JPH0456952B2 - - Google Patents

Info

Publication number
JPH0456952B2
JPH0456952B2 JP8974384A JP8974384A JPH0456952B2 JP H0456952 B2 JPH0456952 B2 JP H0456952B2 JP 8974384 A JP8974384 A JP 8974384A JP 8974384 A JP8974384 A JP 8974384A JP H0456952 B2 JPH0456952 B2 JP H0456952B2
Authority
JP
Japan
Prior art keywords
acousto
element antenna
radio wave
frequency
optic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8974384A
Other languages
Japanese (ja)
Other versions
JPS60233577A (en
Inventor
Tsutomu Yano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59089743A priority Critical patent/JPS60233577A/en
Publication of JPS60233577A publication Critical patent/JPS60233577A/en
Publication of JPH0456952B2 publication Critical patent/JPH0456952B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/48Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being continuous or intermittent and the phase difference of signals derived therefrom being measured

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は相手レーダ信号の到来方向とその周波
数成分を検出する電波探知器に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a radio wave detector that detects the direction of arrival of an opponent's radar signal and its frequency components.

従来列の構成とその問題点 従来、到来電波の周波数解析と方向探知は異な
る受信系で行なわれることが一般であつた。これ
を同一の受信系で行う方法として、マルチチヤン
ネルを有する音響光学素子と2次元光検出器を組
合せて、電波探知する方法が知られている。この
種の装置は第1図に示すように構成されている。
ここで音響光学素子の原理を簡単に説明する。音
響光学素子はガラスや結晶など光を透過させる媒
体と、その表面に接着され高周波電気信号を超音
波信号に変換する超音波トランスジユーサから構
成される。音響光学素子の動作は素子内にレーザ
光線を透過させ、レーザ光線の進行方向に通常ブ
ラツグ角と呼ばれる角度で超音波信号を作用させ
る。このとき媒体内に超音波による屈折率分布が
発生し、これが位相回折格子の役目を行いレーザ
光線を回折する。この回折角は超音波信号の周波
数、即ち駆動している電気信号の周波数に比例
し、回折光強度は超音波の強さ即ち電気信号の強
さに関係する。
Conventional array configuration and its problems In the past, frequency analysis of incoming radio waves and direction finding were generally performed in different receiving systems. As a method for performing this in the same receiving system, a method is known in which radio wave detection is performed by combining an acousto-optic element having multichannels and a two-dimensional photodetector. This type of device is constructed as shown in FIG.
Here, the principle of an acousto-optic element will be briefly explained. Acousto-optic elements consist of a medium that transmits light, such as glass or crystal, and an ultrasonic transducer that is bonded to the surface of the medium and converts high-frequency electrical signals into ultrasonic signals. The operation of an acousto-optic device is to transmit a laser beam through the device and apply an ultrasonic signal in the direction of travel of the laser beam at an angle commonly referred to as the Bragg angle. At this time, a refractive index distribution is generated in the medium due to the ultrasonic waves, which acts as a phase diffraction grating and diffracts the laser beam. This diffraction angle is proportional to the frequency of the ultrasound signal, ie, the frequency of the driving electrical signal, and the intensity of the diffracted light is related to the strength of the ultrasound, ie, the strength of the electrical signal.

直線上に配列された複数の素子アンテナの素子
間隔はすべて異ならせる。この配列間隔には検出
感度や、コスト面からいろんな方法が考えられて
いるが、例えば1aと1bの間隔に対し、1bと
1cの間隔を互いに素な関係、例えば3:4と
し、次に、1bと1cの間隔に対し1cと1dの
間隔も同じ3:4としている。このように順次同
じ関係を繰り返して素子アンテナを配列する方法
もある。このように配列された複数の素子アンテ
ナ1a〜1zで受信される角度θ方向からの到来
電波2は、電気回路3で中間周波として音響光学
素子の駆動周波数域に落され、電気回路4によつ
て電力増幅され、それぞれ受信アンテナ素子1a
〜1zに対する配列間隔に比例して配列された音
響光学素子5上のマルチトランスジユーサ6a〜
6zに印加される。一方、このマルチトランスジ
ユーサにそれぞれ印加される信号は、到来電波が
各アンテナまでに到達するそれぞれの遅延時間差
を有している。レーザ光線7からのレーザ光は拡
大光学系8で平行ビームにされ、音響光学素子5
にブラツグ角をなすように照射される。音響光学
素子5を通過した光は各トランスジユーサ6a〜
6zから発射される、それぞれ遅延時間をもつた
超音波信号によつて回折される。つまり、これら
の回折光の間には各アンテナで生じた遅延時間
差、即ち位相差が生じている。これらの回折光9
をフーリエ変換レンズ10で干渉させると、レン
ズ焦点面11上では面の中心軸方向から上下、左
右に偏向した位置に結像される。
The element spacings of the plurality of element antennas arranged on a straight line are all made to be different. Various methods have been considered for this arrangement interval from the viewpoint of detection sensitivity and cost, but for example, the interval between 1b and 1c is set to be relatively prime to the interval between 1a and 1b, for example, 3:4, and then, The interval between 1c and 1d is also the same as the interval between 1b and 1c, 3:4. There is also a method of arranging element antennas by repeating the same relationship one after another in this way. Incoming radio waves 2 from the angle θ direction received by the plurality of element antennas 1a to 1z arranged in this manner are dropped into the drive frequency range of the acousto-optic element as an intermediate frequency by the electric circuit 3, and are transmitted by the electric circuit 4. The power is amplified by each receiving antenna element 1a.
~Multi-transducer 6a on the acousto-optic element 5 arranged in proportion to the arrangement interval with respect to 1z~
6z. On the other hand, the signals applied to each of the multi-transducers have respective delay time differences in arrival radio waves reaching each antenna. The laser beam from the laser beam 7 is made into a parallel beam by the expanding optical system 8, and is then converted into a parallel beam by the acousto-optic element 5.
The beam is irradiated so that it forms a Bragg angle. The light passing through the acousto-optic element 5 is transmitted to each transducer 6a~
It is diffracted by ultrasonic signals emitted from 6z, each having a delay time. In other words, there is a delay time difference, that is, a phase difference, caused by each antenna between these diffracted lights. These diffracted lights 9
When these are caused to interfere with each other by the Fourier transform lens 10, an image is formed on the lens focal plane 11 at a position that is deflected vertically and horizontally from the central axis direction of the surface.

