JPH0456417B2 - - Google Patents

Info

Publication number
JPH0456417B2
JPH0456417B2 JP61197309A JP19730986A JPH0456417B2 JP H0456417 B2 JPH0456417 B2 JP H0456417B2 JP 61197309 A JP61197309 A JP 61197309A JP 19730986 A JP19730986 A JP 19730986A JP H0456417 B2 JPH0456417 B2 JP H0456417B2
Authority
JP
Japan
Prior art keywords
coefficient
thermal expansion
grid
alloy
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61197309A
Other languages
Japanese (ja)
Other versions
JPS6353841A (en
Inventor
Norio Juki
Masahiro Tsuji
Morinori Kamio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP61197309A priority Critical patent/JPS6353841A/en
Priority to KR1019870006173A priority patent/KR910000926B1/en
Publication of JPS6353841A publication Critical patent/JPS6353841A/en
Publication of JPH0456417B2 publication Critical patent/JPH0456417B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/15Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen with ray or beam selectively directed to luminescent anode segments

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Luminescent Compositions (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(目 的) 本発明は蛍光表示管グリツド材に関する。 (従来技術及び問題点) 蛍光表示管用の金属材料は大別してガラスと封
着されるフレーム材とガラスとは封着されないグ
リツド材がある。このうち、フレーム材はガラス
と封着されるために、熱膨張係数がガラス封着に
適した426合金(42%Ni−6%Cr−Fe)が使われ
ている。これに対してグリツド材はガラスと封着
されないので基本的には熱膨張係数がガラス封着
に適している必要はないが、フレーム材にスポツ
ト溶接で固定されるため、やはりフレーム材との
熱膨張係数の差が大きいと、製造の際500℃程度
に加熱されたときグリツドが変形するという問題
が起こる。そのためグリツド材としても426合金
が使用されているのが現状である。 ところが、近年蛍光表示管の用途が今までの主
流だつた電卓から自動車の計器等、様々な分野に
広がり、表示精度にさらに厳しいものが要求され
るようになつてきた。最近のこのグリツド材に要
求されている特性を列挙すると次のようになる。 (1) 室温から100℃までの熱膨張係数は小さいこ
と (2) 室温から500℃までの熱膨張係数は426合金に
近いこと (3) 黒化膜の生成が容易なこと (4) エツチング性が良好なこと (5) 強度があること これらの要求特性についてさらに下記に詳しく
説明する。 (1) これは特に最近重要になつてきた特性であ
る。蛍光表示管を作動させるとグリツドはグリ
ツド電流により発熱し、80〜100℃にも達する
ことがある。しかし、このときフレームは発熱
しないので、グリツドのみ膨張し、この膨張係
数が大きいとグリツドがたわんでしまい表示精
度を著しく低下させるのである。したがつて室
温から100℃までの熱膨張係数が小さいことが
要求される。従来の426合金では熱膨張係数が
大きすぎ、現実にグリツドのたわみの問題が起
こつている。 (2) 前にも述べたが、グリツドはフレームにスポ
ツト溶接で固定された後の工程で500℃程度に
加熱されるため、グリツドの室温から500℃ま
での熱膨張係数とフレームの室温から500℃ま
での熱膨張係数の差が大きいと、その際にグリ
ツドが変形するという問題が起こる。したがつ
て室温から500℃までの熱膨張係数は426合金に
近いことが要求される。 (3) グリツドが光沢を持つていると外からの光を
反射してしまい蛍光表示を見えにくくしてしま
う。そこで表面に黒いFe3O4を生成させ光の反
射を防ぐという手段をとつており、このFe3O4
黒化膜の生成が容易であることが要求される。
従来の426合金は非鉄元素をNiとCr合わせて48
%も含有するためFe3O4を十分生成させるには
時間がかかりすぎる難点があつた。 (4) グリツド材はエツチングによりメツシユ状に
加工されるので、良好なエツチング性を有して
いることが望まれる。従来の426合金は耐食性
の良いNiとCrを合わせて48%も含有するため
エツチング性に難点があつた。 (5) グリツドは板厚50μm程度の薄板をエツチン
グによりメツシユ状に加工した後、黒化処理等
の工程を経てフレームにスポツト溶接される
が、板厚が薄いこととメツシユ状であることか
ら取り扱い中に折れたり曲がりやすい。このよ
うな取り扱いによる不良を防ぐためには強度が
要求される。 (構 成) 本発明はかかる点に鑑みてなされたもので、
Fe−Ni−Cr系合金の成分を適当なバランスにコ
ントロールすることで、前記グリツド材に要求さ
れる特性を全て満たすグリツド材を提供するもの
である。すなわち、重量%でNi32〜37%未満、
Cr0.5〜6.0%、残部Fe及び不可避的不純物からな
る蛍光表示管のグリツド材及び重量%でNi32〜
37%未満、Cr0.6〜6.0%、さらにMn、Si、Al、
Ti、V、Zr、Mo、Nb、Co、Ta、W、Be、
Mg、Cu、Caのうち1種または2種以上を合計
で0.01〜2.0%含み、残部Fe及び不可避的不純物
からなる蛍光表示管のグリツド材並びに該グリツ
ド材において結晶粒度が粒度番号7.0以上である
蛍光表示管のグリツド材に関する。 また、本発明のグリツド材は高価なNiの含有
量が従来の426合金より少ないので経済的なメリ
ツトも大きい。 (発明の具体的説明) 次に成分範囲の限定理由を述べる。 Ni;32%未満では室温から100℃までの熱膨張係
数が大きくなりすぎ、また、37%以上になると
室温から100℃までの熱膨張係数が大きくなる
とともに黒化膜が生成しにくくなり、エツチン
グ性も悪くなるため32〜37%未満とした。 Cr;Crは室温から100℃までの熱膨張係数をあま
り大きくせずに、室温から500℃までの熱膨張
係数を大きくし、426合金の室温から500℃まで
の熱膨張係数に近づけることに有効な元素であ
るが、0.5%未満では室温から500℃までの熱膨
張係数が小さすぎ、また、6.0%を超えると室
温から100℃までの熱膨張係数が大きくなりす
ぎるとともに黒化膜が生成しにくくなり、エツ
チング性も悪くなるため0.5〜6.0%とした。 Mn、Si、Al、Ti、V、Zr、Mo、Nb、Co、Ta、
W、Be、Mg、Cu、Ca、; これらの元素を1種または2種以上添加すると
合金の強度が増し、取り扱い上の変形を防ぐこ
とができる。この効果は0.01未満では得られ
ず、2.0%を超えると熱膨張係数が大きくなり
すぎ、また、黒化膜が生成しにくくなり、エツ
チング性もくなるため添加量は合計で0.01〜
2.0%とした。 また、結晶粒度が粒度番号7.0未満であると強
度が不足し取り扱い上で変形しやすい。したがつ
て、結晶粒度は粒度番号7.0以上が望ましい。 次に実施例を示す。 (実施例) 供試材は真空溶解後、鋳造、鍛造、熱間圧延を
行い、さらに冷間圧延と焼鈍を繰り返して板厚
0.05tの冷延材としたものである。供試材の成分
を第1表に示す。熱膨張係数は950℃×10min、
水素中で焼鈍した後測定した。熱膨張係数も第1
表に示す。さらに、前記冷延板をエツチングによ
りグリツドに加工し、実際に蛍光表示管に組み立
て、製造の際の加熱によるグリツドの変形の有無
と、動作時のグリツドのたわみの有無を調査し
た。これらの結果も第1表に示す。また、結晶粒
度と取り扱い上の不良発生状況についても第1表
に示す。 第1表から明らかなように本発明例は室温から
100℃までの熱膨張係数が小さいため動作時のグ
リツドのたわみは起こらず、室温から500℃まで
の熱膨張係数が426合金に近いために製造の際の
加熱による変形も起こらない。この様子を熱膨張
曲線で説明すると第1図のようになる。この第1
図のAの領域において、本発明例は426合金より
著しく熱膨張係数が小さい、又同図におけるBの
領域においては本発明例の熱膨張係数は426合金
の熱膨張係数に近似しており熱膨張による不良の
発生が抑制できる。また、本発明の範
