JPH0457071B2 - - Google Patents
Info
- Publication number
- JPH0457071B2 JPH0457071B2 JP59123590A JP12359084A JPH0457071B2 JP H0457071 B2 JPH0457071 B2 JP H0457071B2 JP 59123590 A JP59123590 A JP 59123590A JP 12359084 A JP12359084 A JP 12359084A JP H0457071 B2 JPH0457071 B2 JP H0457071B2
- Authority
- JP
- Japan
- Prior art keywords
- separator
- negative electrode
- positive electrode
- electrode mixture
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 claims description 19
- 239000011255 nonaqueous electrolyte Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- 229910052744 lithium Inorganic materials 0.000 description 7
- 238000000034 method Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/16—Cells with non-aqueous electrolyte with organic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/463—Separators, membranes or diaphragms characterised by their shape
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Cell Separators (AREA)
- Primary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】
この発明は、ボタン型電池あるいはコイン型電
池と称されている偏平形の非水電解液電池の改良
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in flat nonaqueous electrolyte batteries called button batteries or coin batteries.
周知のように、リチウムなどの軽金属を負極活
物質とする非水電解液電池は、高い理論エネルギ
ー密度を得ることができるので、小さな偏平形電
池で長寿命かつ高放電性能のものを実現すること
ができる。この種の偏平形非水電解液電池におい
て、大きな短絡電流を得るという高負荷放電性能
を特に重視する場合、電池構成上次のような配慮
が必要である。まず、正極缶と正極合剤、負極缶
と負極のそれぞれの電気的接触状態を良好かつ安
定に保つことが必要である。そのために、正極合
剤と正極缶の間、負極缶と負極の間にそれぞれ金
属ネツトやエキスパンデツドメタルなどの集電体
を介在させることが一般に行なわれている。次に
重要なことは、正極合剤と負極との対向面積をで
きるだけ大きくし、しかも極間距離を充分に小さ
くすることである。しかし正負極の対向面積は、
偏平形電池の外径寸法によつて大きく規制され、
限られた寸法内で対向面積を飛躍的に大きくする
ということは従来できなかつた。 As is well known, nonaqueous electrolyte batteries that use light metals such as lithium as negative electrode active materials can achieve high theoretical energy density, making it possible to achieve long life and high discharge performance with small flat batteries. Can be done. In this type of flat non-aqueous electrolyte battery, when high-load discharge performance to obtain a large short-circuit current is particularly important, the following considerations must be made in the battery configuration. First, it is necessary to maintain good and stable electrical contact between the positive electrode can and the positive electrode mixture, and between the negative electrode can and the negative electrode. For this purpose, it is common practice to interpose current collectors such as metal nets or expanded metal between the positive electrode mixture and the positive electrode can, and between the negative electrode can and the negative electrode, respectively. The next important thing is to make the facing area of the positive electrode mixture and the negative electrode as large as possible, and to make the distance between the electrodes sufficiently small. However, the opposing area of the positive and negative electrodes is
It is largely regulated by the outer diameter of the flat battery.
Conventionally, it has not been possible to dramatically increase the facing area within limited dimensions.
