、この支持部材45は昇降モータを含む
昇降機構(図示せず)に組み合わされている。昇
降モータは受光器44Bより出力に基づいて受光
器44Bを界面に追従して昇降するよう制御され
る。46はSVI測定回路部であり、昇降モータの
回転軸に取り付けられたポテンシヨメータ等を含
み、沈降管41内の固液界面位置に対応した電気
信号が得られる。尚、沈降管41の断面積が一定
であることからこの電気信号は汚泥容積に対応し
た大きさである。この例では投光器44A、受光
器44B、昇降機構、及びポテンシヨメータ等に
よつて、沈降管41内の固液界面を検出するため
の界面位置検出部が構成される。47はMLSS検
出器であり、これの出力信号はSVI演算部48に
入力される。沈降管41の上部には突出部51が
設けられていて、この突出部51内には濁度検出
センサ52が収納されている。53は濁度検出セ
ンサ52よりの信号を電気信号に変換する変換部
であり、濁度検出センサ52と共に濁度計5を構
成している。49は排水口、491は撹拌用エア
電磁弁、492はブロアである。このような構成
の濁度計はSVI計においては、汚水と活性汚水と
の混合液がエアリフトポンプ43を介して汚泥沈
降管41内に注入される。注入された混合液は、
汚泥が沈降することによつて固液分離される。汚
泥と上澄水との界面位置は界面位置検出部により
検出され、SV測定回路部46にて界面位置及び
汚泥容量に対応した電気信号が得られる。そして
SV測定回路部46及びMLSS検出器47から、
夫々初期の汚泥容積に対する30分間沈降後の汚泥
容積の比(SV30)及びMLSS信号がSVI演算部4
8に送られ、ここでSVI信号が得られる。
The structure of the SVI meter 40 with a turbidity meter will be explained with reference to FIG. 2, but the structure of an SVI meter without a turbidity meter is well known. 41 is a sludge settling pipe, 42 is a test water injection pipe, and 43 is an air lift pump whose lower end is immersed in the aeration tank 1. 44A and 44B are a light projector and a light receiver, respectively, and are attached to a support member 45, and this support member 45 is combined with a lifting mechanism (not shown) including a lifting motor. The lift motor is controlled based on the output from the light receiver 44B to move the light receiver 44B up and down while following the interface. Reference numeral 46 denotes an SVI measurement circuit section, which includes a potentiometer etc. attached to the rotating shaft of the lifting motor, and obtains an electric signal corresponding to the solid-liquid interface position within the sedimentation tube 41. Note that since the cross-sectional area of the settling tube 41 is constant, this electric signal has a size corresponding to the sludge volume. In this example, an interface position detection section for detecting the solid-liquid interface in the sedimentation tube 41 is configured by the light emitter 44A, the light receiver 44B, the lifting mechanism, the potentiometer, and the like. 47 is an MLSS detector, the output signal of which is input to the SVI calculation unit 48. A protrusion 51 is provided at the upper part of the sedimentation tube 41, and a turbidity detection sensor 52 is housed within the protrusion 51. 53 is a conversion unit that converts the signal from the turbidity detection sensor 52 into an electric signal, and together with the turbidity detection sensor 52 constitutes the turbidity meter 5. 49 is a drain port, 491 is an air solenoid valve for stirring, and 492 is a blower. In the SVI turbidity meter having such a configuration, a mixed liquid of sewage and activated sewage is injected into the sludge settling pipe 41 via the air lift pump 43. The injected mixture is
Solid-liquid separation occurs as the sludge settles. The interface position between the sludge and the supernatant water is detected by the interface position detection section, and the SV measurement circuit section 46 obtains an electric signal corresponding to the interface position and the sludge volume. and
From the SV measurement circuit section 46 and the MLSS detector 47,
The ratio of the sludge volume after settling for 30 minutes to the initial sludge volume (SV 30 ) and the MLSS signal are calculated by the SVI calculation unit 4.
8, where the SVI signal is obtained.

