JPH045709B2 - - Google Patents

Info

Publication number
JPH045709B2
JPH045709B2 JP60041802A JP4180285A JPH045709B2 JP H045709 B2 JPH045709 B2 JP H045709B2 JP 60041802 A JP60041802 A JP 60041802A JP 4180285 A JP4180285 A JP 4180285A JP H045709 B2 JPH045709 B2 JP H045709B2
Authority
JP
Japan
Prior art keywords
soil
test
soil conditioner
construction sludge
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60041802A
Other languages
Japanese (ja)
Other versions
JPS61203195A (en
Inventor
Kozo Oonuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60041802A priority Critical patent/JPS61203195A/en
Publication of JPS61203195A publication Critical patent/JPS61203195A/en
Publication of JPH045709B2 publication Critical patent/JPH045709B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Fertilizers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は建設汚泥(橋梁・高架橋工事、鉄筋・
鉄骨・コンクリート・石造建屋の新築工事などの
建設工事において、場所打杭工法などで生ずる廃
泥水をいう)から製造される土壌改良剤の製造方
法に関するものである。 従来の技術 近年、産業廃棄物の処理に困窮し、また省資
源、省エネルギーの観点からもその再利用の開発
や急務とされている。 上記建設汚泥も、もとより産業廃棄物の1種で
あり、特にその莫大な発生量及び廃泥水という状
態のためにその処理には困窮しており、莫大な費
用を投じて処理しているのが現状であり、その再
利用についての有効な提案は何らなされていな
い。 一方、一般に土壌改良剤としては鉱物を主体と
したものが知られているが、その用途上大量に使
用されるため、より安価な原料の開発が望まれて
いる。 発明が解決しようとする問題点 従つて、本発明の目的は、前記したその処理に
困窮している建設汚泥の有効利用を図り、上記鉱
物を主体とする土壌改良剤に代替しうる品質を有
する土壌改良剤を建設汚泥から極めて安価に製造
することにある。 問題点を解決するための手段 上記本発明の目的は、建設汚泥を予備乾燥した
後、造粒成型し、1100℃以下の高温ガスに接触せ
しめることにより焼成する方法によつて、水分20
〜40%、石灰分5〜8%、苦土0.5〜0.7%、PH9
以上の陽イオン交換能力を有する土壌改良剤を得
ることにより達成される。このようにして得られ
る土壌改良剤は、植物に対する害もなく、土壌改
良及び植物栽培における効果も従来の土壌改良剤
に四敵するものであり、充分にその代替材として
有用である。 発明の態様 次に、本発明の土壌改良剤の製造方法につい
て、その工程毎に詳細に説明する。 (a) 予備乾燥 まず、建設汚泥を予備乾燥して、造粒し易い
含水量に乾燥する。一般に建設汚泥は80以上の
含水量を有し、これを使用する造粒機のタイプ
に応じて平均水分約30〜60%程度、好ましくは
約40%程度まで乾燥する。 この予備乾燥は、所望の方法が採用できる
が、その莫大な処理量を考慮すれば、実際上は
図面に示すフローシートのように、天日乾燥及
び/又は野積保管脱水による方法が好適であ
る。天日乾燥は、薄く積層することにより、天
日による脱水を行なうものであり、一方、野積
保管脱水は建設汚泥を貯溜槽に貯溜(表面はシ
ート養生)することにより、汚泥中に含まれる
水分を重力沈降と1部表面より蒸発により脱水
するものであり、両方法を採用する場合にはい
ずれを先に行なつてもよい。通常、約85%の含
水量の建設汚泥は約13日の天日乾燥で平均水分
約50%に、その後の野積保管(約24日)により
40%以下に脱水される。 (b) 造粒成型 以上のように予備乾燥された建設汚泥は、次
いで適当な造粒機により所望の粒型に造粒、成
型する。造粒機としては、転動形、押出し成型
形など種々のものが使用できる。中間工程とし
て行なわれるタイプの造粒機の場合には、さら
に成型工程を付加してもよい。粒子径として
は、土壌改良剤としての目的からみて、約1〜
10mm、好ましくは5〜6mm程度が望ましい。 (c) 焼成 造粒された建設汚泥は、次いで高温、例えば
約500〜1100℃、好ましくは約800〜1000℃の高
温ガスに接触せしめて、造粒機の焼成を行なう
と同時に殺菌消毒及び乾燥を行なう。なお、殺
菌消毒をそれ程厳格に行なう必要がない場合に
は、200℃程度の高温でも充分に焼成乾燥する
ことができる。この焼成工程は、実際上はロー
タリーキルンを用いて行なうのが好適である。 以上のようにして、使用建設汚泥に応じて水分
約20〜40%、石灰分約5〜8%、苦土約0.5〜0.7
%、PH9以上の陽イオン交換能力を有する土壌改
良剤が得られる。得られた土壌改良剤は、その後
冷却(自然冷却あるいは強制冷却のいずれでもよ
い)、検査、計量等を経て製品として出荷される。
なお、上記のような土壌改良剤を得るためには、
出発材料として含水率86%換算値で酸化物基準で
石灰分1.7〜4.4%、苦土0.17〜0.38%を含有する
含水率80%以上の建設汚泥を用いればよい。 なお、焼成工程の熱源たる主燃料としては、廃
タイヤを使用することが省資源、省エネルギーの
観点から有用である。例えば、図面に示すよう
に、ガス乾留発生炉に廃タイヤを定量投入し、乾
留ガス燃焼方式による高温燃焼ガスを発生せし
め、ガス流量制御により温度制御を行なう。燃料
は完全に燃焼後白化した灰状になるまで処理を施
す。かかる処理により後処理は容易となり、排気
は排煙集塵機等の設置により大気汚染対策を施
す。 実施例 以下、実施例及び試験例を示して本発明につい
て具体的に説明する。 実施例 平均水分86%の建設汚泥(四ツ街道中央興産)
を天日乾燥及び野積保管脱水して40%以下の含水
量となるように予備乾燥した後、造粒機により平
均して約5〜6mmの粒子となるように造粒した。
これを、予めToRo式ガス燃焼により加熱された
ロータリーキルンを通過せしめ、800〜1000℃の
高温ガス接触により焼成及び殺菌消毒し、その後
冷却して本発明による土壌改良剤を得た。 該土壌改良剤の分析結果は以下のとおりであつ
た。 水分(H2O) 27.98% 石灰全量(CaO) 5.46% 苦土全量(MgO) 0.56% 陽イオン交換容量 31.8meq/乾土100g PH(現物5g/500ml,16℃) 10.6 試験例 1(裁培試験) 上記実施例で得られた土壌改良剤の施用によ
る、こまつなの発芽並びに発芽後の生育への支障
の有無及びその程度を知るため、幼植物試験を実
施した。この試験条件及び結果を以下に示す。 (1) 試験条件 (イ) 供試験料及び対照試料の種類もしくは名称並
びに分析成績は表−1のとおりである。
Industrial application field The present invention is applicable to construction sludge (bridge/viaduct construction, reinforcing steel/