中心軸方向から上下方向、即ち超音波の進行方
向に相当する軸方向の情報は、回折角に相当する
ため前述のように信号の周波数情報を有する。一
方、左右方向はそれぞれの回折光の位相差によつ
て生じたものであり、超音波信号の遅延時間差の
情報を有する。この遅延時間は電波の各アンテナ
への到来時間の差であり、これはアンテナの配列
間隔とアンテナへの入射角(電波の到来方向とア
ンテナの配列方向のなす角度)に依存する。従つ
て、焦点面11上に2次元光検出器12を置き、
2次元光検出器12の出力を信号処理器13によ
つて順次読み出していくことによつて到来電波の
周波数と方位を知ることができる。しかしなが
ら、この方法では、各アンテナ間で生じる遅延時
間は、アンテナの配列方向に対する到来電波の入
射角で定まり、この入射角は第2図に示すように
各アンテナ素子1a〜1z間に等しい位相差を生
ぜしめる到来電波の方向はアンセナ素子の配列方
向を中心軸14とし、頂角を2α(α=90°−θ)
とする円錐15上に存在することまでは判明する
が一義的には決定できない。従つて到来電波の方
向を定められない。
Information in the vertical direction from the central axis direction, that is, in the axial direction corresponding to the direction of propagation of the ultrasonic wave, corresponds to the diffraction angle and therefore has signal frequency information as described above. On the other hand, the left and right directions are caused by the phase difference between the respective diffracted lights, and have information on the delay time difference of the ultrasound signals. This delay time is the difference in arrival time of radio waves to each antenna, and this depends on the array interval of the antennas and the angle of incidence on the antennas (the angle between the direction of arrival of the radio waves and the direction of the array of the antennas). Therefore, a two-dimensional photodetector 12 is placed on the focal plane 11,
By sequentially reading out the output of the two-dimensional photodetector 12 by the signal processor 13, the frequency and direction of the incoming radio waves can be determined. However, in this method, the delay time that occurs between each antenna is determined by the incident angle of the incoming radio wave with respect to the antenna arrangement direction, and this incident angle is determined by the equal phase difference between each antenna element 1a to 1z as shown in FIG. The direction of the incoming radio wave that causes
Although it is known that it exists on the cone 15, it cannot be determined uniquely. Therefore, the direction of the incoming radio waves cannot be determined.

発明の目的 本発明は、以上のような従来の問題点を解決す
るためになされたもので、到来電波の周波数と方
位を精度よく、かつ瞬時に探知することのできる
電波探知器を提供することを目的とする。
Purpose of the Invention The present invention was made in order to solve the conventional problems as described above, and it is an object of the present invention to provide a radio wave detector that can accurately and instantaneously detect the frequency and direction of incoming radio waves. With the goal.

