JPH0456303A - High-frequency inductor - Google Patents

High-frequency inductor

Info

Publication number
JPH0456303A
JPH0456303A JP16742190A JP16742190A JPH0456303A JP H0456303 A JPH0456303 A JP H0456303A JP 16742190 A JP16742190 A JP 16742190A JP 16742190 A JP16742190 A JP 16742190A JP H0456303 A JPH0456303 A JP H0456303A
Authority
JP
Japan
Prior art keywords
conductor foil
perforated core
foil
conductor
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16742190A
Other languages
Japanese (ja)
Inventor
Hisanaga Takano
高野 久永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP16742190A priority Critical patent/JPH0456303A/en
Publication of JPH0456303A publication Critical patent/JPH0456303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

PURPOSE:To reduce an AC loss by a method wherein a conductor foil is radially installed on the seating faces of laminated perforated cores, the section of the conductor foil is installed zigzag and the thickness of the conductor foil is specified conforming to the frequency of a current made to flow. CONSTITUTION:A perforated core 10 consists of a multitude of laminated torus-shaped troidal cores, an inner side surface 12 positioned on a hollow window, seating faces (laminated faces) 14 and 18 having a torus-shaped flat surface and an outer side surface 16. A conductor foil (a copper foil winding) 20 is provided between the layers of the laminated cores 10 and is provided with a first surface 22 which is positioned on the sides of the inner side surfaces 12, second surfaces 24, which have the same width as that of the surface 22, are divided in a prescribed width W. and are installed radially on the seating faces 14, a third surface 26, which is installed on the outer side surfaces 16 and is connected with the second surfaces 24 at the end parts of the surfaces 24 and fourth surfaces 28, which are mounted on the seating faces 18 on the opposite side to the seating faces 14 and are radially mounted at positions where the surfaces 28 coincide roughly with the surfaces 24 and moreover, the foil 20 is similarly continued also to the lower layers of the cores. The thickness (delta) of this conductor foil is set at a range that delta<3xK/sq. rt. f (f: the frequency of a current which is made to flow through an inductor, K: the skin effect constant of the material for the conductor foil) is valid.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は数MHz程度の高周波数を取り扱う電子装置に
用いて好適な高周波用インダクタに係り、特に低損失化
と薄形化の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a high frequency inductor suitable for use in electronic devices that handle high frequencies of approximately several MHz, and particularly relates to improvements in lower loss and thinner inductor.

〈従来の技術〉 インダクタでは通常電流を流すのに巻線を用いており、
低周波数領域では導体断面に均一に流れている。しかし
、数MHz程度の高周波数領域では表皮効果並びに近接
効果によって銅損が増大するという課題があった。以下
、図面を用いてこれらの関係を説明する。
<Conventional technology> Inductors usually use windings to pass current.
In the low frequency region, it flows uniformly across the cross section of the conductor. However, there is a problem in that copper loss increases due to skin effect and proximity effect in a high frequency range of about several MHz. Hereinafter, these relationships will be explained using the drawings.

■ 表皮効果 第8図は表皮効果の説明図で、(A)は導体断面、(B
)は直径方向での電流分布を表している。
■ Skin effect Figure 8 is an explanatory diagram of the skin effect, where (A) is a conductor cross section, (B
) represents the current distribution in the diameter direction.

表皮効果は、高周波数化に伴ない電流が導体表面に集中
して流れることを言い、導体周囲の漏洩磁束が導体内部
に進入する為に生じる0表皮の厚さδは、表面効果の定
数をKとすると次式で与えられる。
The skin effect refers to the fact that as the frequency increases, current flows concentrated on the surface of the conductor.The skin thickness δ, which occurs when leakage magnetic flux around the conductor enters the inside of the conductor, is the constant of the surface effect. Letting K, it is given by the following equation.