This article relates to a method for producing a soil conditioner from waste mud water generated during cast-in-place pile construction during construction work such as new construction of steel-framed, concrete, and stone buildings. BACKGROUND ART In recent years, it has become difficult to dispose of industrial waste, and there has been an urgent need to develop and reuse it from the viewpoint of resource and energy conservation. The above-mentioned construction sludge is of course a type of industrial waste, and it is difficult to treat it due to the huge amount generated and the state of waste mud water. At present, no effective proposals have been made for its reuse. On the other hand, mineral-based soil conditioners are generally known, but because they are used in large quantities for their purpose, there is a desire to develop cheaper raw materials. Problems to be Solved by the Invention Therefore, an object of the present invention is to effectively utilize the construction sludge described above, which is difficult to process, and to provide a soil conditioner that has quality that can be substituted for the mineral-based soil improvement agent mentioned above. The purpose of the present invention is to produce a soil conditioner from construction sludge at an extremely low cost. Means for Solving the Problems The object of the present invention is to pre-dry construction sludge, then granulate it, and sinter it by contacting with high-temperature gas of 1100°C or less to reduce the moisture content to 20%.
~40%, lime content 5-8%, magnesia 0.5-0.7%, PH9
This can be achieved by obtaining a soil conditioner having the above cation exchange ability. The soil conditioner thus obtained is harmless to plants, and its effects on soil improvement and plant cultivation are comparable to those of conventional soil conditioners, making it fully useful as a substitute. Aspects of the Invention Next, each step of the method for producing the soil conditioner of the present invention will be explained in detail. (a) Pre-drying First, construction sludge is pre-dried to a moisture content that makes it easy to granulate. Construction sludge generally has a water content of 80 or higher and is dried to an average moisture content of about 30-60%, preferably about 40%, depending on the type of granulator used. Any desired method can be used for this pre-drying, but considering the huge throughput, it is actually preferable to use solar drying and/or open storage dehydration as shown in the flow sheet shown in the drawing. . In solar drying, dehydration is carried out under the sun by layering the sludge thinly.On the other hand, in open storage dehydration, construction sludge is stored in a storage tank (the surface is covered with a sheet), and the moisture contained in the sludge is removed. The water is removed by gravity sedimentation and partial evaporation from the surface; if both methods are employed, either method may be performed first. Normally, construction sludge with a water content of about 85% is dried in the sun for about 13 days to an average moisture content of about 50%, and then stored in the open (about 24 days).
Dehydrated to less than 40%. (b) Granulation and molding The construction sludge pre-dried as described above is then granulated and molded into the desired granule shape using a suitable granulator. Various types of granulators can be used, such as a rolling type and an extrusion type. In the case of a type of granulator that performs this as an intermediate step, a molding step may be added. From the viewpoint of the purpose as a soil conditioner, the particle size is approximately 1 to 1.