(Objective) The present invention relates to a fluorescent display tube grid material. (Prior Art and Problems) Metal materials for fluorescent display tubes are broadly classified into frame materials that are sealed to glass and grid materials that are not sealed to glass. Among these, 426 alloy (42% Ni-6% Cr-Fe), which has a coefficient of thermal expansion suitable for glass sealing, is used for the frame material because it is sealed with glass. On the other hand, since the grid material is not sealed to the glass, it is basically not necessary that the coefficient of thermal expansion is suitable for glass sealing, but since it is fixed to the frame material by spot welding, it still has heat exchange with the frame material. If the difference in coefficient of expansion is large, a problem arises in that the grid deforms when heated to about 500°C during manufacturing. Therefore, 426 alloy is currently used as a grid material. However, in recent years, the use of fluorescent display tubes has expanded to a variety of fields, from calculators, which have been the mainstream until now, to automobile instruments, and more stringent display accuracy has become required. The properties required of this grid material these days are listed below. (1) The coefficient of thermal expansion from room temperature to 100℃ is small.(2) The coefficient of thermal expansion from room temperature to 500℃ is close to that of 426 alloy.(3) It is easy to form a black film.(4) Etching property (5) Good strength These required characteristics are explained in more detail below. (1) This is a characteristic that has become particularly important recently. When a fluorescent display tube is operated, the grid generates heat due to the grid current, which can reach temperatures of 80 to 100 degrees Celsius. However, since the frame does not generate heat at this time, only the grid expands, and if this expansion coefficient is large, the grid will bend, significantly reducing display accuracy. Therefore, it is required that the coefficient of thermal expansion from room temperature to 100°C be small. Conventional 426 alloy has a coefficient of thermal expansion that is too large, causing problems with grid deflection. (2) As mentioned earlier, the grid is heated to about 500℃ in the process after it is fixed to the frame by spot welding, so the coefficient of thermal expansion of the grid from room temperature to 500℃ and that of the frame from room temperature to 500℃ are different. If there is a large difference in the coefficient of thermal expansion up to 0.degree. C., the problem arises that the grid will deform. Therefore, the coefficient of thermal expansion from room temperature to 500°C is required to be close to that of 426 alloy. (3) If the grid is shiny, it will reflect light from outside and make the fluorescent display difficult to see. Therefore, we have taken a method to prevent light reflection by generating black Fe 3 O 4 on the surface, and this Fe 3 O 4
It is required that the blackening film be easily generated.
Conventional 426 alloy contains 48 non-ferrous elements including Ni and Cr.
%, it took too long to generate enough Fe 3 O 4 . (4) Since the grid material is processed into a mesh shape by etching, it is desirable that it has good etching properties. Conventional 426 alloy contains a total of 48% Ni and Cr, both of which have good corrosion resistance, and has problems with etching properties. (5) Grids are made by etching a thin plate with a thickness of about 50 μm into a mesh shape, and then spot welding it to the frame through processes such as blackening treatment, but it is difficult to handle because the plate is thin and has a mesh shape. Easy to break or bend inside. Strength is required to prevent defects caused by such handling. (Structure) The present invention has been made in view of the above points,
By controlling the components of the Fe-Ni-Cr alloy to an appropriate balance, a grid material that satisfies all of the characteristics required of the above-mentioned grid material is provided. i.e. less than 32-37% Ni by weight%,