発明の構成 本発明は上記目的を達成するもので、到来する
電波を受信する少なくとも2本の平行でない直線
上に配列され、かつ前記素子アンテナの間隔が互
いに異なるように配列されてなる複数の素子アン
テナ群と、前記各素子アンテナ群それぞれについ
て、素子アンテナ群の各素子アンテナに接続され
た受信用の電気回路と、前記電気回路からの、各
素子アンテナに対応する出力を接続し、前記アン
テナ間隔と比例関係を有した配列関係で配列され
た複数のトランスジユーサを有し、複数の素子ア
ンテナ群にそれぞれ対応して設けられた音響光学
素子と、音響光学素子に平行レーザ光を照射する
ためのレーザ光源と、回折光を結像させる光学系
と、回折系を検出する2次元検出器と、この出力
を読み出す信号処理器と、これら2系統の出力よ
り方位を演算する演算器より構成されている電波
探知器を提供するものである。
Structure of the Invention The present invention achieves the above object, and includes a plurality of elements arranged on at least two non-parallel straight lines for receiving incoming radio waves, and arranged such that the intervals between the element antennas are different from each other. For the antenna group and each of the element antenna groups, a reception electric circuit connected to each element antenna of the element antenna group and the output corresponding to each element antenna from the electric circuit are connected, and the antenna interval is It has a plurality of transducers arranged in a proportional relationship with the acousto-optic element provided corresponding to each of the plural element antenna groups, and for irradiating parallel laser light to the acousto-optic element. It consists of a laser light source, an optical system that images the diffracted light, a two-dimensional detector that detects the diffraction system, a signal processor that reads out the output, and a calculator that calculates the direction from the outputs of these two systems. This is a radio wave detector that provides a radio wave detector.

実施例の説明 以下、この発明の実施例を図面に基づいて説明
する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described based on the drawings.

第3図はこの発明の一実施例における電波探知
器の概観図であり、互いに直交する直線上に同じ
ように配列され、かつ従来例と同様に第1と第2
のアンテナ間隔、第2と第3のアンテナ間隔、さ
らに第3と第4のアンテナ間隔をすべて異ならせ
るように配列された複数の素子アンテナ群21
a,21b,……,21zと22a,22b,…
…,22zとこれらに接続された第1図に示した
と同様な同じ特性を有する2組の電気回路系、光
学系よりなる。第3図におい電気回路23,2
3′は受信器であり到来電波(図示せず)を受信
する素子アンテナ群21a〜21z、22a〜2
2zに接続され、増幅され、所定の中間周波に落
す役目を有する。その出力は電気回路24,2
4′で電力増幅され、それぞれ例えばLiNbO3
GaP或いはTeO2などの単結晶からなる音響光学
素子25,25′の上に配列されたマルチトラン
スジユーサ群26a,26b,…,26z,2
6′a,26b,…,26′zに印加される。一
方、レーザ光源27,27′から出射したレーザ
光は拡大光学系28,28′で平行ビームにされ、
音響光学素子25,25′にブラツグ角をなすよ
うに入射される。音響光学素子25,25′を通
過したレーザ光は各トランスジユーサ群26a,
26b,……,26z,26′a,26′b,…
…,26′zから発射され、到来電波に対応した
超音波信号によつて回折されると同時に、これら
の回折光29,29′はフーリエ変換レンズ30,
30′によつて干渉を受け焦点面31,31′に置
かれた2次元光検出器32,32′の上に結像さ
れる。この回折され干渉した光点の位置は図の上
下方向は到来電波の周波数成分を横方向は到来電
波の角度を示す。2次元光検出器32,32′の
出力は信号処理器33,33′に順次入力され、
演算器34で真の到来方向が計算される。この信
号処理器33,33′は例えば第4図に示すよう
に、2次元光検出器32又は32′からの信号が
入力されるA/D変換器35と、同じ周波数にお
いて最大の光強度を出力する角度を検出するため
の比較器36、及びこの出力を順次、カウンタ3
8で周波数との対応関係を明らかにしつつ蓄積す
るメモリ37、及びこれらを制御する制御部39
から構成されている。これを用いると、2次元光
検出器32,32′の周波数と角度情報を有する
信号は時系列的に出力され、デイジタル信号に変
換された後、まずある角度に対する信号列が比較
器36で基準信号と比較され、あるレベル以上の
信号をメモリ37に蓄積する。次に、2次元光検
出器の先の信号列の隣り、即ち角度の少し異なる
方向の信号列が比較器36に入力され、先にメモ
リ37に蓄積された信号とレベル比較し、大きい
信号を再びメモリ37に蓄積する。これを順次繰
返し、最終的には、ある周波数で最大の信号レベ
ルを有する角度情報がメモリ37に蓄積される。
この最終的に蓄積された信号は第3図の演算器3
4に入力され、真の角度を計算するデータとな
る。
FIG. 3 is an overview diagram of a radio wave detector according to an embodiment of the present invention.
A plurality of element antenna groups 21 arranged so that the antenna spacing, the second and third antenna spacing, and the third and fourth antenna spacing are all different.
a, 21b, ..., 21z and 22a, 22b, ...
..., 22z, and two sets of electrical circuit systems and optical systems connected thereto and having the same characteristics as shown in FIG. Fig. 3 Odor electric circuit 23, 2
3' is a receiver, and element antenna groups 21a to 21z and 22a to 2 receive incoming radio waves (not shown).
2z, and has the role of being amplified and dropping it to a predetermined intermediate frequency. Its output is electrical circuit 24,2
The power is amplified by 4′, respectively, for example, LiNbO 3 or
Multi-transducer groups 26a, 26b, ..., 26z, 2 arranged on acousto-optic elements 25, 25' made of single crystal such as GaP or TeO 2
6'a, 26b, . . . , 26'z. On the other hand, the laser beams emitted from the laser light sources 27, 27' are made into parallel beams by the enlarging optical systems 28, 28'.
The light is incident on the acousto-optic elements 25, 25' at a Bragg angle. The laser light that has passed through the acousto-optic elements 25, 25' is transmitted to each transducer group 26a,
26b,..., 26z, 26'a, 26'b,...
..., 26'z and is diffracted by the ultrasonic signal corresponding to the incoming radio wave, and at the same time, these diffracted lights 29, 29' are transmitted to the Fourier transform lens 30,
30' and is imaged onto two-dimensional photodetectors 32, 32' placed at focal planes 31, 31'. The position of this diffracted and interfered light spot indicates the frequency component of the incoming radio wave in the vertical direction of the figure, and the angle of the incoming radio wave in the horizontal direction. The outputs of the two-dimensional photodetectors 32, 32' are sequentially input to signal processors 33, 33'.
A computing unit 34 calculates the true direction of arrival. For example, as shown in FIG. 4, the signal processors 33, 33' output the maximum light intensity at the same frequency as the A/D converter 35 to which the signal from the two-dimensional photodetector 32 or 32' is input. A comparator 36 for detecting the angle to be output, and a counter 3 that sequentially receives this output.
8, a memory 37 for storing data while clarifying the correspondence with frequencies; and a control unit 39 for controlling these.
It consists of When this is used, signals having frequency and angle information from the two-dimensional photodetectors 32, 32' are outputted in time series, converted into digital signals, and then a signal sequence for a certain angle is sent to the comparator 36 as a reference. The signals are compared with each other, and signals exceeding a certain level are stored in the memory 37. Next, a signal train adjacent to the previous signal train of the two-dimensional photodetector, that is, a signal train in a direction slightly different in angle, is input to the comparator 36, which compares the level with the signal previously stored in the memory 37, and selects a larger signal. It is stored in the memory 37 again. This is repeated in sequence, and finally, the angle information having the maximum signal level at a certain frequency is stored in the memory 37.
This finally accumulated signal is processed by the arithmetic unit 3 in FIG.
4 and becomes the data for calculating the true angle.