ところで本出願人らは、リチウム負極の表面に
形成される不導体皮膜を除去することを目的と
し、負極のセパレータとの当接面に微小な凹凸を
形成することを先に提案している。また、正極合
剤の加圧成形後にそりやひび割れが生ずるのを防
止する目的で、正極合剤とセパレータとの当接面
に溝を形成することも既に提案している。この2
つの例における凹凸や溝の深さ(高低差)はセパ
レータの厚みよりも相当に小さなもので、セパレ
ータがこの凹凸や溝を埋めるかたちとなり、この
凹凸や溝によつて正負極の対向面積が増加すると
いうものではなかつた。正極合剤と負極のいずれ
か一方の対向面にのみ微小な凹凸あるいは溝が形
成されていても、その凹凸や溝を形成した側の表
面積は確かに増加するが、高負荷放電性能上重要
になる対向面積は殆ど増加しない。それだけでな
く、一方の対向面にのみ凹凸あるいは溝が形成さ
れていると、平均極間距離はむしろ増加する傾向
となり、この点でも高負荷放電性能の向上には役
立たない。 By the way, the present applicants have previously proposed forming minute irregularities on the contact surface of the negative electrode with the separator for the purpose of removing the nonconductor film formed on the surface of the lithium negative electrode. Furthermore, it has already been proposed to form grooves on the abutting surfaces of the positive electrode mixture and the separator in order to prevent warping and cracking after the positive electrode mixture is press-molded. This 2
The depth (height difference) of the unevenness and grooves in these examples is considerably smaller than the thickness of the separator, and the separator fills in these unevenness and grooves, increasing the facing area of the positive and negative electrodes. It wasn't something I would do. Even if minute irregularities or grooves are formed only on the opposing surfaces of either the positive electrode mixture or the negative electrode, the surface area on the side where the irregularities or grooves are formed will certainly increase, but this is important for high-load discharge performance. The opposing area will hardly increase. In addition, if unevenness or grooves are formed only on one opposing surface, the average distance between the electrodes tends to increase, and in this respect as well, it is not useful for improving high-load discharge performance.
この発明は前述した従来の問題点に鑑みてなさ
れたものであり、その目的は、電池ケースの寸法
的な制約を克服して正負極の対向面積を増大させ
るとともに、極間距離を小さくし、短絡電流の大
きな高負荷放電性能に優れた偏平形非水電解液電
池を提供することにある。 This invention was made in view of the above-mentioned conventional problems, and its purpose is to overcome the dimensional limitations of the battery case, increase the facing area of positive and negative electrodes, reduce the distance between the electrodes, The object of the present invention is to provide a flat non-aqueous electrolyte battery that has a large short circuit current and excellent high-load discharge performance.
上記の目的を達成するために、この発明は、負
極のセパレータとの接合面にセパレータの厚みよ
り充分大きな高低差をもつた断面波形の凹凸面を
形成し、この凹凸面にセパレータを密着してセパ
レータ自体も波形の凹凸面に形成し、このセパレ
ータの凹凸面に正極合剤を充填状態で接合するよ
うに構成したことを特徴とする。 In order to achieve the above object, the present invention forms an uneven surface with a corrugated cross section having a height difference sufficiently larger than the thickness of the separator on the joint surface of the negative electrode with the separator, and then tightly adheres the separator to this uneven surface. The separator itself is also formed to have a corrugated uneven surface, and the positive electrode mixture is bonded to the uneven surface of the separator in a filled state.
以下、この発明の実施例を図面に基づいて詳細
に説明する。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
第1図はこの発明を適用した偏平形のリチウム
電池を示している。正極缶10と、それより外径
寸法が若干小さい皿状の負極端子板12と、環状
の封口ガスケツト14とで偏平形の電池ケースが
構成され、その内部に正極合剤16、セパレータ
18、リチウム負極20が積層して装填されてい
る。正極缶10および負極端子板12はステンレ
ススチールにより構成されている。封口ガスケツ
ト14は負極端子板12の周縁部と正極缶10の
内周部との間に挾み込まれ、正極缶10の内底面
を座として圧縮され、電池ケースを密閉してい
る。正極合剤16は二酸化マンガンに導電剤およ
びバインダを加えて混練・成形したものである。
セパレータ18は柔軟なポリプロピレン不織布か
らなる。正極合剤16およびセパレータ18には
非水電解液が含浸されている。 FIG. 1 shows a flat lithium battery to which the present invention is applied. A flat battery case is composed of the positive electrode can 10, a dish-shaped negative electrode terminal plate 12 whose outer diameter is slightly smaller than the positive electrode can, and an annular sealing gasket 14. The negative electrodes 20 are stacked and loaded. The positive electrode can 10 and the negative electrode terminal plate 12 are made of stainless steel. The sealing gasket 14 is inserted between the periphery of the negative terminal plate 12 and the inner periphery of the positive electrode can 10, and is compressed using the inner bottom surface of the positive electrode can 10 as a seat to seal the battery case. The positive electrode mixture 16 is made by adding a conductive agent and a binder to manganese dioxide, kneading and molding the mixture.