61は濁度及び界面位置を記録するための記録
計、62は記録計に記録されたデータの解析を行
うコンピユータ等のデータ解析部、63はプリン
タである。データ解析部62は、汚泥沈降曲線の
格納処理機能と、汚泥沈降曲線に基づいて初期沈
降速度、ロバーツ定数、圧密度、最終汚泥界面等
のパラメータの決定機能と、濁度データのノイズ
フイルタ機能及び濁度データの格納処理機能等と
を有している。上記のパラメータは汚泥性状の変
化や汚泥の沈降特性を表わすもので、これを決定
するば、最終沈殿池での最適な表面負荷率の選定
等の運転制御に利用できる。また上澄水の濁度を
測定中に瞬間的に濁度が上昇してノイズを発生す
るため、そのノイズをカツトするノイズフイルタ
機能をデータ解析部62に付与すれば安定した測
定結果が得られる。尚第1図の演算部6には、解
析機能や濁度のノイズフイルタ機能等が組み込ま
れている。データ処理については、記録計61の
みを用いてデータを記録するにとどめてもよい
し、データを記録することなく直接データ解析部
62でデータの解析を行つてもよい、更には上述
のようにデータの記録及びデータの解析の双方を
行つてもよい。即ち状況に応じた柔軟なシステム
をとることができる。濁度を常時検出し、そのデ
ータの記録を行えば、後述するようにSVIの変化
や汚泥性状の変化を予測することができる。また
後述するように上澄水の濁度とSVI、SV等とが
相関関係にあることから、濁度を測定することに
よつて、前記パラメータを決定し、沈降曲線が求
められる。
61 is a recorder for recording turbidity and interface position; 62 is a data analysis section such as a computer that analyzes the data recorded on the recorder; and 63 is a printer. The data analysis unit 62 has a sludge settling curve storage processing function, a function of determining parameters such as initial settling rate, Roberts constant, compaction density, final sludge interface, etc. based on the sludge settling curve, and a noise filtering function of turbidity data. It also has turbidity data storage and processing functions. The above parameters represent changes in sludge properties and sludge settling characteristics, and once determined, they can be used for operational control such as selecting the optimal surface load rate in the final settling tank. Further, while measuring the turbidity of supernatant water, the turbidity instantaneously increases and noise is generated, so if the data analysis section 62 is provided with a noise filter function to cut out the noise, stable measurement results can be obtained. Note that the calculation section 6 in FIG. 1 incorporates an analysis function, a turbidity noise filter function, and the like. Regarding data processing, the data may be recorded only using the recorder 61, or the data may be analyzed directly by the data analysis unit 62 without recording the data, or even as described above. Both data recording and data analysis may be performed. In other words, a flexible system can be created depending on the situation. By constantly detecting turbidity and recording the data, it is possible to predict changes in SVI and sludge properties, as described below. Further, as will be described later, since there is a correlation between the turbidity of supernatant water and SVI, SV, etc., the above-mentioned parameters can be determined by measuring the turbidity, and a sedimentation curve can be obtained.

第2図中100は洗浄用のブラシであり、汚泥
沈降管41の内壁及び濁度検出センサ52の表面
を洗浄することのできる機能を有している。これ
により壁面への生物膜等の付着を防ぐことができ
る。
Reference numeral 100 in FIG. 2 is a cleaning brush, which has the function of cleaning the inner wall of the sludge settling pipe 41 and the surface of the turbidity detection sensor 52. This can prevent biofilm etc. from adhering to the wall surface.

濁度検出センサ52としては、例えば近赤外方
式のものを用いれば装着が容易で安定した濁度検
出を行うことができるので好ましい。その測定ス
パンは0〜200mg/を標準とする。
As the turbidity detection sensor 52, it is preferable to use, for example, a near-infrared type sensor because it is easy to attach and stable turbidity detection can be performed. The standard measurement span is 0 to 200 mg/.