Grid material for fluorescent display tubes consisting of Cr0.5~6.0%, balance Fe and unavoidable impurities, and Ni32~ by weight%
Less than 37%, Cr0.6-6.0%, plus Mn, Si, Al,
Ti, V, Zr, Mo, Nb, Co, Ta, W, Be,
A grid material for a fluorescent display tube that contains one or more of Mg, Cu, and Ca in a total of 0.01 to 2.0%, with the remainder being Fe and unavoidable impurities, and the grid material has a grain size of 7.0 or more. This article relates to grid materials for fluorescent display tubes. Furthermore, since the grid material of the present invention contains less expensive Ni than the conventional 426 alloy, it has great economic merits. (Specific Description of the Invention) Next, the reason for limiting the range of components will be described. Ni: If it is less than 32%, the coefficient of thermal expansion from room temperature to 100°C will be too large, and if it is more than 37%, the coefficient of thermal expansion from room temperature to 100°C will become large and it will be difficult to form a black film, making it difficult to etching. It was set to less than 32 to 37% because it also deteriorates the quality of the product. Cr: Cr is effective in increasing the coefficient of thermal expansion from room temperature to 500°C without increasing the coefficient of thermal expansion from room temperature to 100°C, approaching the coefficient of thermal expansion from room temperature to 500°C of 426 alloy. However, if it is less than 0.5%, the coefficient of thermal expansion from room temperature to 500°C is too small, and if it exceeds 6.0%, the coefficient of thermal expansion from room temperature to 100°C becomes too large and a blackened film is formed. The content was set at 0.5% to 6.0% since it becomes difficult to etch and has poor etching properties. Mn, Si, Al, Ti, V, Zr, Mo, Nb, Co, Ta,
W, Be, Mg, Cu, Ca; Adding one or more of these elements increases the strength of the alloy and prevents deformation during handling. This effect cannot be obtained if the amount is less than 0.01%, and if it exceeds 2.0%, the coefficient of thermal expansion becomes too large, it becomes difficult to form a blackened film, and the etching property increases, so the total amount added is 0.01~
It was set at 2.0%. Moreover, if the crystal grain size is less than grain size number 7.0, the strength will be insufficient and it will be easily deformed during handling. Therefore, the grain size is preferably 7.0 or more. Next, examples will be shown. (Example) After vacuum melting, the test material was cast, forged, hot rolled, and then cold rolled and annealed repeatedly to increase the plate thickness.
It is a cold rolled material of 0.05t. The components of the sample materials are shown in Table 1. Thermal expansion coefficient is 950℃×10min,
Measurements were taken after annealing in hydrogen. The coefficient of thermal expansion is also the first
Shown in the table. Furthermore, the cold-rolled sheet was processed into a grid by etching and actually assembled into a fluorescent display tube, and the presence or absence of deformation of the grid due to heating during manufacturing and the presence or absence of deflection of the grid during operation were investigated. These results are also shown in Table 1. Table 1 also shows the crystal grain size and the occurrence of handling defects. As is clear from Table 1, the present invention example
The low coefficient of thermal expansion up to 100°C prevents the grid from deflecting during operation, and the coefficient of thermal expansion from room temperature to 500°C is close to that of 426 alloy, so there is no deformation due to heating during manufacturing. This situation can be explained using a thermal expansion curve as shown in Figure 1. This first
In the region A of the figure, the thermal expansion coefficient of the inventive example is significantly smaller than that of the 426 alloy, and in the region B of the same figure, the thermal expansion coefficient of the inventive example is close to that of the 426 alloy. The occurrence of defects due to expansion can be suppressed. Furthermore, the scope of the present invention