δ=に/√f[mml  (1) ここでfは周波数である。/がIMHzで、導体が銅の
場合Kが66.1となるので、δは66.1μmとなる
。従って、単線の場合には線径を表皮程度の厚さにする
と内部の交流抵抗を小さくできる。しかし、導線に流せ
る電流密度には一定の限界があるから、インダクタとし
ては箔状にして断面積を確保する必要がある。
δ=to/√f[mml (1) where f is the frequency. When / is IMHz and the conductor is copper, K is 66.1, so δ is 66.1 μm. Therefore, in the case of a single wire, the internal AC resistance can be reduced by making the wire diameter as thick as the skin. However, there is a certain limit to the current density that can be passed through the conductor, so the inductor needs to be shaped like a foil to ensure a sufficient cross-sectional area.

■ 近接効果 第9図は近接効果の説明図で、(A)は二つ並んだ導線
に同一方向の電流が流れる場合、(B)は逆方向に流れ
る場合を示している。近接効果は、近接した位置に電流
の流れる導体があると、この導体で作られる磁界は導体
断面で一様ではないため、導体内部の磁界が完全には打
ち消されずに損失が増大することを言う、同一方向に流
す場合には外側に電流が分布し、逆方向に流す場合には
内側に電流が分布している。これを緩和するには隣り合
う導体同士の間隔を表皮の厚さ程度離せばよい。
■ Proximity Effect Figure 9 is an explanatory diagram of the proximity effect, where (A) shows the case where current flows in the same direction in two lined up conductors, and (B) shows the case where the current flows in the opposite direction. Proximity effect refers to the fact that when there is a current-carrying conductor in close proximity, the magnetic field created by this conductor is not uniform across the conductor's cross section, so the magnetic field inside the conductor is not completely canceled out and losses increase. When flowing in the same direction, the current is distributed on the outside, and when flowing in the opposite direction, the current is distributed on the inside. To alleviate this problem, adjacent conductors may be spaced apart by approximately the thickness of the skin.

第10図は導体を銅箔としたもので、この二つの銅箔は
距離dを隔てて平行に位置している。第11図は第10
図の配置に於ける交流抵抗Racの説明図である。縦軸
には直流抵抗Rdcを基準に交流抵抗Racを表示し、
横軸には距ladをとっている。銅箔の寸法を幅Wが5
mm、厚さヱが100μmとし、周波数IをIMHzと
した場合の計算例である。@箔単体ではRac/ Rd
cが1.5になっているが、同一方向(例えばコイル状
の巻線を有するインダクタ)では2.2に増大し、逆方
向(例えば−次巻線と二次巻線を交互に巻いたトランス
)では1.3に減少している。
In FIG. 10, the conductor is made of copper foil, and these two copper foils are located in parallel with a distance d between them. Figure 11 is the 10th
FIG. 3 is an explanatory diagram of AC resistance Rac in the arrangement shown in the figure. The vertical axis shows AC resistance Rac based on DC resistance Rdc,
The horizontal axis shows the distance lad. The width W of the copper foil is 5.
This is an example of calculation when the thickness is 100 μm and the frequency I is IMHz. @Rac/Rd for foil alone
c is 1.5, but increases to 2.2 in the same direction (e.g. in an inductor with coiled windings), and increases to 2.2 in the opposite direction (e.g. - in an inductor with alternating primary and secondary windings). transformer), it has decreased to 1.3.

〈発明が解決しようとする課題〉 上述したように、コイル状インダクタのように同一方向
に電流を流す導線を用いると、交流抵抗が増大して損失
が増大すると言う課題があった。
<Problems to be Solved by the Invention> As described above, there is a problem in that when a conductor wire that allows current to flow in the same direction, such as a coiled inductor, is used, AC resistance increases and loss increases.

本発明はこのような課題を解決したもので、交流抵抗の
少ない高周波用インダクタを提供することを目的とする
The present invention solves these problems and aims to provide a high frequency inductor with low AC resistance.