このような構成の電波探知器で10GHz近傍の電
波を探知する場合について述べる。素子アンテナ
群21a〜21z、22a〜22zの各素子アン
テナとしては4個の半波長ダイポールアンテナの
互いに隣接するアンテナ間の間隔をそれぞれ互い
に素な間隔、例えば3:4、3:4の関係になる
第5図aのように間隔を13.5cm、18cm、24cmで配
列する。音響光学素子25,25′としてGaP結
晶上に第5図bのように0.9mm、1.2mm、1.6mmの間
隔で配列されたZnO膜よりなる4個の幅0.1mmの
トランスジユーサを用い、その中心周波数を
1.8GHzとする。この場合の帯域は1.3〜2.3GHz即
ち1GHzの帯域幅を得ることができる。電気回路
23,23′では、到来電波の周波数を音響光学
素子25,25′の周波数帯域に落すために8.7G
Hz程度の周波数の図示していない局部発振器とミ
キサを用いて中間周波数に落し、電気回路24,
24′で音響光学素子25,25′の所定の回折効
率を得られるよう電力増幅する。レーザ光源2
7,27′には半導体レーザやHe−Neレーザの
ようなものを用いることができ、拡大光学系2
8,28′で2〜3mm〓のビーム径に拡大し、音響
光学素子25中に入射する。GaPの音速は約6.5
Km/Sであり、光ビームを超音波が横切る時間
(アクセス時間)は0.3〜0.45マイクロセカンドに
なる。音響光学素子の分解能は周波数帯域幅とア
クセス時間の積で示され、1GHzの帯域を有する
この素子では300〜450点の分解点数を有すること
になる。2次元光検出器として、素子の分解点数
内の256X256個の検出素子からなるものを用いる
と、周波数分解能の上限は周波数帯域幅1GHzに
相当する回折光を1軸方向256個での素子で分割
するため1素子当たり約4MHzとなる。一方、方
位方向については、例えば、それぞれの素子アン
テナ群に対して45°方向から到来する10GHzの電
波に対する2次元光検出器上の光・強度分布は解
析の結果第6図に示すようになる。第6図におい
て縦軸は2次元光検出器上での光強度、横軸は回
折光の結像位置を示し、到来電波の方向を43度か
ら49度変えた場合の光強度分布を示している。44
度方向の場合と45度の場合を比較すると2次元光
検出器に投影された光のピーク位置は約0.1mm隔
たり、かつ45度のピーク位置における44度の場合
の電波に対する強度は約8割に相当する。2次元
光検出器の感度のダイナミツクレンジは通常
20dB以上あるため、光強度の1割の差を検出す
ることは容易である。これにより、この構成で電
波の往来方向を約1度の方位分解能で検出するこ
とは可能であることがわかる。
We will describe the case of detecting radio waves in the vicinity of 10 GHz using a radio wave detector with such a configuration. For each of the element antenna groups 21a to 21z and 22a to 22z, the intervals between adjacent antennas of four half-wavelength dipole antennas are relatively prime, for example, in a relationship of 3:4 and 3:4. Arrange them at intervals of 13.5cm, 18cm, and 24cm as shown in Figure 5a. As the acousto-optic elements 25, 25', four 0.1 mm wide transducers made of ZnO films arranged on a GaP crystal at intervals of 0.9 mm, 1.2 mm, and 1.6 mm as shown in FIG. 5b were used. its center frequency
Set to 1.8GHz. In this case, a bandwidth of 1.3 to 2.3 GHz, that is, 1 GHz can be obtained. The electric circuits 23 and 23' use 8.7G to lower the frequency of the incoming radio waves to the frequency band of the acousto-optic elements 25 and 25'.
Using a local oscillator and mixer (not shown) with a frequency of about Hz, the frequency is reduced to an intermediate frequency, and the electric circuit 24,
At 24', power is amplified to obtain a predetermined diffraction efficiency of the acousto-optic elements 25, 25'. Laser light source 2
7, 27' can use something like a semiconductor laser or a He-Ne laser, and the magnifying optical system 2
8 and 28', the beam is expanded to a beam diameter of 2 to 3 mm and is incident on the acousto-optic element 25. The speed of sound in GaP is approximately 6.5
Km/S, and the time for the ultrasonic wave to cross the light beam (access time) is 0.3 to 0.45 microseconds. The resolution of an acousto-optic element is expressed as the product of frequency bandwidth and access time, and this element, which has a band of 1 GHz, has a resolution of 300 to 450 points. When using a two-dimensional photodetector consisting of 256 x 256 detection elements within the number of resolution points of the element, the upper limit of frequency resolution is that the diffracted light corresponding to a frequency bandwidth of 1 GHz is divided by 256 elements in one axis direction. Therefore, the frequency is approximately 4MHz per element. On the other hand, regarding the azimuth direction, for example, the light/intensity distribution on the two-dimensional photodetector for 10 GHz radio waves arriving from a 45° direction for each element antenna group is as shown in Figure 6 as a result of analysis. . In Figure 6, the vertical axis shows the light intensity on the two-dimensional photodetector, the horizontal axis shows the imaging position of the diffracted light, and shows the light intensity distribution when the direction of the incoming radio wave is changed from 43 degrees to 49 degrees. There is. 44
Comparing the case in the 45 degree direction and the case in the 45 degree direction, the peak positions of the light projected on the two-dimensional photodetector are about 0.1 mm apart, and the intensity of the radio waves in the 44 degree case at the 45 degree peak position is about 80%. corresponds to The dynamic range of sensitivity of two-dimensional photodetectors is usually
Since it is more than 20 dB, it is easy to detect a difference of 10% in light intensity. This shows that with this configuration it is possible to detect the direction of radio wave traffic with a azimuth resolution of about 1 degree.