【表】【table】

【表】 囲で元素を添加すること及び結晶粒度を粒度番号
7.0以上にすることにより取り扱い上の不良の発
生が抑えられている。また、本発明例は従来の
426合金に比べて黒化膜の生成が容易であつた。
これに対して、比較例は室温から100℃までの熱
膨張係数が大きすぎるため動作時にグリツドがた
わんでしまつたり、室温から500℃までの熱膨張
係数が426合金の室温から500℃までの熱膨張係数
と差がありすぎるために、製造の際の加熱によつ
て変形してしまつたりする。 (効 果) 以上に示すように、本発明のグリツド材は室温
から100℃までの熱膨張係数が小さいので動作時
のたわみがなく、また500℃近傍までの加熱の際
には426合金の熱膨張係数に近いので変形も生じ
ないといつた利点を有し、さらにエツチング性に
優れ、黒化膜の形成も容易であり、強度も高い著
しい特長を有するものである。
[Table] The addition of elements and grain size are indicated by the grain size number.
By setting the value to 7.0 or higher, the occurrence of handling defects is suppressed. In addition, the present invention example is similar to the conventional
Compared to 426 alloy, it was easier to form a blackened film.
On the other hand, in the comparative example, the coefficient of thermal expansion from room temperature to 100°C is too large, causing the grid to bend during operation, and the coefficient of thermal expansion from room temperature to 500°C is too large for the 426 alloy. Because the difference in coefficient of thermal expansion is too large, it may be deformed during heating during manufacturing. (Effects) As shown above, the grid material of the present invention has a small coefficient of thermal expansion from room temperature to 100℃, so there is no deflection during operation, and when heated to around 500℃, It has the advantage that it does not cause deformation because its coefficient of expansion is close to that of the material, and it also has remarkable features such as excellent etching properties, easy formation of a blackened film, and high strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明例と426合金の熱膨張曲線であ
る。
FIG. 1 shows the thermal expansion curves of the invention example and the 426 alloy.