く課題を解決するための手段〉 このような目的を達成する本発明の高周波用インダクタ
は、磁性材料よりなり積層配置される穴あきコアと、こ
の穴あきコアの内側面側に位置する第1の面と、この第
1の面と同一幅を有すると共に所定幅に分れて穴あきコ
アの座面に放射状に装着される第2の面と、この放射状
に取付けられた第2の面と各端部で接続されると共に穴
あきコアの外側面に装着される第3の面と、当該穴あき
コアの当該第2の面の装着される座面と対向する側の座
面に前記第2の面と大略一致する位置で放射状に取り付
けられる第4の面とを備える導体箔とを具備している。
Means for Solving the Problems> The high-frequency inductor of the present invention that achieves the above object includes a perforated core made of a magnetic material and arranged in layers, and a first core located on the inner side of the perforated core. a second surface that has the same width as the first surface and is divided into predetermined widths and is attached radially to the seating surface of the perforated core; and this second surface that is attached radially. a third surface that is connected at each end and is attached to the outer surface of the perforated core; and a fourth surface that is radially attached at a position that substantially coincides with the second surface.

そして、この導体箔の厚さ(δ)を、 δ<3xK/√f /:インダクタに流れる電流の周波数 K:導体箔材料の表皮効果定数 が成り立つ範囲に定めたことを特徴としている。Then, the thickness (δ) of this conductor foil is δ<3xK/√f /: Frequency of current flowing through the inductor K: skin effect constant of conductor foil material It is characterized by the fact that it is set within the range in which it holds true.

く作 用〉 本発明の各構成要素はつぎの作用をする。積層穴あきコ
アに対して、導体箔は断面つづら折り状に装着される。
Functions Each component of the present invention has the following functions. The conductor foil is attached to the laminated perforated core in a meandering cross-section.

これにより、各コア断面では座面の上側と下側で反対方
向に電流が流れ交流損失が低下する。また導体箔の厚さ
を流そうとする周波数に合わせているので、渦電流の影
響が少なくなって交流損失が低下する。コアの積層数を
増やす事により、大きなインダクタンスが得られる。
As a result, in each core cross section, current flows in opposite directions above and below the seat surface, reducing AC loss. Furthermore, since the thickness of the conductor foil is matched to the frequency of the flow, the influence of eddy currents is reduced and AC loss is reduced. Large inductance can be obtained by increasing the number of core layers.

〈実施例〉 以下図面を用いて、本発明を説明する。<Example> The present invention will be explained below using the drawings.

第1図は本発明の一実施例を示す構成図で、(A)は上
面図、(B)は側面図で、第2図は第1図Aの2−2断
面図である0図において、穴あきコア10は、ここでは
円環状のトロイダルコアを多数積層させるもので、断面
は略長方形になっており、中空窓に位置する内側面12
と、円環状の平坦面を有する座面14,18と、タト側
面16よりなる。座面14.18は他の穴あきコアIO
が積層される際、その座面14,1gと対向する。この
コアの内径はdl、外径はdlとする。導体箔20は積
層される穴あきコア10に対して、各層の間に設けられ
るもので、例えば銅箔が使用される。導体箔20には、
穴あきコア10の内側面12側に位置する第1の面22
と、この第1の面と同一幅を有すると共に所定幅(In
 1)に分れ、座面14.18に放射状に装着される第
2の面24を有する。例えば、図のように8本に分離し
ている場合は次の関係を充足している2、 8υ)1中π・d 1             (2
)第3の面26は穴あきコア10の外側面16に装着さ
れるもので、第2の面24と各端部で接続されている。
Fig. 1 is a configuration diagram showing an embodiment of the present invention, (A) is a top view, (B) is a side view, and Fig. 2 is a cross-sectional view taken along line 2-2 of Fig. 1A. Here, the perforated core 10 is made by laminating a large number of annular toroidal cores, has a substantially rectangular cross section, and has an inner surface 12 located at the hollow window.
, seat surfaces 14 and 18 having annular flat surfaces, and a concave side surface 16. Seat surface 14.18 is another perforated core IO
When stacked, the bearing surfaces 14 and 1g face each other. The inner diameter of this core is dl, and the outer diameter is dl. The conductor foil 20 is provided between each layer of the laminated perforated core 10, and is made of copper foil, for example. The conductor foil 20 includes
A first surface 22 located on the inner surface 12 side of the perforated core 10
and has the same width as this first surface and a predetermined width (In
1) and has a second surface 24 attached radially to the seat surface 14.18. For example, if it is separated into 8 lines as shown in the figure, the following relationship is satisfied: 2, 8υ) 1 in π・d 1 (2
) The third surface 26 is attached to the outer surface 16 of the perforated core 10 and is connected to the second surface 24 at each end.

