JPH0456415B2 - - Google Patents

Info

Publication number
JPH0456415B2
JPH0456415B2 JP16385986A JP16385986A JPH0456415B2 JP H0456415 B2 JPH0456415 B2 JP H0456415B2 JP 16385986 A JP16385986 A JP 16385986A JP 16385986 A JP16385986 A JP 16385986A JP H0456415 B2 JPH0456415 B2 JP H0456415B2
Authority
JP
Japan
Prior art keywords
hot cathode
thermionic
emitter
wire
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16385986A
Other languages
Japanese (ja)
Other versions
JPS6319728A (en
Inventor
Yoshiharu Mori
Suzuya Yamada
Mitsuaki Saito
Hirotoshi Hagiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP61163859A priority Critical patent/JPS6319728A/en
Priority to GB8712116A priority patent/GB2192751B/en
Priority to DE19873717974 priority patent/DE3717974A1/en
Publication of JPS6319728A publication Critical patent/JPS6319728A/en
Priority to US07/222,300 priority patent/US4878866A/en
Publication of JPH0456415B2 publication Critical patent/JPH0456415B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)
  • Solid Thermionic Cathode (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱電子を発生させるための熱陰極、特
に管状、小型で熱損失の少ない磁界の発生を防止
した熱陰極に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a hot cathode for generating thermoelectrons, and particularly to a hot cathode that is tubular, compact, and prevents the generation of a magnetic field with little heat loss.

(従来の技術) タングステン、タンタルなどの金属からなる熱
電子放射体をらせん状に巻くことによつて輻射に
よる熱損失を小さく、かつ小型化した熱陰極は一
般に知られている(公知文献例:石川順三著「イ
オン源工学」昭和61年5月アイオニクス(株)発行)。
(Prior Art) A hot cathode is generally known that reduces heat loss due to radiation and is miniaturized by spirally winding a thermionic emitter made of a metal such as tungsten or tantalum (example of known literature: "Ion Source Engineering" by Junzo Ishikawa, published by Ionics Co., Ltd., May 1988).

(発明が解決しようとする問題点) しかしながら、らせん状に巻かれた熱電子放射
体からなる熱陰極は磁界が発生しやすいという欠
点がある。
(Problems to be Solved by the Invention) However, a hot cathode made of a spirally wound thermionic emitter has a drawback in that a magnetic field is likely to be generated.

たとえば、LSIの製造プロセスおよびその他の
分野で用いられる電子衝撃型イオン源において、
イオン源に導入したガスに熱電子を衝突させて放
電を形成させるために熱陰極が用いられるが、熱
陰極で磁界が発生すると、磁界により熱電子の飛
程が乱れ、ガスの放電が不均一なものになる(参
考文献:Y.Ohara etal.,“3D Simulation of
the Primary Electron Orbits in a Magntic
Mulhipole Plasma Source”,Proc.10th symp.
on ISIAT、Tokyo、’86、p157(1986))。
For example, in electron impact ion sources used in LSI manufacturing processes and other fields,
A hot cathode is used to cause thermionic electrons to collide with the gas introduced into the ion source to form a discharge, but when a magnetic field is generated at the hot cathode, the range of the thermionic electrons is disturbed by the magnetic field, causing uneven gas discharge. (Reference: Y. Ohara et al., “3D Simulation of
the Primary Electron Orbits in a Magnetic
Mulhipole Plasma Source”, Proc.10th symp.
on ISIAT, Tokyo, '86, p157 (1986)).

又、電子ビーム溶接装置等熱陰極から放射され
る電子を直接対象物に照射するような用途におい
ては、熱陰極が小型で熱陰極から発生する熱電子
放射密度が高いビームが要求されているが従来の
針状の熱陰極やコイル状のものでは十分の量の電
子ビームが得られなかつた。
In addition, in applications such as electron beam welding equipment where electrons emitted from a hot cathode are directly irradiated onto a target object, a beam with a small hot cathode and a high density of thermionic radiation generated from the hot cathode is required. Conventional needle-shaped hot cathodes and coil-shaped ones have not been able to produce a sufficient amount of electron beam.

本発明は発生する磁界が効果的に打消され、小
型でかつ輻射による熱損失の小さい小型、管状の
熱陰極を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a small, tubular hot cathode in which the generated magnetic field is effectively canceled, and the heat loss due to radiation is small.