Separator 18 is made of flexible polypropylene nonwoven fabric. The positive electrode mixture 16 and the separator 18 are impregnated with a non-aqueous electrolyte.
リチウム負極20のセパレータ18側の面は、
セパレータ18の厚みの数倍程度の大きな高低差
をもつた断面三角波形の凹凸面になつている。柔
軟なセパレータ18は負極20の波形凹凸面に密
着して配置されており、セパレータ18自体も同
じ波形の凹凸面をなしている。正極合剤16はセ
パレータ18の凹凸面に緊密に充填された状態に
なつている。つまり、正極合剤16のセパレータ
18との接合面が負極20と同じ波形凹凸面にな
つており、この波形凹凸面同士がセパレータ18
を挾んで対向している。 The surface of the lithium negative electrode 20 on the separator 18 side is
It has an uneven surface with a triangular wave-shaped cross section and a large height difference several times the thickness of the separator 18. The flexible separator 18 is placed in close contact with the corrugated surface of the negative electrode 20, and the separator 18 itself also has the same corrugated surface. The positive electrode mixture 16 is tightly packed into the uneven surface of the separator 18. In other words, the bonding surface of the positive electrode mixture 16 with the separator 18 is the same wavy uneven surface as the negative electrode 20, and these wavy uneven surfaces are connected to the separator 18.
They are facing each other with the two in between.
第2図はこの発明の要部を製造工程順に示して
いる。リチウム負極20は柔軟であるので、適当
な金型を用いてプレス加工することにより、第2
図Aに示すように、負極20の一方の表面に図の
ような同心円状の平面パターンをもつ凹凸面を容
易に形成することができる。この負極20の平滑
面側を負極端子板12の内面に圧着する。負極2
0の凹凸の高低差aは、セパレータ18の厚みの
3〜8倍程度とし、また負極20の最大厚みbの
1/2以上とする。 FIG. 2 shows the main parts of this invention in the order of manufacturing steps. Since the lithium negative electrode 20 is flexible, it can be pressed into a second form using an appropriate mold.
As shown in Figure A, an uneven surface having a concentric planar pattern as shown in the figure can be easily formed on one surface of the negative electrode 20. The smooth surface side of this negative electrode 20 is pressed onto the inner surface of the negative electrode terminal plate 12. Negative electrode 2
The height difference a of the unevenness of 0 is approximately 3 to 8 times the thickness of the separator 18, and is 1/2 or more of the maximum thickness b of the negative electrode 20.
負極20を負極端子板12の内面に圧着した
後、第2図Bに示すように、負極20の波形凹凸
面上にセパレータ18を被せ、これを凹凸面に密
着させる。次に同図Cに示すように、セパレータ
18の波形凹凸面上に正極合剤16を重ねる。こ
の部分の製造工程には幾つかの方法がある。正極
合剤16を予め円板状に加圧成形しておき、それ
をセパレータ18上に重ねる方法と、セパレータ
18上で正極合剤16を成形する方法のいずれで
も良い。正極合剤16を予め成形しておく場合に
は、セパレータ18との当接面側に負極20と凹
凸を逆にした同心円状の波形凹凸面を成形時に同
時に形成する。 After the negative electrode 20 is crimped onto the inner surface of the negative electrode terminal plate 12, as shown in FIG. 2B, the separator 18 is placed over the corrugated uneven surface of the negative electrode 20 and brought into close contact with the uneven surface. Next, as shown in FIG. 3C, the positive electrode mixture 16 is stacked on the corrugated surface of the separator 18. There are several methods for manufacturing this part. Either a method of press-molding the positive electrode mixture 16 into a disk shape in advance and stacking it on the separator 18, or a method of molding the positive electrode mixture 16 on the separator 18 may be used. When the positive electrode mixture 16 is molded in advance, a concentric wave-shaped uneven surface with the unevenness reversed to that of the negative electrode 20 is simultaneously formed on the side of the contact surface with the separator 18 at the time of molding.