従って、外側面に現れるコア露出面の幅W2は次の関係
を充足+、ている。
Therefore, the width W2 of the core exposed surface appearing on the outer surface satisfies the following relationship.

W2−π・d2/8−1p1         (3)
第4の面28は外側面26に装着される第3の面を有す
る穴あきコア10に対して、第2の面26が装着される
座面と反対側の座面に取り付けらi王るもので、第2の
面と大略一致する位置で放射状に取り付けられている。
W2-π・d2/8-1p1 (3)
The fourth surface 28 is attached to the seat surface opposite to the seat surface to which the second surface 26 is attached, with respect to the perforated core 10 having the third surface attached to the outer surface 26. and is attached radially at a position that roughly coincides with the second surface.

穴あきコア10がさらに下層にも存在する場合には、そ
の下層コアの内側面12に装着される第1の面22をこ
の第4の而28に続けて設けるとよい。また、導体箔2
0は両側の面を絶縁体で被覆1〜で短絡を防止するとよ
い。
If the perforated core 10 is also present in a lower layer, this fourth layer 28 may be followed by a first surface 22 that is attached to the inner surface 12 of the lower core. In addition, the conductor foil 2
0 is preferably covered with an insulator on both sides to prevent short circuits.

このように構成された装置の動作を次に説明する。第3
図は第2図の3−3断面図である。銅箔巻線20は穴あ
きコア10て挾まれた各層で・は同一方向に流れている
が、隣接する層の銅箔巻線20とは反対方向に流れてい
る。そごで穴あきコア10で隔てられな銅箔巻線20に
関しては、第11図で説明したように交流抵抗が小さく
なっている。他方、同層に間L7ては厚さδかその間隔
に比べてかなり小さいので影響は内側面に近い領域を除
いて無視できる。なお、銅箔巻線20内部の斜線部は電
流の流れる領域を示している。
The operation of the device configured in this way will be described next. Third
The figure is a 3-3 sectional view of FIG. The copper foil windings 20 flow in the same direction in each layer sandwiched by the perforated core 10, but flow in the opposite direction for the copper foil windings 20 in adjacent layers. As for the copper foil winding 20 separated by the perforated core 10, the alternating current resistance is reduced as explained in FIG. 11. On the other hand, since the distance L7 between the same layers is considerably smaller than the thickness δ or the interval thereof, the influence can be ignored except in the region close to the inner surface. Note that the shaded area inside the copper foil winding 20 indicates the area through which current flows.

一般に、1枚の1−ロイダルコアの磁気抵抗RCは次式
で与えられる。
Generally, the magnetic resistance RC of one 1-roidal core is given by the following equation.

Re =2yr/ 1μm1−1nfd2/d1))(
4)ここで、μは透磁率、jは厚さを示している。従っ
てインダクタンスLCは次式で与えられる。
Re =2yr/1μm1-1nfd2/d1))(
4) Here, μ represents magnetic permeability and j represents thickness. Therefore, the inductance LC is given by the following equation.

L、、c=1/Rc =μm1−In(d2/d1)/2yr    (5)
n枚のコアで構成されている場合は、−枚の場合のn倍
となる。このことから、同一のインダクタンスを有しな
がら薄い形状とするには、次の事項に留意を払う。
L,,c=1/Rc=μm1-In(d2/d1)/2yr (5)
If it is configured with n cores, it will be n times the number of - cores. Therefore, in order to have a thin shape while having the same inductance, the following points should be taken into consideration.

(1)コア形状は内径を小さく外径を大きくすること。(1) The core shape should have a small inner diameter and a large outer diameter.

(11)コア材質は透磁率の大きなものを選択すること
6面コアの数を少なくすること。
(11) Select a core material with high magnetic permeability and reduce the number of six-sided cores.