The thickness is preferably about 10 mm, preferably about 5 to 6 mm. (c) Calcination The granulated construction sludge is then brought into contact with high-temperature gas, for example at about 500 to 1100°C, preferably about 800 to 1000°C, to perform sterilization and drying at the same time as calcination in the granulator. Do this. Note that if it is not necessary to carry out sterilization so strictly, baking and drying can be carried out satisfactorily even at a high temperature of about 200°C. In practice, this firing step is preferably carried out using a rotary kiln. As described above, depending on the construction sludge used, the water content is about 20-40%, the lime content is about 5-8%, and the magnesium is about 0.5-0.7.
%, a soil conditioner having a cation exchange ability of PH 9 or higher can be obtained. The obtained soil conditioner is then cooled (either natural cooling or forced cooling), inspected, weighed, etc., and then shipped as a product.
In addition, in order to obtain the above soil conditioner,
As a starting material, construction sludge with a water content of 80% or more containing 1.7 to 4.4% lime and 0.17 to 0.38% magnesium on an oxide basis in terms of a water content of 86% may be used. Note that it is useful to use waste tires as the main fuel that is the heat source in the firing process from the viewpoint of resource and energy conservation. For example, as shown in the drawing, a fixed amount of waste tires is charged into a gas carbonization generating furnace, high temperature combustion gas is generated by a carbonization gas combustion method, and temperature is controlled by controlling the gas flow rate. After the fuel is completely burned, it is treated until it becomes a white ash. Post-processing is facilitated by such treatment, and air pollution countermeasures are taken by installing exhaust gas dust collectors, etc. EXAMPLES The present invention will be specifically described below with reference to Examples and Test Examples. Example: Construction sludge with an average moisture content of 86% (Yotsukaido Chuo Kosan)
After pre-drying in the sun and storing and dehydrating in an open field to a moisture content of 40% or less, it was granulated using a granulator to obtain particles with an average size of about 5 to 6 mm.
This was passed through a rotary kiln previously heated by ToRo type gas combustion, calcined and sterilized by contact with high-temperature gas at 800 to 1000°C, and then cooled to obtain a soil conditioner according to the present invention. The analysis results of the soil conditioner were as follows. Moisture (H 2 O) 27.98% Total amount of lime (CaO) 5.46% Total amount of magnesia (MgO) 0.56% Cation exchange capacity 31.8meq/100g dry soil PH (5g actual/500ml, 16℃) 10.6 Test example 1 (cultivation) Test) A seedling test was conducted in order to determine whether and to what extent the application of the soil conditioner obtained in the above example would cause any hindrance to the germination and post-germination growth of Komatsuna. The test conditions and results are shown below. (1) Test conditions (a) The types or names of test materials and control samples, as well as the analytical results, are as shown in Table-1.