以上のような構成の電波探知器を用いて、電波
の真の到来方法が求まる原理を述べる。直交して
配列された素子アンテナ群でそれぞれ検出出来る
到来電波の方向は第2図で示した場合と同じよう
に第7図のように示すことができる。素子アンテ
ナ21a,21b……21zをx軸方向に、22
a,22b……22zをy軸方向に配列する。こ
の配列方法は必らずしも第7図に示すように原点
Oで実際に直交させる必要はなく、これらのアン
テナ群がz軸方向、或いはx、y軸方向に隔つて
いても、極めて遠方からくる電波に対しては等価
的に原点Oに両方のアンテナが存在することに相
当する。電波2がOPの方向から到来する場合、
x軸方向に配列された素子アンテナ群21a,…
…,21zで検出され、測定される方向は第2図
と同じように点Pを通りx軸に垂直な断面内でx
軸との交点xOと線分xOPを半径とする円xの円周
上と原点Oを結ぶ線上になり、第4図に示す構成
においてはOTの方向、即ち角度θxから来る電波
として検出される。同様にy軸方向に配列された
素子アンテナ群22a,……,22zではy軸上
の点yOを中心とし点Pを通る円yと原点を結ぶ線
上からくる電波と等しく角度θyから来る電波とし
て検出される。これらの測定結果θxとθyを用いて
到来する電波の真の方向、即ちxy面内の方位角
θと迎角は次のように求まる。
The principle of determining the true arrival method of radio waves using a radio wave detector configured as described above will be described. The directions of incoming radio waves that can be detected by the element antenna groups arranged orthogonally can be shown as shown in FIG. 7 in the same way as shown in FIG. 2. Element antennas 21a, 21b...21z in the x-axis direction, 22
a, 22b...22z are arranged in the y-axis direction. This arrangement method does not necessarily require that they be actually perpendicular to each other at the origin O as shown in Figure 7, and even if these antenna groups are separated in the z-axis direction or the x and y-axis directions, For radio waves coming from far away, this corresponds to equivalently having both antennas at the origin O. If radio wave 2 comes from the direction of OP,
Element antenna groups 21a arranged in the x-axis direction,...
..., 21z, and the direction in which it is measured is x within a cross section passing through point P and perpendicular to the
The intersection point x O with the axis and the line segment x O are on the line connecting the circumference of the circle x whose radius is P and the origin O, and in the configuration shown in Figure 4, the radio waves coming from the direction of OT, that is, from the angle θ x Detected as . Similarly, in the element antenna groups 22a, ..., 22z arranged in the y-axis direction, the radio waves come from the same angle θ y as the radio waves coming from the line connecting the origin and the circle y centered on the point y O on the y-axis and passing through the point P. Detected as radio waves. Using these measurement results θ x and θ y , the true direction of the incoming radio wave, that is, the azimuth angle θ in the xy plane and the angle of attack are determined as follows.