Claims (1)

【特許請求の範囲】 1 重量%でNi32〜37%未満、Cr0.5〜6.0%、残
部Fe及び不可避的不純物からなる蛍光表示管の
グリツド材。 2 重量%でNi32〜37%未満、Cr0.5〜6.0%、さ
らにMn、Si、Al、Ti、V、Zr、Mo、Nb、Co、
Ta、W、Be、Mg、Cu、Caのうち1種または2
種以上を合計で0.01〜2.0%含み、残部Fe及び不
可避的不純物からなる蛍光表示管のグリツド材。 3 結晶粒度が粒度番号7.0以上である特許請求
の範囲第1項又は第2項のそれぞれに記載の蛍光
表示管のグリツド材。
[Scope of Claim] A grid material for a fluorescent display tube comprising 1% by weight of 32% to less than 37% Ni, 0.5% to 6.0% Cr, the balance Fe and unavoidable impurities. 2. Ni32 to less than 37% by weight, Cr0.5 to 6.0%, and Mn, Si, Al, Ti, V, Zr, Mo, Nb, Co,
One or two of Ta, W, Be, Mg, Cu, Ca
Grid material for fluorescent display tubes, containing a total of 0.01 to 2.0% of species or more, with the balance consisting of Fe and unavoidable impurities. 3. The grid material for a fluorescent display tube according to claim 1 or 2, wherein the crystal grain size is 7.0 or more.
JP61197309A 1986-08-25 1986-08-25 Grid material of fluorescent character display tube Granted JPS6353841A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61197309A JPS6353841A (en) 1986-08-25 1986-08-25 Grid material of fluorescent character display tube
KR1019870006173A KR910000926B1 (en) 1986-08-25 1987-06-18 Grid material of flat display tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61197309A JPS6353841A (en) 1986-08-25 1986-08-25 Grid material of fluorescent character display tube

Publications (2)

Publication Number Publication Date
JPS6353841A JPS6353841A (en) 1988-03-08
JPH0456417B2 true JPH0456417B2 (en) 1992-09-08

Family

ID=16372314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61197309A Granted JPS6353841A (en) 1986-08-25 1986-08-25 Grid material of fluorescent character display tube

Country Status (2)

Country Link
JP (1) JPS6353841A (en)
KR (1) KR910000926B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279546A (en) * 1987-05-09 1988-11-16 Futaba Corp Fluorescent character display tube

Also Published As

Publication number Publication date
KR910000926B1 (en) 1991-02-18
KR880003377A (en) 1988-05-16
JPS6353841A (en) 1988-03-08

Similar Documents

Publication Publication Date Title
JPS6314841A (en) Shadow mask material and shadow mask
JPS6164853A (en) Base material for pipe parts and its manufacture
US5792286A (en) High-strength thin plate of iron-nickel-cobalt alloy excellent in corrosion resisitance, repeated bending behavior and etchability, and production thereof
JPH0481299B2 (en)
EP0627494B1 (en) Alloy sheet for shadow mask and method for manufacturing thereof
JPH0456417B2 (en)
JP3379301B2 (en) Method for producing low thermal expansion alloy thin plate for shadow mask excellent in plate shape and heat shrink resistance
US20020117241A1 (en) Method of manufacturing Fe-Ni alloy material for pressed flat mask
JP3515769B2 (en) Fe-Ni-Co alloy ribbon for press-molded flat mask
JPH04120251A (en) Shadow mask material and its production
JP2002069535A (en) PRODUCTION METHOD FOR PREVENTING HOT ROLLING CRACK OF Fe-Ni BASED ALLOY MATERIAL HAVING FALLING IMPACT DEFORMATION RESISTANCE AND LOW THERMAL EXPANSION
JPS61166947A (en) Shadow mask
JP3042273B2 (en) Method for producing Fe-Ni-based alloy thin plate for IC lead frame with excellent rust resistance
JPS61149461A (en) Shadow mask material and shadow mask
JPS6338560A (en) Al and al alloy sheet as fin material for aluminum heat exchanger having superior zn solderability
JPS617536A (en) Oxide cathode structure
JP3294892B2 (en) Sealing alloy material and heat treatment method thereof
JP3401308B2 (en) Shadow mask material excellent in warm pressability and manufacturing method
JPS624460B2 (en)
JP3536059B2 (en) Fe-Ni alloy ribbon for press-molded flat mask
JPH07166298A (en) Tube interior parts
JPH03166338A (en) Shadow mask material for cathode-ray tube
JPH04371550A (en) Alloy member for sealing
JPH03202446A (en) Manufacture of fe-ni alloy for shadow mask and the above shadow mask
JP2004238732A (en) Steel strip for image display device member, and image display device member using it