【表】 地力の大きさを表わす尺度として用いら
れている。
注)CECは乾±100g当りのミリ当量の単位で
表わした陽イオン交換容量であり、地力の大きさ
を表わす尺度として用いられている。 (ロ) 供試土壌の土性、沖積土又は洪積土の別等
[Table] Used as a measure of the strength of the soil.
Note) CEC is the cation exchange capacity expressed in units of milliequivalents per ±100 g of dry soil, and is used as a measure of soil fertility. (b) Soil properties of the test soil, whether it is alluvial soil or flood soil, etc.

【表】 (ハ) 供試作物の種類及び品種 こまつな (ニ) 施肥の設計及び試験区の名称【table】 (c) Types and varieties of test crops small (d) Fertilization design and test area name

【表】【table】

【表】 (ホ) 栽培方法【table】 (e) Cultivation method

【表】 (2) 管理の状況 土壌充てん 施肥日 (3) 試験の結果 発芽は、は種2日後に開始し、供試及び対照の
両試料間に発芽開始日の差は見られなかつた。 供試及び対照の両試料区とも、発芽後の初期生
育では目立つた生育差はなかつたが、日数経過に
従つて供試試料区の生育が対照試料より若干勝
り、この生育差は収量調査時の生体量にも影響し
ていた。調査成績を表−5に示す。
[Table] (2) Management status Soil filling Fertilization date (3) Test results Germination started two days after seeding, and there was no difference in the start date of germination between the test and control samples. There was no noticeable difference in growth between the test and control sample plots in the initial growth after germination, but as the days passed, the test sample plot's growth slightly exceeded that of the control sample, and this growth difference was observed during the yield survey. The biomass was also affected. The survey results are shown in Table-5.

【表】 以上の試験結果から明らかなように、本発明の
建設汚泥から製造した土壌改良剤の施用によるこ
まつの発芽及びその後の生育は、炭酸カルシウム
及び炭酸マグネシウムを併用した対照肥料による
ものと同等又は以上の成績を示し、植生上支障の
ある成績は認められなかつた。 試験例 2(土壌の酸度矯正試験) 本発明による土壌改良剤の酸度矯正力を知るた
め、2種類の異なつた土壌を用いて試験した。 (1) 試験方法 100mlのビーカーに供試土壌と前記実施例で製
造された土壌改良剤を一定の割合により、よく混
合した後、水を加えて畑地状態(最大容水量の約
60%)に調節し、アルミニウムはくにて覆い、27
℃の恒温器中に入れ、所定の調査日ごとに取り出
しこれに50mlの水を加えて、ガラス棒にて時々撹
拌して1時間以上放置した後、その上澄み液につ
いてPHを測定した。 (イ) 供試土壌
[Table] As is clear from the above test results, the germination and subsequent growth of komatsu by applying the soil conditioner made from construction sludge of the present invention is equivalent to that by using a control fertilizer containing calcium carbonate and magnesium carbonate. It showed results above or above, and no results that caused problems with vegetation were observed. Test Example 2 (Soil acidity correction test) In order to find out the acidity correction ability of the soil conditioner according to the present invention, a test was conducted using two different types of soil. (1) Test method After thoroughly mixing the test soil and the soil conditioner manufactured in the above example in a 100ml beaker at a certain ratio, water was added to adjust the field condition (approximately the maximum water capacity).
60%), covered with aluminum foil, and
The mixture was placed in a constant temperature chamber at °C, taken out every predetermined survey day, 50 ml of water was added thereto, stirred occasionally with a glass rod, and allowed to stand for over 1 hour, and then the pH of the supernatant liquid was measured. (b) Test soil

【表】 (ロ) 試験区【table】 (b) Test area

【表】【table】

【表】【table】

【表】 (2) 試験の結果 調査日ごとのPHの変化は次のとおりである。【table】 (2) Test results Changes in PH by survey day are as follows.