第7図において線分OPを単位長1とすると円
x、円yはそれぞれ次のように示すことができ
る。
In FIG. 7, if the line segment OP has a unit length of 1, the circles x and y can be shown as follows.

<円x> y2+z2=cos2θx <円y> x2+z2=cos2θy 点Qの座標(xO、yO)はxO=sinθX、yO=sinθy
となり、角度θは θ=tan-(xO/yO)=tan-(sinθx/sinθy) で求まる。
<Circle x> y 2 + z 2 = cos 2 θ x <Circle y> x 2 + z 2 = cos 2 θ The coordinates of y point Q (x O , y O ) are x O = sinθ X , y O = sinθ y
Then, the angle θ is found as θ=tan (x O /y O )=tan (sin θ x /sin θ y ).

同様に迎角は点Pのz座標の値z1を求めるこ
とによつて、=sinz1として求まる。このz1
円xを用いると z2 1=cos2θx−sin2θy より =sin{(cos2θx−sin2θy1/2} より求められる。
Similarly, the angle of attack can be found as = sinz 1 by finding the value z 1 of the z coordinate of point P. Using the circle x, this z 1 can be found from z 2 1 = cos 2 θ x −sin 2 θ y = sin {(cos 2 θ x −sin 2 θ y ) 1/2 }.

なお、円xと円yの交点は点Pの他に点Rにも
存在するが、アンテナの配列されている場合が陸
上や海上に水面内に設置されている場合、点Rは
地下、或いは海面下の方向となり現実に電波の到
来しない方向となるため、点Pの方向を真の到来
電波の方向として決定できる。
Note that the intersection of circles x and y exists at point R as well as point P, but if the antennas are arranged on land or on the sea, point R is underground or Since the direction is below the sea surface and is a direction in which radio waves do not actually arrive, the direction of point P can be determined as the true direction of arriving radio waves.

以上に説明したように、この電波探知器を用い
て周波数の分析と共に、到来電波の方位を精度よ
く求めることができる。
As explained above, using this radio wave detector, it is possible to analyze the frequency and accurately determine the direction of the incoming radio waves.

更に、第3図に示した構成の音響光学系におい
て複数の周波数の電波が同時に到来した場合を検
討する。複数の周波数を有する電波は、音響光学
素子内において周波数の異なる超音波に変換さ
れ、周波数に応じた異なる方向の回折光が生じ
る。従つて、2次元光検出器上ではそれぞれの周
波数に対応した場所に分離して回折光が結像さ
れ、それぞれの分析が可能になる。電波分析に用
いる時間は大部分、2次元光検出器の信号の読出
し時間で決定される。例えば256×256の検出器ア
レイを用いた場合、クロツクとして10MHzを用い
ると、約7msで読み出せる。従つて信号処理時
間を含め約10msで分析することが可能になり、
瞬探性に優れていることがわかる。更にこの方式
では2次元光検出器上の光強度は到来電波の信号
強度を示し、周波数情報、方探情報の他に信号強
度の情報も同時に判明する。
Furthermore, consider the case where radio waves of a plurality of frequencies arrive simultaneously in the acousto-optic system having the configuration shown in FIG. Radio waves having multiple frequencies are converted into ultrasonic waves having different frequencies within the acousto-optic element, and diffracted light in different directions depending on the frequency is generated. Therefore, on the two-dimensional photodetector, the diffracted light is imaged separately at locations corresponding to each frequency, making it possible to analyze each one. The time used for radio wave analysis is largely determined by the signal readout time of the two-dimensional photodetector. For example, if a 256 x 256 detector array is used and a 10 MHz clock is used, it can be read out in about 7 ms. Therefore, it is possible to perform analysis in approximately 10ms including signal processing time.
It can be seen that it has excellent instantaneous detection. Furthermore, in this method, the light intensity on the two-dimensional photodetector indicates the signal strength of the incoming radio wave, and in addition to frequency information and direction finding information, signal strength information can also be determined at the same time.