第4図は銅箔厚さδの説明図である。第1式で示した表
皮厚さ66μmに対して、はぼ3倍の厚さまでであれば
交流抵抗が直流抵抗に対して2倍以下となり好ましい、
それ以上の厚さになると交流抵抗の増大が著しくなる。
FIG. 4 is an explanatory diagram of the copper foil thickness δ. With respect to the skin thickness of 66 μm shown in the first equation, if the thickness is approximately three times the thickness, the AC resistance will be less than twice the DC resistance, which is preferable.
If the thickness is greater than that, the AC resistance will increase significantly.

銅箔の幅方向に分布する磁界により誘起される渦電流が
、表皮効果の厚さ程度の厚さをl?箔が有していれば、
対向する反対側の面で発生する渦電流により打ち消され
るためと考えられる。他方、銅箔を薄くすることは交流
抵抗の面からは差し支えないが、流す電流の量或いは機
械的な強度によって限界が規定される。
The eddy current induced by the magnetic field distributed in the width direction of the copper foil increases the thickness of the copper foil to a thickness similar to that of the skin effect. If the foil has
This is thought to be because the eddy current generated on the opposite surface is canceled out. On the other hand, making the copper foil thinner has no problem in terms of AC resistance, but the limits are determined by the amount of current to flow or mechanical strength.

そこで、導体箔20の厚さはδは次式を満たすとよい。Therefore, it is preferable that the thickness δ of the conductor foil 20 satisfies the following formula.

δ< 3 K / J /             
(6)第5図は導体箔20をw:遣する場合の説明図で
、(A)は側面図、(B)は折り曲げ後の正面図、(C
)は切れ目を設けた後の正面図である。第1の面22の
長さ11及び第3の面26の長さ13は、穴あきコア1
0の厚さに合うものになっている。また、第2の面24
の長さ12及び第4の面28の長さ14は、穴あきコア
10の座面の幅(d2−a!1)/2に合うものになっ
ている。最初幅WOの銅箔に対して、所定の長さ11〜
14を単位として折り目を付ける。続いて、第2〜第4
の面の間で、所定幅W1の切れ目を設ける。
δ<3K/J/
(6) Fig. 5 is an explanatory diagram when the conductor foil 20 is used w: (A) is a side view, (B) is a front view after bending, (C
) is a front view after making the cut. The length 11 of the first surface 22 and the length 13 of the third surface 26 are the same as those of the perforated core 1.
It is made to match the thickness of 0. In addition, the second surface 24
The length 12 of and the length 14 of the fourth surface 28 match the width (d2-a!1)/2 of the seat surface of the perforated core 10. A predetermined length of 11~
Make creases in units of 14. Next, the second to fourth
A cut with a predetermined width W1 is provided between the surfaces.

第6図及び第7図は穴あきコア10に導体箔20を装着
する作業説明図で、(A)は上面図、(B)は側面図で
ある。導体箔20を折り曲げて、穴あきコア10に対し
て外側面を覆うように導体箔20を装着する(第6図)
。続いて、C型のコア(2枚合わせると穴あきコア10
と同一形状となる)をこの穴あきコア10の間に装@L
5(第7図)、導体箔の第1の面22を内側面に相当す
る面に装着する。この後接着すれば、簡単に組み立て作
業が行える。そして、導体箔20に電流を流す導線を接
続すれば、高周波用インダクタとして働く。
FIGS. 6 and 7 are explanatory diagrams of the process of attaching the conductor foil 20 to the perforated core 10, in which (A) is a top view and (B) is a side view. The conductor foil 20 is bent and attached to the perforated core 10 so as to cover the outer surface thereof (Fig. 6).
. Next, a C-shaped core (combining the two pieces will make 10 perforated cores)
) is installed between this perforated core 10 @L
5 (FIG. 7), attach the first surface 22 of the conductor foil to the surface corresponding to the inner surface. After this, you can easily assemble it by gluing it together. Then, by connecting a conductive wire that carries a current to the conductor foil 20, it functions as a high frequency inductor.