ここで濁度と汚泥性状や汚泥沈降特性との関係
について述べる。第3図は、沈降管41内の上澄
水濁度TUSV(固液分離開始後混合液上部の濁度が
落ち着いたときの値)とSV30との関係を両対数
グラフによりグラフ化した図、第4図はTUSV
SVIとの関係を両対数グラフによりグラフ化した
図である。これらの図から判るようにTUSV
SV30及びSVIとは高い相関関係にある。第5図
A,Bは各々沈降時間に対する海面位置Htの変
化及び上澄水濁度TUの変化を示すグラフであ
り、点数はHtの変化を表わす曲線(汚泥沈降曲
線)、実線はTUの変化を示す曲線である。第5
図A,Bから判るように濁度の減少パターンと沈
降パターンとはある程度の対応関係がある。尚濁
度が50mg/以下に達するまでな時間及び濁度が
落ち着いた値を測定するば濁度減少パターンを決
定し、汚泥性状の変化を予測するのに利用でき
る。第6図は沈降速度ISVとTUSVとの関係を両
対数グラフによりグラフ化した図であり、圧密開
始時間tcが揃つていればISVとTUSVとは高い相関
関係にある。tcはSVIと相関関係にあることが実
験にて判つているので、結局SVI及びTUSVから
ISVを予測することができる。第6図から判るよ
うにISVが大きいこと活性汚泥フロツクは、フロ
ツク径の大小により大きな沈降速度差を生じるた
め、ISVの小さい活性汚泥が沈降管41の上部に
残留し、TUSVが大きい。一方ISVが小さいと
SVIが大きく、糸状菌(Sphaerotilus natans)
が増加し、フロツクは相互に糸状菌で連結されて
微小フロツクが他のフロツクにとりかこまれ一群
となつて沈降するのでTUSVは小さい。即ちTUSV
が大きくと全体的に沈降速度が大きく、TUSV
小さいと全体的に沈降速度が小さい。尚第7図は
糸状菌の発生頻度とSVIとの関係を示す図であ
り、同図からSVIが大きいとその頻度が高いこと
が判る。ただしCCは極めて多量に出現、Cは多
量に出現、+は普通に出現、rはわずかに出現、
rrは極めてわずに出現、NDは出現しないという
意味である。このように上澄水の濁度は、汚泥性
状や沈降特性と大きく関係する因子であり、本発
明は、この濁度をも加味して運転制御を行うもの
である。
Here, we will discuss the relationship between turbidity, sludge properties, and sludge settling characteristics. FIG. 3 is a graph showing the relationship between the supernatant water turbidity TU SV in the sedimentation tube 41 (the value when the turbidity at the top of the mixed liquid has settled down after the start of solid-liquid separation) and SV 30 using a double logarithmic graph. , Figure 4 shows TU SV and
FIG. 3 is a graph showing the relationship with SVI using a log-log graph. As you can see from these figures, TU SV and
There is a high correlation with SV 30 and SVI. Figures 5A and 5B are graphs showing changes in sea level position H t and changes in supernatant water turbidity TU with respect to settling time, respectively.The points are the curves representing the changes in H t (sludge settling curves), and the solid lines are the curves representing the changes in TU. This is a curve showing changes. Fifth
As can be seen from Figures A and B, there is a certain degree of correspondence between the turbidity reduction pattern and the sedimentation pattern. By measuring the time it takes for the turbidity to reach 50mg/or less and the value at which the turbidity has settled down, the turbidity reduction pattern can be determined and used to predict changes in sludge properties. FIG. 6 is a logarithmic graph of the relationship between the sedimentation velocity ISV and TU SV , and if the consolidation start times t c are the same, ISV and TU SV have a high correlation. Experiments have shown that t c has a correlation with SVI, so in the end it can be calculated from SVI and TU SV .
ISV can be predicted. As can be seen from FIG. 6, activated sludge flocs with a large ISV have a large difference in settling speed depending on the size of the floc diameter, so the activated sludge with a small ISV remains in the upper part of the settling tube 41, and the TU SV is large. On the other hand, if the ISV is small
SVI is large and filamentous fungi (Sphaerotilus natans)
The flocs are connected to each other by filamentous fungi, and the minute flocs are surrounded by other flocs and settle as a group, so the TU SV is small. i.e. TU SV
When TU SV is large, the overall sedimentation rate is high, and when TU SV is small, the overall sedimentation rate is low. FIG. 7 is a diagram showing the relationship between the frequency of occurrence of filamentous fungi and SVI, and it can be seen from the figure that the larger the SVI, the higher the frequency. However, CC appears in extremely large amounts, C appears in large amounts, + appears normally, r appears slightly,
rr means that it appears very rarely, and ND means that it does not appear. As described above, the turbidity of the supernatant water is a factor that is greatly related to the sludge properties and sedimentation characteristics, and the present invention performs operation control taking this turbidity into account.