【表】【table】

【表】 上記試験結果からわかるように、本発明の土壌
改良剤を腐植質火山灰土及び硬質酸性土壌に施用
した結果、本発明による土壌改良剤は両土壌に対
して酸度矯正効果のあることが認められた。 植物には最適PH領域があり、例えばエンドウ、
サトウキビ、ホウレンソウなどはPH6.5〜7.0、ア
スパラガス、インゲン、オオムギ、カボチヤ、カ
リフラワー、カンピヨウ、キユウリ、コムギ、サ
トイモ、スイカ、ハクサイ、ネギ、ナス、トマ
ト、シユンギク、シクラメン等大部分の植物はPH
6.0〜6.5、イネ、キヤベツ、ダイコン、コマツナ
などはPH5.5〜6.5、ウメ、ソバ、ラツキヨウなど
はPH5.5〜6.0である。ところが、前記腐植質火山
灰土壌はPH5.5硬質酸性土壌はPH5.0であり、殆ん
どの植物や栽培困難であるが、本発明の土壌改良
剤を施用することによつて酸性土壌を植物栽培に
最適な土壌に改良することができる。その施用量
は目的とする植物及び適用土壌に従つて適宜の割
合に容易に決定することができる。 発明の効果 以上のように、本発明によれば、産業廃棄物で
ある建設汚泥から、従来のそれに匹敵しあるいは
それ以上の土壌改良及び植物生育効果を有する土
壌改良剤が得られる。しかも、その原料は産業廃
棄物である建設汚泥であるから、極めて安価に製
造できると共に、省資源の見地からもまた産業廃
棄物の処理上の面からも、極めて有用なものであ
る。
[Table] As can be seen from the above test results, when the soil conditioner of the present invention was applied to humic volcanic ash soil and hard acidic soil, it was found that the soil conditioner of the present invention had an acidity correction effect on both types of soil. Admitted. Plants have an optimal PH range, for example, peas,
Sugarcane, spinach, etc. have a pH of 6.5 to 7.0, and most plants, such as asparagus, green beans, barley, pumpkin, cauliflower, campiyou, cucumber, wheat, taro, watermelon, Chinese cabbage, green onion, eggplant, tomato, Chinese cabbage, and cyclamen, have a pH of 6.5 to 7.0.
6.0-6.5, rice, cabbage, radish, Komatsuna, etc. have a PH of 5.5-6.5, and plums, buckwheat, radish, etc. have a PH of 5.5-6.0. However, the humic volcanic ash soil has a pH of 5.5 and hard acidic soil has a pH of 5.0, making it difficult to cultivate most plants. It is possible to improve the soil to the optimum level. The application amount can be easily determined at an appropriate rate depending on the target plant and the applied soil. Effects of the Invention As described above, according to the present invention, a soil conditioner having soil improvement and plant growth effects comparable to or superior to conventional ones can be obtained from construction sludge, which is industrial waste. Furthermore, since the raw material is construction sludge, which is industrial waste, it can be produced at an extremely low cost, and is extremely useful from the standpoint of resource conservation and industrial waste treatment.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の方法の一実施態様を示すフロー
シートである。
The drawing is a flow sheet illustrating one embodiment of the method of the invention.

Claims (1)

【特許請求の範囲】[Claims] 1 含水率86%換算値で酸化物基準で石灰分1.7
〜4.4%、苦土0.17〜0.38%を含有する含水率80%
以上の建設汚泥を予備乾燥した後、造粒成型し、
1100℃以下の高温ガスに接触せしめることにより
焼成し、水分20〜40%、石灰分5〜8%、苦土
0.5〜0.7%、PH9以上の陽イオン交換能力を有す
る土壌改良剤を得ることを特徴とする建設汚泥か
ら土壌改良剤を製造する方法。
1 Calcium content 1.7 based on oxides based on moisture content of 86%
Moisture content 80% containing ~4.4%, magnesia 0.17~0.38%
After pre-drying the above construction sludge, it is granulated and molded.
Calcined by contacting with high temperature gas below 1100℃, moisture 20-40%, lime content 5-8%, magnesia
A method for producing a soil conditioner from construction sludge, characterized by obtaining a soil conditioner having a cation exchange capacity of 0.5 to 0.7% and a pH of 9 or higher.
JP60041802A 1985-03-05 1985-03-05 Preparation of soil conditioner Granted JPS61203195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60041802A JPS61203195A (en) 1985-03-05 1985-03-05 Preparation of soil conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60041802A JPS61203195A (en) 1985-03-05 1985-03-05 Preparation of soil conditioner