第2図Cの段階まで組立てられたものに非水電
解液を注液し、また封口ガスケツト14および正
極缶10を組合せ、正極缶10の周縁をかしめる
ことで電池が完成する。このように本発明の電池
では、リチウム負極20と正極合剤16とが、セ
パレータ18の厚みより充分大きな高低差をもつ
た波形凹凸面同士で対向しているので、限られた
電池ケースの大きさに対し、正負極の対向面積は
従来より飛躍的に増大する。また極間距離はセパ
レータ18の厚みにほぼ等しく、最小限の距離に
することができる。従つて電池の高負荷放電性能
が向上し、大きな短絡電流を取り出すことができ
る。 A non-aqueous electrolyte is injected into the assembly assembled up to the step shown in FIG. 2C, the sealing gasket 14 and the positive electrode can 10 are assembled, and the periphery of the positive electrode can 10 is caulked to complete the battery. In this way, in the battery of the present invention, the lithium negative electrode 20 and the positive electrode mixture 16 face each other with the corrugated uneven surfaces having a height difference sufficiently larger than the thickness of the separator 18, so that the battery case size is limited. On the other hand, the facing area of the positive and negative electrodes increases dramatically compared to the conventional method. Further, the distance between the electrodes is approximately equal to the thickness of the separator 18, and can be kept to a minimum distance. Therefore, the high load discharge performance of the battery is improved and a large short circuit current can be extracted.
なお上記の実施例では、リチウム負極20に形
成する波形凹凸面の平面パターンを同心円状とし
たが、本発明はこれに限定されず、凹凸面の平面
パターンは平行線状や格子状あるいはランダム模
様でもよい。 In the above embodiment, the planar pattern of the corrugated surface formed on the lithium negative electrode 20 is concentric, but the present invention is not limited to this, and the planar pattern of the uneven surface may be parallel lines, a lattice, or a random pattern. But that's fine.
以上詳細に説明したように、この発明の偏平形
非水電解液電池では、正負極の対向面積が同一寸
法の従来電池に比べて大幅に増大し、また極間距
離も充分に小さく保てるので、短絡電流の大きな
高負荷放電性能に優れたものとなる。 As explained in detail above, in the flat non-aqueous electrolyte battery of the present invention, the facing area of the positive and negative electrodes is significantly increased compared to conventional batteries of the same size, and the distance between the electrodes can also be kept sufficiently small. It has excellent high load discharge performance with a large short circuit current.
第1図はこの発明の一実施例による偏平形非水
電解液電池の断面図、第2図は同上電池における
本発明の要部となる部分の構成を詳細に示す工程
図である。
10……正極缶、12……負極端子板、14…
…封口ガスケツト、16……正極合剤、18……
セパレータ、20……負極。
FIG. 1 is a sectional view of a flat non-aqueous electrolyte battery according to an embodiment of the present invention, and FIG. 2 is a process diagram showing in detail the structure of the essential parts of the present invention in the same battery. 10...Positive electrode can, 12...Negative electrode terminal plate, 14...
... Sealing gasket, 16... Positive electrode mixture, 18...
Separator, 20... negative electrode.