なお、本実施例では、素子アンテナをそれぞれ
4個用いているが、この数を増加すれば更に方位
分解能が上ると共に、検出感度が上昇する。また
素子アンテナの配列は特に直交方向に限定するも
のでなく、平行でなければ到来電波の方向を算出
でき、配列方向を3個にすれば、より方位精度は
向上する。
In this embodiment, four element antennas are used, but if this number is increased, the azimuth resolution and detection sensitivity will further increase. Further, the arrangement of the element antennas is not particularly limited to orthogonal directions; if the element antennas are not parallel, the direction of the arriving radio waves can be calculated, and if the number of arrangement directions is three, the azimuth accuracy will be further improved.

発明の効果 以上要するに本発明は互いに方向の異なる少な
くとも2方向に複数の素子アンテナを配列し、か
つ前記素子アンテナの間隔が互いに異なるように
配列されてなる複数の素子アンテナ群と、前記各
素子アンテナ群それぞれについて、素子アンテナ
群の各素子アンテナに接続された受信用の電気回
路と、前記電気回路からの、各素子アンテナに対
応する出力を接続し、前記アンテナ間隔と比例関
係を有した配列関係で配列された複数のトランス
ジユーサを有し、複数の素子アンテナ群にそれぞ
れ対応して設けられた音響光学素子と、前記音響
光学素子にレーザ光を照射し、回折光を結像させ
る光学系と、結像した光を検出する2次元光検出
器と、前記2次元光検出器の出力を読み出し、処
理する信号処理器とを設け、さらに各素子アンテ
ナ群ごとの信号処理器の出力から方位を演算する
演算器を備えたことを特徴とする電波探知器を提
供するもので、到来する電波の周波数、強度、方
向が瞬時に、同時に求まると共に、その方位分解
能は極めて高いものである。
Effects of the Invention In summary, the present invention provides a plurality of element antenna groups in which a plurality of element antennas are arranged in at least two directions different from each other, and the intervals between the element antennas are different from each other, and each of the element antennas. For each group, a receiving electric circuit connected to each element antenna of the element antenna group and an output corresponding to each element antenna from the electric circuit are connected, and an array relationship having a proportional relationship with the antenna spacing is established. an acousto-optic element having a plurality of transducers arranged in a row and provided corresponding to each of the plurality of element antenna groups, and an optical system that irradiates the acousto-optic element with a laser beam and forms an image of the diffracted light. , a two-dimensional photodetector for detecting the imaged light, and a signal processor for reading and processing the output of the two-dimensional photodetector. The present invention provides a radio wave detector characterized by being equipped with an arithmetic unit that calculates the frequency, intensity, and direction of incoming radio waves instantaneously and at the same time, and its azimuth resolution is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電波探知器を示す概観図、第2
図は従来例による方向探知性能を示す図、第3図
は本発明の一実施例による電波探知器を示す概観
図、第4図は同実施例の信号処理部の1例を示す
図、第5図aは素子アンテナの1例を示す図、第
5図bは音響光学素子の1例を示す図、第6図は
同実施例の光強度分布特性を示す図、第7図は同
実施例の原理を説明する図である。 21a〜21z,22a〜22z……素子アン
テナ、23,23′,24,24′……電気回路、
25,25′……音響光学素子、26a〜26z,
26′a〜26′z……トランスジユーサ、27,
27′……レーザ光源、32,32′……2次元光
検出器、33,33′……信号処理器、34……
演算器。
Figure 1 is an overview diagram showing a conventional radio wave detector, Figure 2
3 is an overview diagram showing a radio wave detector according to an embodiment of the present invention; FIG. 4 is a diagram illustrating an example of the signal processing section of the embodiment; Figure 5a shows an example of an element antenna, Figure 5b shows an example of an acousto-optic element, Figure 6 shows the light intensity distribution characteristics of the same example, and Figure 7 shows an example of the same implementation. It is a figure explaining the principle of an example. 21a to 21z, 22a to 22z...element antenna, 23, 23', 24, 24'...electric circuit,
25, 25'... Acousto-optic element, 26a to 26z,
26'a to 26'z...transducer, 27,
27'... Laser light source, 32, 32'... Two-dimensional photodetector, 33, 33'... Signal processor, 34...
Arithmetic unit.