(問題点を解決するための手段) 本発明者らは熱陰極の構造について検討を重ね
た結果、きわめて効果的に磁界が打消され、小型
でかつ輻射による熱損失の小さい熱電子放射体か
らなる熱陰極構造を見出した。
(Means for Solving the Problem) As a result of repeated studies on the structure of the hot cathode, the present inventors found that it is made of a thermionic emitter that cancels the magnetic field extremely effectively, is small, and has low heat loss due to radiation. We discovered a hot cathode structure.

すなわち、本発明はらせん状の溝によつて形成
された2本の並行するらせん巻熱電子放射体から
なる管状の熱陰極であつて、前記熱電子放射体は
一端が連続し他端が二分されて給電端子としてな
ることを特徴とする熱陰極である。
That is, the present invention provides a tubular hot cathode consisting of two parallel spirally wound thermionic emitters formed by spiral grooves, the thermionic emitters being continuous at one end and bisected at the other end. This is a hot cathode characterized in that it serves as a power supply terminal.

以下、本発明について詳しく説明する。 The present invention will be explained in detail below.

第3図は本発明の熱陰極である。らせん状の溝
をきめることによつて2本の並行するらせん巻熱
電子放射体1a,1bが形成され、その一端2が
連続しており、二分された他端が給電端子3a,
3bとなつている。たとえば管状体の一端の給電
端子部に設けたスリツト4から、もう一方の端部
の適当な位置5に至りらせん状の溝を設けて2本
の並行するらせん巻を熱電子放射体1a,1bが
一方の端部2で連続しているように形成されてい
る。溝の巾及びピツチは、特に限定されることは
なく、2本の並行するらせん巻を熱電子放射体ど
うしが相互に接触することなく、又機械的強度と
必要な電気特性が得られる範囲で選択することが
できるが、熱電子放射面積を極力大きくとれるこ
とが好ましい。
FIG. 3 shows a hot cathode of the present invention. Two parallel spiral-wound thermionic emitters 1a and 1b are formed by defining the spiral grooves, one end 2 of which is continuous, and the other bisected end connected to the power supply terminal 3a,
It has become 3b. For example, a spiral groove is provided from a slit 4 provided at the power supply terminal at one end of the tubular body to an appropriate position 5 at the other end, and two parallel spiral windings are connected to the thermionic emitters 1a and 1b. are continuous at one end 2. The width and pitch of the grooves are not particularly limited, and should be within the range that prevents the thermionic emitters from coming into contact with each other between two parallel spiral windings and that provides mechanical strength and necessary electrical properties. Although it can be selected, it is preferable that the thermionic emission area can be made as large as possible.

また管状体の形状は円筒状に限定されるもので
なく、角状及び多角形のものでもよい。
Further, the shape of the tubular body is not limited to a cylindrical shape, but may be angular or polygonal.

本発明において熱電子放射体はW,Ta,Re,
Mo等の金属の外、炭素も適しており、また原子
番号57から71までのランタン系元素もしくは
アルカリ土類からなる六ホウ化物、または周期律
表の〜族元素の炭化物、窒化物等の無機化合
物も用いられる。これらの無機化合物はたとえば
SrB6,LaB6,TiB2,ZrB2,TaB2,TiC,ZrC,
HfCなどであり、単結晶または焼結体が用いられ
る。
In the present invention, the thermionic emitters are W, Ta, Re,
In addition to metals such as Mo, carbon is also suitable, as well as hexaborides of lanthanum-based elements or alkaline earth elements with atomic numbers 57 to 71, or inorganic compounds such as carbides and nitrides of elements in group ~ of the periodic table. Compounds are also used. These inorganic compounds are e.g.
SrB 6 , LaB 6 , TiB 2 , ZrB 2 , TaB 2 , TiC, ZrC,
HfC, etc., and a single crystal or sintered body is used.

本発明の熱電子放射体は単結晶、セラツクスま
たは硬質の金属等の管状体からワイヤ放電加工法
により加工することができる。
The thermionic emitter of the present invention can be machined from a tubular body of single crystal, ceramics, hard metal, or the like by wire electrical discharge machining.

管状体の製作方法は熱電子放射体が単結晶の場
合には単結晶を旋盤、研削盤等により加工する
か、またはワイヤカツト放電加工機によつて切断
すればよい。熱電子放射体が焼結体の場合には焼
結時の型により管状体の焼結体を得るか、または
焼結体を上記同様切削または切断すればよい。
When the thermionic emitter is a single crystal, the tubular body may be manufactured by processing the single crystal using a lathe, a grinder, etc., or by cutting the single crystal using a wire cut electrical discharge machine. When the thermionic emitter is a sintered body, a tubular sintered body may be obtained using a mold during sintering, or the sintered body may be cut or cut in the same manner as described above.