尚、上記実施例においては穴あきコア10の形状をトロ
イダルコアとして説明したが、本発明はこれに限定され
るものではなく、内側面と外側面が多角形でもよい、ま
た、穴あきコア10と導体箔20の装着は、接着剤を用
いた導体箔の貼り合わせでもよく、また半田付けでもよ
い。
In the above embodiment, the shape of the perforated core 10 is described as a toroidal core, but the present invention is not limited to this, and the inner and outer surfaces may be polygonal. The conductor foil 20 may be attached by bonding the conductor foils together using an adhesive or by soldering.

〈発明の効果〉 以上説明したように、本発明によれば次のような効果が
ある。
<Effects of the Invention> As explained above, the present invention has the following effects.

■ 多層に穴あきコア10を設け、各層の間に導体箔2
0を装着し内側面と外側面の接続を互い違いにしたので
、コアを挟んで導体箔に流れる電流が反対方向になり、
交流抵抗が減少して銅損が小さくなる。
■ A perforated core 10 is provided in multiple layers, and a conductor foil 2 is placed between each layer.
0 and alternated the connections between the inner and outer surfaces, so the current flowing through the conductor foil across the core is in the opposite direction.
AC resistance decreases and copper loss decreases.

■ 導体箔の厚さを表皮効果の厚さ程度にしたので、交
流抵抗が少なくなる。
■ The thickness of the conductor foil is about the same as that of the skin effect, so AC resistance is reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は第1
図Aの2−2断面図、第3図は第2図の3−3断面図、
第4図は銅箔厚さδの説明図、第5図は導体箔20を製
造する場合の説明図、第6図及び第7図は穴あきコア1
0に導体箔20を装着する作業説明図である。 第8図は表皮効果の説明図、第9図は近接効果の説明図
、第10図は導体を銅箔としたものの説明図、第11図
は第10図の配置に於ける交流抵抗RaCの説明図であ
る。 10・・・穴あきコア、20・・・導体箔(#l箔)、
5区 沫 第 図 第 図 第 図 第 図 第 図 第 図
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
2-2 sectional view of Figure A, Figure 3 is 3-3 sectional view of Figure 2,
Fig. 4 is an explanatory diagram of the copper foil thickness δ, Fig. 5 is an explanatory diagram when manufacturing the conductor foil 20, and Figs. 6 and 7 are the perforated core 1.
FIG. Fig. 8 is an explanatory diagram of the skin effect, Fig. 9 is an explanatory diagram of the proximity effect, Fig. 10 is an explanatory diagram of the conductor using copper foil, and Fig. 11 is an illustration of the AC resistance RaC in the arrangement shown in Fig. 10. It is an explanatory diagram. 10... Perforated core, 20... Conductor foil (#l foil),
5th ward

Claims (1)

【特許請求の範囲】 磁性材料よりなり積層配置される中空窓を有する穴あき
コアと、 この穴あきコアの内側面側に位置する第1の面と、この
第1の面と同一幅を有すると共に所定幅に分れて穴あき
コアの座面に放射状に装着される第2の面と、この放射
状に取付けられた第2の面と各端部で接続されると共に
穴あきコアの外側面に装着される第3の面と、当該穴あ
きコアの当該第2の面の装着される座面と対向する側の
座面に前記第2の面と大略一致する位置で放射状に取り
付けられる第4の面とを備える導体箔と、 を具備し、この導体箔の厚さ(δ)を、 δ<3xK/√f f:インダクタに流れる電流の周波数 K:導体箔材料の表皮効果定数 が成り立つ範囲に定めたことを特徴とする高周波用イン
ダクタ。
[Scope of Claims] A perforated core made of a magnetic material and having a hollow window arranged in layers, a first surface located on the inner side of the perforated core, and having the same width as the first surface. a second surface divided into predetermined widths and attached radially to the seating surface of the perforated core, and connected to the radially attached second surface at each end and an outer surface of the perforated core; a third surface of the perforated core that is attached to the second surface of the perforated core, and a third surface of the perforated core that is radially attached to a seat surface on the side opposite to the seat surface on which the second surface of the perforated core is attached at a position that approximately coincides with the second surface of the perforated core. 4, and the thickness (δ) of the conductor foil is δ<3xK/√f f: Frequency of current flowing through the inductor K: Skin effect constant of the conductor foil material holds. A high frequency inductor characterized by a specified range.
JP16742190A 1990-06-26 1990-06-26 High-frequency inductor Pending JPH0456303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16742190A JPH0456303A (en) 1990-06-26 1990-06-26 High-frequency inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16742190A JPH0456303A (en) 1990-06-26 1990-06-26 High-frequency inductor