Claims (1)

【特許請求の範囲】 1 互いに方向の異なる少なくとも2方向に複数
の素子アンテナを有し、前記素子アンテナの間隔
が互いに異なるように配列されてなる複数の素子
アンテナ群を備え、前記各素子アンテナ群それぞ
れについて、素子アンテナ群の各素子アンテナに
接続された受信用の電気回路と、前記電気回路か
らの、各素子アンテナに対応する出力を接続し、
前記アンテナ間隔と比例関係を有した配列関係で
配列された複数のトランスジユーサを有し、複数
の素子アンテナ群それぞれに対応して設けられた
音響光学素子と、前記音響光学素子に所定の角度
からレーザ光を照射し、音響光学素子で回折され
た回折光をフーリエ変換レンズで結像させる光学
系と、結像した光を検出する2次元光検出器と、
前記2次元検出器の出力を読み出し、処理する信
号処理器とを設け、さらに各素子アンテナ群ごと
の信号処理器の出力から方位を演算する演算器を
備えたことを特徴とする電波探知器。 2 素子アンテナ群が互いに直交する2方向に配
列されていることを特徴とする特許請求の範囲第
1項記載の電波探知器。
[Scope of Claims] 1. A plurality of element antenna groups each having a plurality of element antennas in at least two directions different from each other and arranged such that the intervals between the element antennas are different from each other, each of the element antenna groups For each, a receiving electric circuit connected to each element antenna of the element antenna group and an output corresponding to each element antenna from the electric circuit are connected,
It has a plurality of transducers arranged in an array relationship proportional to the antenna spacing, an acousto-optic element provided corresponding to each of the plurality of element antenna groups, and a predetermined angle to the acousto-optic element. an optical system that irradiates laser light from an acousto-optic element and forms an image of the diffracted light with a Fourier transform lens; a two-dimensional photodetector that detects the imaged light;
A radio wave detector, comprising: a signal processor that reads and processes the output of the two-dimensional detector, and further includes an arithmetic unit that calculates a direction from the output of the signal processor for each element antenna group. 2. The radio wave detector according to claim 1, wherein the two-element antenna groups are arranged in two directions perpendicular to each other.
JP59089743A 1984-05-04 1984-05-04 radio wave detector Granted JPS60233577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59089743A JPS60233577A (en) 1984-05-04 1984-05-04 radio wave detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59089743A JPS60233577A (en) 1984-05-04 1984-05-04 radio wave detector

Publications (2)

Publication Number Publication Date
JPS60233577A JPS60233577A (en) 1985-11-20
JPH0456952B2 true JPH0456952B2 (en) 1992-09-10

Family

ID=13979236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59089743A Granted JPS60233577A (en) 1984-05-04 1984-05-04 radio wave detector

Country Status (1)

Country Link
JP (1) JPS60233577A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2815505B2 (en) * 1992-01-06 1998-10-27 三菱電機株式会社 Orientation device
JP2812036B2 (en) * 1992-02-17 1998-10-15 三菱電機株式会社 1-pulse receiving radio wave specification analyzer
JP4566894B2 (en) * 2005-11-29 2010-10-20 三菱電機株式会社 Radio wave arrival direction measuring device

Also Published As

Publication number Publication date
JPS60233577A (en) 1985-11-20

Similar Documents

Publication Publication Date Title
NL9201060A (en) VOLUMETRIC AND TERRAIN IMAGE SONAR.
KR850008526A (en) Track estimation method and device
EP0116777B1 (en) Acoustic direction finding systems
US6289231B1 (en) Wave receiving apparatus and ultrasonic diagnostic apparatus
JPH0456952B2 (en)
US3327286A (en) Transducer
CA2774758C (en) Method and device for measuring a profile of the ground
JP7238516B2 (en) Sonar device and target detection method using the same
Denbigh Stereoscopic visualization and contour mapping of the sea bed using a bathymetric sidescan sonar (BASS)
JPH0456953B2 (en)
JPH0425507B2 (en)
US6002645A (en) Self survey of random arrays
JP2772647B2 (en) Ultrasound imaging device
JPH09145839A (en) Obstacle detecting device
SU1255913A1 (en) Method of determining coordinates of acoustical emission signal source
EP0158819B1 (en) Two-probe ultrasonic flaw detection apparatus
JPS60220051A (en) Ultrasound diagnostic equipment
JPH03295487A (en) Detecting method for space floating body
US3509566A (en) Method and apparatus for obtaining azimuth and range from a scanning continuous wave radar
US10042052B2 (en) Method and system for determining a location of a reflecting scatterer in a medium
JPS6219711B2 (en)
JP2021076384A (en) Sonar device, method, and program
JPH11248821A (en) Phased array type ultrasonic sensor
KR0173241B1 (en) Anti-collision device using electromagnetic wave and ultrasonic wave
RU2284545C2 (en) Radio inspection naval system