第6図はワイヤカツト放電加工法により管状体
から本発明の熱陰極を製造する方法を示すもので
ある。管状体の端にワイヤカツト放電加工機のワ
イヤ7を当て、管状体をその軸を中心に回転させ
ながら、管状体を軸方向に移動させることによつ
て管状体を切り進むことによつて2本の並行らせ
ん巻の熱電子放射体が得られる。
FIG. 6 shows a method of manufacturing the hot cathode of the present invention from a tubular body by wire cut electrical discharge machining. The wire 7 of the wire-cut electrical discharge machine is applied to the end of the tubular body, and the tubular body is cut into two pieces by moving the tubular body in the axial direction while rotating the tubular body around its axis. A thermionic emitter with parallel spiral windings is obtained.

上記のワイヤカツト放電加工法において、ワイ
ヤによる切り始めを管状体端末でなく、端末近傍
とすることによつて折返し点が連続した並行らせ
ん状の熱電子放射体となる。
In the wire-cut electrical discharge machining method described above, by starting the cut with the wire not at the end of the tubular body but near the end, a parallel spiral thermionic emitter with continuous turning points is obtained.

(作用) らせん状の溝によつて形成された2本の並行す
るらせん巻を熱電子放射体は管状体の一端で連続
しているので他端の給電端子から供給された電流
は連続した部分を折返し点として互に逆方向に流
れるので相方向に流れる電流によつて生じる磁界
は互いに打ち消し合い、消失し熱電子放射体から
発生する電子の飛程を防害しない。また熱陰極を
らせん状の溝によつて形成された2本の並行する
らせん巻を熱電子放射体からなる管状体とするこ
とによつて、第1図及び第2図(比較例)に示す
ように線をらせん状に巻いたものに比べ、熱電子
放射体部の断面積を大きくすることができるので
大きな電流を流すことができるうえ、放射体部に
対し溝によつて生じる隙間を小さくすることがで
きるので熱陰極単位体積あたりの熱電子放射面積
が大きく、従つて所定の熱電子放射量を確保する
ための熱陰極は小さくてすみ、熱損失が少く、ま
た熱電子放射度を高くすることができる。
(Function) Since the thermionic emitter has two parallel spiral windings formed by spiral grooves that are continuous at one end of the tubular body, the current supplied from the power supply terminal at the other end is connected to the continuous part. Since the magnetic fields generated by the currents flowing in the phase directions cancel each other out and disappear, they do not prevent the range of the electrons generated from the thermionic emitter. In addition, by making the hot cathode into a tubular body consisting of two parallel spiral windings formed by spiral grooves and a thermionic emitter, the hot cathode is shown in Fig. 1 and Fig. 2 (comparative example). Compared to a wire wound spirally, the cross-sectional area of the thermionic emitter can be made larger, allowing a larger current to flow, and the gap created by the groove between the emitter and the emitter can be made smaller. Since the hot cathode can have a large thermionic emission area per unit volume, the hot cathode needs to be small to ensure the prescribed amount of thermionic radiation, resulting in less heat loss and high thermionic radiation. can do.

(実施例) 以下、実施例により本発明の熱陰極について具
体的に説明する。第3図から第5図までは本発明
の熱陰極の具体例を示したものである。
(Example) Hereinafter, the hot cathode of the present invention will be specifically explained with reference to Examples. 3 to 5 show specific examples of the hot cathode of the present invention.

熱陰極材料としてタングステンを用いワイヤカ
ツト放電加工法により、外径10mm、内径7mm、高
さ28mmの円筒状に加工をおこなつた。ついで、円
筒の一方の端部を二つの給電端子3a,3bとす
るため、ワイヤカツト放電加工によりスリツト4
を形成した。他方の端部近傍に貫通する穴5をあ
けてワイヤを通し、タングステン製円筒をその軸
を中心に回転させながら軸方向に移動させて切断
を進めピツチ4.1mm、切り溝の巾0.3mmの2本の並
行するらせん巻熱電子放射体を形成した。
Tungsten was used as the hot cathode material and was machined into a cylindrical shape with an outer diameter of 10 mm, an inner diameter of 7 mm, and a height of 28 mm using the wire cut electric discharge machining method. Next, in order to make one end of the cylinder into two power supply terminals 3a and 3b, a slit 4 is formed by wire cut electrical discharge machining.
was formed. A penetrating hole 5 is made near the other end and the wire is passed through it, and the tungsten cylinder is rotated around its axis and moved in the axial direction to proceed with cutting. A parallel spiral-wound thermionic emitter was formed.