次に第1図の実施例の作用について述べる。曝
気槽1内の混合液が濁度計付SVI計40の沈降管
41内に注入され、ここでSVI及びTUSVが検出
される。そしてSVI信号及びTUSV信号が放流水
用濁度計3よりの濁度信号と共に演算部6に入力
され、ここにそれら入力信号に基づいて返送汚泥
流量の設定値QR及び曝気槽1への流入汚水流量
の設定値QSが演算される。そしてQR、QS及び放
流水用濁度計3よりの濁度信号が制御部7に入力
され、ここでそれら入力信号に基づいて汚水流入
ポンプP1及び返送汚泥ポンプP2を制御する。今
TUSVが大きいとするとSVIは小さく、そして第
6図で示したように沈降速度ISVが大きいので、
最終沈殿池2における汚泥の濃縮効果が促進さ
れ、このため返送汚泥濃度が大きくなる。したが
つて曝気槽1内のMLSSを一定に保つように返送
汚泥流量を減少させ、その分流入汚水流量を増加
させる。これに対し、TUSVが小さい場合には、
SVIは大きく、沈降速度ISVIが小さいので最終
沈殿池2における汚泥の濃縮効果が低下し、この
ため返送汚泥濃度が小さくなる。したがつて返送
汚泥流量を増加させ、その分流入汚水流量を減少
させる。第8図はこのような制御の一例を示す図
であり、TUSVが小さい場合(TU1よりも小さい
場合)には、返送汚泥流量の設定値QRはQR1と大
きく、汚水流入量設定値QSはQS1と小さい。そし
てTUSVがTU1からTU2の間にある場合には、QR
はTUの値に対応して対さくなり、QSはTUの値
に対応して大きくなる。更にTUSVがTU2を越え
ると、QRはQR2と小さく、QSはQS1と大きい。
Next, the operation of the embodiment shown in FIG. 1 will be described. The mixed liquid in the aeration tank 1 is injected into the settling tube 41 of the SVI meter 40 with a turbidity meter, where SVI and TU SV are detected. The SVI signal and the TU SV signal are then input to the calculation unit 6 along with the turbidity signal from the effluent turbidity meter 3, where the set value Q R of the return sludge flow rate and the setting value for the aeration tank 1 are determined based on these input signals. A set value Q S of the inflow sewage flow rate is calculated. Q R , Q S and the turbidity signal from the effluent turbidity meter 3 are input to the control unit 7, which controls the sewage inflow pump P 1 and return sludge pump P 2 based on these input signals. now
If TU SV is large, SVI is small, and as shown in Figure 6, the sedimentation velocity ISV is large, so
The effect of concentrating the sludge in the final settling tank 2 is promoted, and the concentration of returned sludge increases. Therefore, the flow rate of return sludge is decreased so as to keep the MLSS in the aeration tank 1 constant, and the flow rate of inflow sewage is increased accordingly. On the other hand, when TU SV is small,
Since the SVI is large and the sedimentation rate ISVI is small, the effect of concentrating the sludge in the final settling tank 2 is reduced, and therefore the concentration of returned sludge is reduced. Therefore, the flow rate of returned sludge is increased, and the flow rate of inflow sewage is decreased accordingly. Figure 8 is a diagram showing an example of such control. When TU SV is small (less than TU 1 ), the return sludge flow rate set value Q R is large as Q R1 , and the sewage inflow rate setting is The value Q S is small as Q S1 . and if TU SV is between TU 1 and TU 2 , then Q R
becomes smaller corresponding to the value of TU, and Q S becomes larger corresponding to the value of TU. Furthermore, when TU SV exceeds TU 2 , Q R becomes small as Q R2 , and Q S becomes large as Q S1 .

このような実施例では、最終沈殿池2りの放流
水中の濁度を検出し、その濁度信号をフイードバ
ツクして運転制御を行つているため、最終沈殿池
2よりの放流水の濁度を低く抑えるように即ち放
流水中への汚泥の流出を抑えるように最終沈殿池
2の滞留時間(VF/QS+QR、VF;最終沈殿池容
積)が制御される。また汚水流入ポンプP1につ
いてもTUSVを加味した制御を行つているため、
より適正な運転制御ができる。
In this embodiment, the turbidity of the water discharged from the final sedimentation tank 2 is detected and the operation is controlled by feeding back the turbidity signal. The residence time of the final settling tank 2 (V F /Q S +Q R , V F ; final settling tank volume) is controlled so as to keep it low, that is, to suppress the outflow of sludge into the effluent water. Furthermore, since the sewage inflow pump P1 is also controlled in consideration of TU SV ,
More appropriate operation control is possible.