Publications (1)

Publication Number Publication Date
JPH0456303A true JPH0456303A (en) 1992-02-24

Family

ID=15849390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16742190A Pending JPH0456303A (en) 1990-06-26 1990-06-26 High-frequency inductor

Country Status (1)

Country Link
JP (1) JPH0456303A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252484B1 (en) 1997-07-09 2001-06-26 Funai Electric Co., Ltd. Transformer
DE202006001269U1 (en) * 2006-01-26 2007-06-06 Vogt Electronic Components Gmbh Magnetic core device, has spacer comprising elastic strip and two ends that are connected with one another by using welded joint, where spacer comprises height that corresponds to nominal height of coil
JP2007173324A (en) * 2005-12-19 2007-07-05 Tamagawa Seiki Co Ltd Terminal pin structure
JP2009094388A (en) * 2007-10-11 2009-04-30 Mitsubishi Electric Corp Coil device
JP2012060194A (en) * 2010-07-27 2012-03-22 Kobe Steel Ltd Multi-phase transformer and transformation system
JP2012146949A (en) * 2010-12-21 2012-08-02 Nec Tokin Corp Coil component
US9263181B2 (en) 2010-07-27 2016-02-16 Kobe Steel, Ltd. Multi-phase transformer and transformation system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252484B1 (en) 1997-07-09 2001-06-26 Funai Electric Co., Ltd. Transformer
JP2007173324A (en) * 2005-12-19 2007-07-05 Tamagawa Seiki Co Ltd Terminal pin structure
DE202006001269U1 (en) * 2006-01-26 2007-06-06 Vogt Electronic Components Gmbh Magnetic core device, has spacer comprising elastic strip and two ends that are connected with one another by using welded joint, where spacer comprises height that corresponds to nominal height of coil
JP2009094388A (en) * 2007-10-11 2009-04-30 Mitsubishi Electric Corp Coil device
JP2012060194A (en) * 2010-07-27 2012-03-22 Kobe Steel Ltd Multi-phase transformer and transformation system
US9263181B2 (en) 2010-07-27 2016-02-16 Kobe Steel, Ltd. Multi-phase transformer and transformation system
JP2012146949A (en) * 2010-12-21 2012-08-02 Nec Tokin Corp Coil component

Similar Documents

Publication Publication Date Title
US10707011B2 (en) Multilayer conductors with integrated capacitors and associated systems and methods
CN1637969B (en) Power inductor with reduced DC current saturation
US6577220B2 (en) Continuous multi-turn coils
KR101248499B1 (en) Plane coil
TWI389147B (en) Conductive winding structure and magnetic device using same
JPH09213530A (en) Plane transformer
JPH0456303A (en) High-frequency inductor
KR100299893B1 (en) Transformer
JPH0413212A (en) Thin-film magnetic head
JPH04242911A (en) Manufacture of electronic parts
JPH0473911A (en) High frequency transformer
JP3620623B2 (en) Planar magnetic element
CN107251171A (en) coil type inductor
JPH03280409A (en) Flat transformer
JP4192571B2 (en) Wound-type common mode choke coil and manufacturing method thereof
JPH0227533Y2 (en)
JPH03126204A (en) High frequency coil
JP2958893B2 (en) Planar inductor
JPH04101403A (en) Electronic component and its manufacturing method
JPH04101404A (en) Electronic component and its manufacturing method
JPS63293906A (en) Magnetic band-shaped conductor
JPH01276508A (en) Electromagnetic coil conductive wire and electromagnetic coil
JPH04206906A (en) Thin transformer
JP2024529465A (en) Electromagnetic components with planar and non-planar conductors
JPH03268410A (en) Magnetic thin film transformer