得られた熱陰極を真空チヤンバー内の支持電極
に取り付けるためにタンタル製帯状板6a,6b
をスポツト溶接により給電端子3a,3bに取り
付けた。帯状板6a,6bに直流電源を接続し、
1×10-5Torrの真空中で通電することによつて
加熱を行なつた。光高温計でらせん状の熱電子放
射体の温度を測定しながら電源電圧の調節を行な
つた。その結果、らせん状の熱電子放射体の温度
を2000℃に維持するための電流は98アンペア、所
要電力は490ワツトであつた。この電力は同形状
である並行らせん巻構造である1.5×1.75mmの断
面を持つ角棒状のフイラメントと比較して約3割
小さかつた。
Tantalum strip plates 6a and 6b are used to attach the obtained hot cathode to the supporting electrode in the vacuum chamber.
were attached to the power supply terminals 3a and 3b by spot welding. Connect a DC power source to the strip plates 6a and 6b,
Heating was carried out by applying electricity in a vacuum of 1×10 −5 Torr. The power supply voltage was adjusted while measuring the temperature of the spiral thermionic emitter with an optical pyrometer. As a result, the current required to maintain the temperature of the spiral thermionic emitter at 2000°C was 98 amperes, and the required power was 490 watts. This electric power was approximately 30% smaller than that of a rectangular rod-shaped filament with a cross section of 1.5 x 1.75 mm, which has the same parallel spiral wound structure.

ガウスメーターによりらせん状熱電子放射体か
ら5cm離れた空間の磁界を測定したところその値
は0.1ガウス以下であつた。
When we measured the magnetic field in a space 5 cm away from the helical thermionic emitter using a Gaussmeter, the value was less than 0.1 Gauss.

(発明の効果) 本発明の熱陰極は磁界の発生がきわめて小さ
く、2本の並行するらせん巻熱電子放射体からの
電子発生及び飛程を防害することなく、電子電子
衝撃型イオン源においてはガスの放電を均一とす
ることができる。又小型で管状であるので輻射に
よる熱損失が小さく、単位体積あたりの熱電子放
射体の表面積が大きく、熱陰極からの電子発生密
度が大きい。
(Effects of the Invention) The hot cathode of the present invention generates an extremely small magnetic field, and does not impede electron generation and range from two parallel spirally wound thermionic emitters, and is suitable for electron impact ion sources. Gas discharge can be made uniform. Also, since it is small and tubular, heat loss due to radiation is small, the surface area of the thermionic emitter per unit volume is large, and the density of electrons generated from the hot cathode is large.

さらに、熱陰極が2本の並行するらせん巻熱電
子放射体からなる熱陰極であるため弾性を有し、
熱応力に耐えて寿命が長い。本発明の熱陰極はカ
ウフマン(Kaufman)型、フリーマン
(Freeman)型、カルトロン(Calutron)型、多
極磁界型(バケツト型)等の熱電子衝撃型イオン
源のほか、ニールセン(Nielsen)型、スカンジ
ナビアン(Scandinavian)型等の電子振動型イ
オン源、ビームプラズマ型イオン源、ヒル・アン
ド・ネルソン(Hill and Nelson)型等のスパツ
タイオン源、PIG型イオン源、モノプラズマトロ
ン、デユオプラズマトロン、デユオピガトロン、
三極スパツタリング装置、電子ビーム溶接装置、
電子ビーム露光装置、電子顕微鏡、陰極線管、微
小磁気測定計器など磁気による妨害を受けやすい
装置に組込まれる熱陰極として、特に適してい
る。
Furthermore, since the hot cathode is a hot cathode consisting of two parallel spirally wound thermionic emitters, it has elasticity.
It can withstand thermal stress and has a long lifespan. The hot cathode of the present invention can be used with thermionic impact ion sources such as Kaufman type, Freeman type, Calutron type, multipolar magnetic field type (Bucket type), Nielsen type, Scandinavian type, etc. Electron vibration type ion sources such as the Scandinavian type, beam plasma type ion sources, Sputter ion sources such as the Hill and Nelson type, PIG type ion sources, monoplasmatron, dual plasmatron, dualopigatron,
Triode sputtering equipment, electron beam welding equipment,
It is particularly suitable as a hot cathode incorporated in equipment susceptible to magnetic interference, such as electron beam exposure equipment, electron microscopes, cathode ray tubes, and micromagnetic measuring instruments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明に対して比較例の熱
陰極を示す。第3図から第5図までは本発明の熱
陰極であり、第3図および第4図は正面図、第5
図は平面図である。第6図は本発明の熱陰極の製
造法を示す斜視図である。 符号 1a,1b…熱電子放射体、2…折返し
点、3a,3b…給電端子、4…スリツト、5…
穴、6a,6b…帯状板、7…ワイヤ、8…ワイ
ヤ保持具。
FIGS. 1 and 2 show a hot cathode as a comparative example with respect to the present invention. Figures 3 to 5 show the hot cathode of the present invention; Figures 3 and 4 are front views;
The figure is a plan view. FIG. 6 is a perspective view showing the method for manufacturing the hot cathode of the present invention. Symbols 1a, 1b...thermionic emitter, 2...returning point, 3a, 3b...power supply terminal, 4...slit, 5...
Hole, 6a, 6b...band plate, 7...wire, 8...wire holder.