発明の効果 以上のように本発明は、曝気槽1より採水した
混合液を固液分離して得られる上澄水の濁度が、
SV、SVI、沈降速度等と高い相関関係をもつて
いて沈降特性よ汚泥性状に深い係わりがあること
を見い出したことに基づき、SVI計の他に、上記
の濁度を検出するための濁度検出計を用い、SVI
信号と濁度信号とを返送汚泥ポンプの制御のため
の入力信号としたものであるため、運転制御が汚
泥性状や沈降特性をも考慮されたものとなる。し
たがつて適正な運転制御が行われ、汚泥管理が高
度なものとなる。
Effects of the Invention As described above, in the present invention, the turbidity of the supernatant water obtained by solid-liquid separation of the mixed liquid sampled from the aeration tank 1 is
Based on the discovery that there is a high correlation with SV, SVI, sedimentation rate, etc., and that there is a deep relationship between sedimentation characteristics and sludge properties, in addition to the SVI meter, we have developed a turbidity meter to detect the turbidity described above. Using a detector, SVI
Since the signal and the turbidity signal are used as input signals for controlling the return sludge pump, the operation control takes into consideration the sludge properties and sedimentation characteristics. Therefore, proper operation control is performed and sludge management becomes sophisticated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す構成図、第2図
は濁度計を付加したSVI計及びその出力信号のラ
インを示す説明図、第3図はSV30と上澄水濁度
との関係を示すグラフ、第4図はSVIと上澄水濁
度との関係を示すグラフ、第5図A,Bは、沈降
曲線及び、上澄水濁度と沈降時間との関係を示す
グラフ、第6図は沈降速度と上澄水濁度との関係
を示すグラフ、第7図はSVIと糸状菌発生頻度と
の関係を示すグラフ、第8図は上澄水濁度と返送
汚泥流量設定値及び流入汚水流量設定値との関係
の一例を示すグラフである。 1……曝気槽、2……最終沈殿池、3……放流
水用濁度計、4……SVI計、5……濁度計、40
……濁度計付SVI計、41……汚泥沈降管、46
……SV測定回路部、47……MLSS検出器、4
8……SVI演算部、52……濁度検出センサ、5
3……変換部、6……演算部、7……制御部、
P1……汚水流入ポンプ、P2……返送汚泥ポンプ。
Figure 1 is a configuration diagram showing an embodiment of the present invention, Figure 2 is an explanatory diagram showing an SVI meter with a turbidity meter added and its output signal line, and Figure 3 is a diagram showing the relationship between SV 30 and supernatant water turbidity. Graph showing the relationship, Figure 4 is a graph showing the relationship between SVI and supernatant water turbidity, Figure 5 A and B are sedimentation curves and graphs showing the relationship between supernatant water turbidity and settling time, and Figure 6 is a graph showing the relationship between SVI and supernatant water turbidity. Figure 7 is a graph showing the relationship between sedimentation rate and supernatant water turbidity, Figure 7 is a graph showing the relationship between SVI and filamentous fungus occurrence frequency, and Figure 8 is a graph showing the relationship between supernatant water turbidity, return sludge flow rate setting, and inflow sewage. It is a graph showing an example of the relationship with a flow rate setting value. 1... Aeration tank, 2... Final settling tank, 3... Turbidity meter for effluent water, 4... SVI meter, 5... Turbidity meter, 40
...SVI meter with turbidity meter, 41 ...Sludge settling pipe, 46
...SV measurement circuit section, 47...MLSS detector, 4
8...SVI calculation unit, 52...Turbidity detection sensor, 5
3... Conversion unit, 6... Calculation unit, 7... Control unit,
P 1 ... Sewage inflow pump, P 2 ... Return sludge pump.