Publications (2)

Publication Number Publication Date
JPS61203195A JPS61203195A (en) 1986-09-09
JPH045709B2 true JPH045709B2 (en) 1992-02-03

Family

ID=12618462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60041802A Granted JPS61203195A (en) 1985-03-05 1985-03-05 Preparation of soil conditioner

Country Status (1)

Country Link
JP (1) JPS61203195A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100694266B1 (en) * 2000-12-21 2007-03-14 재단법인 포항산업과학연구원 An apparatus and method for manufacturing organic fertilizer using sludge
JP2009132566A (en) * 2007-11-30 2009-06-18 Taiheiyo Material Kk Method of manufacturing porous sintered body
JP2010275343A (en) * 2009-05-26 2010-12-09 Kanto Kanzai:Kk Filter medium for soil improvement, method for manufacturing the filter medium for soil improvement, and method of soil improvement using the filter medium for soil improvement
JP5902962B2 (en) * 2012-02-29 2016-04-13 大成建設株式会社 Liquid greening material and slope greening method
JPWO2019070027A1 (en) * 2017-10-05 2020-11-05 国立研究開発法人理化学研究所 Plant irrigation reducing agents and methods for reducing plant irrigation

Also Published As

Publication number Publication date
JPS61203195A (en) 1986-09-09

Similar Documents

Publication Publication Date Title
CN107267151B (en) Soil conditioner and preparation method thereof
KR101374264B1 (en) Composition for conditioning soil or promoting plant growth comprising inorganic sludge and method for producing thefeof
CN111423884A (en) Acid soil conditioner and application method and application thereof
KR100332368B1 (en) Method of the preparation of multi-functional and porous ceramics
JPH045709B2 (en)
KR100337084B1 (en) method for manufacturing compost by using sewage sluge
CN110583426A (en) Construction waste artificial soil
CN106010543A (en) Method for improving acid soil by using montmorillonite
KR101692825B1 (en) Artificial soil comprising dry bottom/middle ash and the manufacturing method of the same
JPH11207294A (en) Method for recycling waste incineration ash
KR102159752B1 (en) Eco-friendly green soil composition for slope afforestation and eco-friendly method of slope afforestation using the same
CN105622286A (en) Water-retention sand-fixing material and preparation method and application thereof
Kaljuvee et al. Influence of the post-granulation treatment on the thermal behaviour and leachability characteristics of Estonian oil shale ashes
CN110683885A (en) Coated slow-release fertilizer and application thereof in inhibiting absorption of heavy metal cadmium and reducing loss of nitrogen
JP4649361B2 (en) Composite material utilizing industrial waste liquid, solid-liquid separation method of industrial waste liquid, and storage method of industrial waste liquid
KR101064458B1 (en) Tobermorite hydrated microorganism carrier with seeded dolomoite, the process of manufacture of it and a soil conditioner using the microorganism carrier
KR100568336B1 (en) A preparing method of compound fertilizer by using sewage sludge dehydrated cake and the compound fertilizer thereby
KR100764004B1 (en) Composition of seed spray soil comprising sewage sludge and starfish powder, and preparation method thereof
JP2004321036A (en) Granular culture soil
JPH02169080A (en) Granulated paper sludge and production thereof
Chelyadyn et al. TRANSFORMATION OF TECHNOGENIC WASTE BASED ON WATER TREATMENT SLUDGE INTO GRANULATED FERTILIZER.
KR100735030B1 (en) Artificial soil composition for the greening to use high-temperature melting salt and method of manufacturing the same
KR101080482B1 (en) method for manufacturing a soil conditioner using a dam-sludge
JPS593089A (en) Manufacture of organic fertilizer
JP2002058334A (en) Culture soil utilizing sludge