Claims (1)

【特許請求の範囲】[Claims] 1 らせん状の溝によつて形成された2本の並行
するらせん巻熱電子放射体からなる管状の熱陰極
であつて、前記熱電子放射体は一端が連続し他端
が二分されて給電端子としてなることを特徴とす
る熱陰極。
1 A tubular hot cathode consisting of two parallel spiral-wound thermionic emitters formed by spiral grooves, the thermionic emitters having one end continuous and the other end bisected to form a power supply terminal. A hot cathode characterized by being a hot cathode.
JP61163859A 1986-07-14 1986-07-14 Hot cathode Granted JPS6319728A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61163859A JPS6319728A (en) 1986-07-14 1986-07-14 Hot cathode
GB8712116A GB2192751B (en) 1986-07-14 1987-05-22 Method of making a thermionic cathode structure.
DE19873717974 DE3717974A1 (en) 1986-07-14 1987-05-27 GLOWH CATHODE
US07/222,300 US4878866A (en) 1986-07-14 1988-07-22 Thermionic cathode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61163859A JPS6319728A (en) 1986-07-14 1986-07-14 Hot cathode

Publications (2)

Publication Number Publication Date
JPS6319728A JPS6319728A (en) 1988-01-27
JPH0456415B2 true JPH0456415B2 (en) 1992-09-08

Family

ID=15782114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61163859A Granted JPS6319728A (en) 1986-07-14 1986-07-14 Hot cathode

Country Status (1)

Country Link
JP (1) JPS6319728A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393605U (en) * 1989-10-19 1991-09-25

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55155456A (en) * 1979-05-18 1980-12-03 Insutoron Japan Co Ltd Heater for scan electron microscope
JPS6123197B2 (en) * 1974-09-09 1986-06-04 Smithkline Beckman Corp

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123197U (en) * 1984-07-13 1986-02-10 株式会社東芝 tungsten heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123197B2 (en) * 1974-09-09 1986-06-04 Smithkline Beckman Corp
JPS55155456A (en) * 1979-05-18 1980-12-03 Insutoron Japan Co Ltd Heater for scan electron microscope

Also Published As

Publication number Publication date
JPS6319728A (en) 1988-01-27

Similar Documents

Publication Publication Date Title
US4878866A (en) Thermionic cathode structure
EP1505627B1 (en) Magnetron
JP6469700B2 (en) Ion source with minimal metal contamination for ion implantation systems
US3558967A (en) Linear beam tube with plural cathode beamlets providing a convergent electron stream
Rocca et al. Glow‐discharge‐created electron beams: Cathode materials, electron gun designs, and technological applications
US6359378B1 (en) Amplifier having multilayer carbon-based field emission cathode
JPS59146129A (en) Method of producing thermion cathode
US20210074503A1 (en) Thermally Isolated Repeller And Electrodes
GB2183904A (en) Cathode focusing arrangement
EP0249658B1 (en) Ion source device
US6441550B1 (en) Carbon-based field emission electron device for high current density applications
US4123686A (en) Ion generating source
JPH0456415B2 (en)
US2957100A (en) Magnetron cathode structure
US3970956A (en) Cylindrical electron beam diode
US3284657A (en) Grain-oriented thermionic emitter for electron discharge devices
KR101956540B1 (en) X­ray source comprising cnt yarn and x­ray emitting apparatus using the same
US3392300A (en) Hollow-beam electron gun with a control electrode
US3027480A (en) Electron discharge device cathodes
JPS5820090B2 (en) Magnetron type ion generator using electron impact heating method
JPS6027140B2 (en) modular electron tube
JPH0216532B2 (en)
JP2747288B2 (en) Hot cathode structure
JP3401821B2 (en) Electron gun for hollow electron beam emission
Guarnieri et al. Improved ion source for use with oxygen

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term