Claims (1)

【特許請求の範囲】[Claims] 1 活性汚泥プロセスにおける曝気槽内より採水
した活性汚泥及び汚水の混合液の汚泥容量指標を
求めるための汚泥容量指標計と、前記混合液を固
液分離して得られた上澄水の濁度を検出するため
の濁度計と、前記汚泥容量指標計よりの汚泥容量
指標信号、及び前記濁度計よりの濁度信号が入力
され、その入力信号に基づいて最終沈殿池から曝
気槽へ返送される返送汚泥流量の設定信号を演算
する演算部と、この演算部の出力信号に基づいて
返送汚泥ポンプを制御する制御部とを有して成る
ことを特徴とする汚泥管理装置。
1. A sludge capacity index meter for determining the sludge capacity index of a mixed liquid of activated sludge and sewage sampled from the aeration tank in an activated sludge process, and the turbidity of supernatant water obtained by solid-liquid separation of the mixed liquid. A turbidity meter for detecting sludge, a sludge capacity indicator signal from the sludge capacity indicator, and a turbidity signal from the turbidity meter are input, and based on the input signals, the sludge is returned from the final settling tank to the aeration tank. 1. A sludge management device comprising: a calculation unit that calculates a setting signal for a return sludge flow rate; and a control unit that controls a return sludge pump based on the output signal of the calculation unit.
JP59011720A 1984-01-24 1984-01-24 Sludge control apparatus Granted JPS60153996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59011720A JPS60153996A (en) 1984-01-24 1984-01-24 Sludge control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59011720A JPS60153996A (en) 1984-01-24 1984-01-24 Sludge control apparatus

Publications (2)

Publication Number Publication Date
JPS60153996A JPS60153996A (en) 1985-08-13
JPH0457398B2 true JPH0457398B2 (en) 1992-09-11

Family

ID=11785875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59011720A Granted JPS60153996A (en) 1984-01-24 1984-01-24 Sludge control apparatus

Country Status (1)

Country Link
JP (1) JPS60153996A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206491A (en) * 1984-03-29 1985-10-18 Shimizu Constr Co Ltd Apparatus for treatment of waste water
AUPP860899A0 (en) * 1999-02-11 1999-03-04 Zeolite Australia Limited Process for the removal of suspended and other material from waste water
JP4821950B2 (en) * 2005-01-31 2011-11-24 栗田工業株式会社 Sludge characterization device
JP5201372B2 (en) * 2010-05-27 2013-06-05 栗田工業株式会社 Sludge characterization device
FI130734B1 (en) * 2021-12-23 2024-02-16 Kemira Oyj A method and apparatus for wastewater treatment

Also Published As

Publication number Publication date
JPS60153996A (en) 1985-08-13

Similar Documents

Publication Publication Date Title
US6824692B2 (en) Installation for measuring concentration in dense granular material of a flow and water treatment system comprising same
US10281383B2 (en) System and methods of determining liquid phase turbidity of multiphase wastewater
JP4793193B2 (en) Aggregation apparatus and aggregation method
JPH0457398B2 (en)
JP3925621B2 (en) Water or sludge treatment system
JP2001137835A (en) Facility control system
Sneath et al. Centrifugation for separating piggery slurry 1. The performance of a decanting centrifuge
JPH09174086A (en) Method for biological dephosphorization of wastewater and apparatus therefor
JPS64118B2 (en)
White et al. Experiments on wastewater sedimentation
JPH06194296A (en) Measuring method for ozone bubble diameter of ozone contact tank
JP3186205B2 (en) Flock measurement control device
JPH0457399B2 (en)
JPH0141111B2 (en)
JPS6328679B2 (en)
JPS649566B2 (en)
JPH0515086Y2 (en)
JPH022479Y2 (en)
JPS58183914A (en) Apparatus for controlling waste sludge of concentration tank
Sekine et al. Evaluation of settleability and separation characterisistics of activated sludge by a turbidity meter‐incorporating SVI meter
JPH0142759B2 (en)
JPS6240720Y2 (en)
JPH04187287A (en) Controller for injection of active carbon to water treating device
di Suenze Chimico-Agrarie et al. bases, vide: disks, etc., without first obtaining written per-mission fro: the publishers. All rights re reserved (including those of translation into
JPS59154195A (en) Sewage treating device using activated sludge