Claims (1)
極と、セパレータと、正極合剤とが積層して装填
された非水電解液電池であつて、上記負極の上記
セパレータとの接合面が上記セパレータの厚みよ
り充分大きな高低差をもつた断面波形の凹凸面に
形成され、この凹凸面に上記セパレータが密着し
てセパレータ自体も波形の凹凸面に形成され、こ
のセパレータの凹凸面に上記正極合剤が充填状態
で接合していることを特徴とする偏平形非水電解
液電池。1 A non-aqueous electrolyte battery in which a negative electrode made of a light metal, a separator, and a positive electrode mixture are laminated and loaded in a flat battery case, wherein the bonding surface of the negative electrode with the separator is the separator. The separator is formed into an uneven surface with a corrugated cross section having a height difference sufficiently larger than the thickness of the separator. A flat non-aqueous electrolyte battery characterized by being bonded together in a filled state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59123590A JPS614167A (en) | 1984-06-18 | 1984-06-18 | Flat-type nonaqueous electrolyte cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59123590A JPS614167A (en) | 1984-06-18 | 1984-06-18 | Flat-type nonaqueous electrolyte cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS614167A JPS614167A (en) | 1986-01-10 |
JPH0457071B2 true JPH0457071B2 (en) | 1992-09-10 |
Family
ID=14864362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59123590A Granted JPS614167A (en) | 1984-06-18 | 1984-06-18 | Flat-type nonaqueous electrolyte cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS614167A (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63126157A (en) * | 1986-11-15 | 1988-05-30 | Hitachi Maxell Ltd | Lithium cell |
JPS63289768A (en) * | 1987-05-20 | 1988-11-28 | Sanyo Electric Co Ltd | Solid electrolyte battery |
KR100929452B1 (en) * | 2000-10-20 | 2009-12-02 | 매사츄세츠 인스티튜트 오브 테크놀러지 | Bipolar device |
US20090202903A1 (en) | 2007-05-25 | 2009-08-13 | Massachusetts Institute Of Technology | Batteries and electrodes for use thereof |
JP2012014840A (en) * | 2010-06-29 | 2012-01-19 | Panasonic Corp | Coin cell and method of manufacturing the same |
WO2012042764A1 (en) * | 2010-09-29 | 2012-04-05 | パナソニック株式会社 | Lithium primary battery and manufacturing method for same |
US9065093B2 (en) | 2011-04-07 | 2015-06-23 | Massachusetts Institute Of Technology | Controlled porosity in electrodes |
KR101627305B1 (en) * | 2013-02-04 | 2016-06-03 | 주식회사 엘지화학 | Method for preparing electrode assembly, electrode assembly therefrom, and electrochemical device comprising the same |
US10675819B2 (en) | 2014-10-03 | 2020-06-09 | Massachusetts Institute Of Technology | Magnetic field alignment of emulsions to produce porous articles |
WO2016054530A1 (en) | 2014-10-03 | 2016-04-07 | Massachusetts Institute Of Technology | Pore orientation using magnetic fields |
-
1984
- 1984-06-18 JP JP59123590A patent/JPS614167A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS614167A (en) | 1986-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5562741A (en) | Method of making a bipolar battery housing | |
US5326656A (en) | Bipolar battery electrode | |
US5344727A (en) | Bipolar battery electrode | |
JPH11307076A (en) | Secondary battery | |
JPH0457071B2 (en) | ||
WO2021033601A1 (en) | All-solid-state battery | |
JPS63175345A (en) | Organic electrolyte battery | |
US4154908A (en) | Electrode configuration for alkaline battery systems | |
JPH11162519A (en) | Lithium ion secondary battery | |
US20030013016A1 (en) | Method for manufacturing a biplate assembly, a biplate assembly and a bipolar battery | |
JPH031455A (en) | Sealed square alkaline storage battery | |
JPH10228908A (en) | Alkaline storage battery | |
CA1108692A (en) | Tapered edged electrode configuration for alkaline batteries | |
JPH046121Y2 (en) | ||
JPH046120Y2 (en) | ||
JP2979206B2 (en) | Manufacturing method of storage battery | |
JPH0121484Y2 (en) | ||
JP3141445B2 (en) | Sealed lead-acid battery | |
JP2804557B2 (en) | Prismatic battery and method of manufacturing the same | |
JPS6321098Y2 (en) | ||
JP3036245B2 (en) | Cathode plate for lead-acid battery and thin sealed lead-acid battery | |
JPS6125172Y2 (en) | ||
KR19980015432A (en) | A method of manufacturing a hydrogen cathode and an alkaline secondary battery employing the hydrogen cathode | |
JPS5853026Y2 (en) | flat battery | |
JPH06111825A (en) | Manufacture of grid body |