JPH0455726A - Fourier spectroscope - Google Patents

Fourier spectroscope

Info

Publication number
JPH0455726A
JPH0455726A JP16556690A JP16556690A JPH0455726A JP H0455726 A JPH0455726 A JP H0455726A JP 16556690 A JP16556690 A JP 16556690A JP 16556690 A JP16556690 A JP 16556690A JP H0455726 A JPH0455726 A JP H0455726A
Authority
JP
Japan
Prior art keywords
light
mirror
light beam
interference
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16556690A
Other languages
Japanese (ja)
Inventor
Kazutane Oouchi
千種 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16556690A priority Critical patent/JPH0455726A/en
Publication of JPH0455726A publication Critical patent/JPH0455726A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To simplify an apparatus and to shorten the measuring time by providing an image processing device which computes the spectrum of luminous flux to be measured based on the result of the detection of an optical sensor. CONSTITUTION:Light to be measured 10 which is generated in a light source 1 is split into luminous fluxes 11 and 12 through a beam expander 2 and a half mirror 3. The luminous flux 11 is reflected from a mirror 4 and returned to the mirror 3. The luminous flux 12 is diffracted with a diffraction grating 5 and returned to the mirror 3. In the mirror 3, the synthesized luminous flux is sightly inclined so that the lateral fringes of adequate number are generated on a two-dimensional sensor 7. At this time, the distance L1 between the mirrors 3 and 4 and the distance L2 between the mirror 3 and the lower end of the grating 5 are set so that L1=L2. Then, the contrast of the interference pattern of the luminous fluxes 11 and 12 is equal to the contrast of the interference of two luminous fluxes at the light path difference of 0 in a Michelson interferometer at one end (a) of the light receiving part of the sensor 7. The contrast is equal to the contrast of the interference of two luminous fluxes at the light-path difference of D tan theta at the other end (b). Therefore, the interference fringes wherein the light-path difference l continuously change from 0 to D tan theta from one end (a) to the other end (b) on the sensor 7 are generated. The interference fringes are computed 8.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は2光束干渉を利用して光のスペクトルを測定す
るフーリエ分光器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a Fourier spectrometer that measures the spectrum of light using two-beam interference.

[従来の技術] 精密なスペクトルを測定する装置として知られるフーリ
エ分光器は、被測定光を2分割し、光路長差を少しずつ
変化させながらそれら2光を干渉させ、その可視度を光
路長差の関数として求めた後、この関数をフーリエ変換
することによりスペクトルを測定するものである。従来
は光路長差を少しずつ変化させるために、マイケルソン
干渉計を構成している一方のミラーを微小距離ずつ移動
させていた。
[Prior art] A Fourier spectrometer, which is known as a device for measuring precise spectra, divides the light to be measured into two parts, causes the two lights to interfere while gradually changing the difference in optical path length, and changes the visibility of the two lights according to the optical path length. After determining the difference as a function, the spectrum is measured by Fourier transforming this function. Conventionally, in order to gradually change the optical path length difference, one of the mirrors that make up the Michelson interferometer was moved by small distances.

[発明が解決しようとする課題] しかしながら、上記従来例では干渉計を構成するミラー
の一方を微小8動させる度に干渉の可視度を測定するの
で次のような欠点があった。第一にエキシマレーザのよ
うにパルス発光する場合その1パルスのスペクトル測定
ができなかった。又連続光でもスペクトルが時間的に変
化する場合は正確な測定ができなかった。第二にミラー
の微小移動機構が必要なので、装置が複雑化していた。
[Problems to be Solved by the Invention] However, in the conventional example described above, the visibility of the interference is measured every time one of the mirrors constituting the interferometer is moved minutely, so there are the following drawbacks. First, when emitting pulsed light like an excimer laser, it was not possible to measure the spectrum of one pulse. Even with continuous light, accurate measurements could not be made if the spectrum changed over time. Second, since a micro-movement mechanism for the mirror is required, the device becomes complicated.

第三に測定に長時間を要していた。Thirdly, measurement took a long time.

本発明は上記従来技術の欠点に鑑みなされたものであっ
て、干渉計を構成するミラーを移動させることなくフー
リエ分光によるスペクトル測定を可能とし、装置構成を
簡素化し、測定時間の短縮を可能としたフーリエ分光器
の提供を目的とする。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and enables spectrum measurement by Fourier spectroscopy without moving the mirrors that make up the interferometer, thereby simplifying the device configuration and shortening the measurement time. The purpose is to provide a Fourier spectrometer with

[課題を解決するための手段および作用]前記目的を達
成するため、本発明によれば、フーリエ分光器の内部で
2分割された1方または両方の光束中に光束の出射方向
を波長に依って分散させる回折格子等の分散素子を設け
、また干渉縞を読み込む手段としての2次元センサと更
にこの2次元センサで受光した光束の部分別の干渉縞の
可視度を計算する画像処理装置を設けることにより、ミ
ラーを移動させることなくフーリエ分光法によるスペク
トル測定ができるようにしたものである。なお、以下分
散素子とは光束の出射方向を波長に依って分散させる機
能を有するものを言うものとする。
[Means and effects for solving the problem] In order to achieve the above-mentioned object, according to the present invention, one or both of the light beams divided into two parts inside the Fourier spectrometer is divided into two parts, and the emission direction of the light beam is changed depending on the wavelength. A dispersion element such as a diffraction grating is provided, and a two-dimensional sensor is provided as a means for reading the interference fringes, and an image processing device is further provided to calculate the visibility of the interference fringes for each portion of the light beam received by the two-dimensional sensor. This makes it possible to measure spectra using Fourier spectroscopy without moving the mirror. Note that the term "dispersive element" hereinafter refers to an element having a function of dispersing the emission direction of a luminous flux depending on the wavelength.

[実施例] 第1図は本発明の実施例の構成を表わす図面であり、同
図において、1は光源、10は光源1より発せられた被
測定光、2は光束を必要なだけ拡大するビーム拡大器、
3は被測定光10を2光束に分割するハーフミラ−4は
ミラー 5は回折格子、11はハーフミラ−3で分割さ
れた2光束のうちミラー4に向う光束、12は同しく回
折格子5に向う光束、13はハーフミラ−3で再合成さ
れた光束、6は光束13を2次元センサ7の受光部のサ
イズに合わせるためのビーム縮小器、7は2次元センサ
、8は2次元センサからの信号を処理する画像処理装置
である。
[Embodiment] Fig. 1 is a drawing showing the configuration of an embodiment of the present invention. In the figure, 1 is a light source, 10 is the measured light emitted from the light source 1, and 2 is a light beam that is enlarged as necessary. beam expander,
3 is a half mirror that splits the light to be measured 10 into two beams; 4 is a mirror; 5 is a diffraction grating; 11 is a beam of light directed toward mirror 4 among the two beams divided by half mirror 3; and 12 is a beam directed toward diffraction grating 5. A light beam 13 is a light beam recombined by the half mirror 3, 6 is a beam condenser for adjusting the light beam 13 to the size of the light receiving part of the two-dimensional sensor 7, 7 is a two-dimensional sensor, and 8 is a signal from the two-dimensional sensor This is an image processing device that processes.

光源1から発した被測定光10はビーム拡大器2を通り
て光束径りまで拡大された後、ハーフミラ−3により光
束11と光束12に分割される。
Measured light 10 emitted from a light source 1 passes through a beam expander 2 and is expanded to the radius of the beam, and then is split into a beam 11 and a beam 12 by a half mirror 3.

光束11はミラー4で反射し再びハーフミラ−3に戻る
。一方光束12は回折格子5で回折されハーフミラ−3
に戻る。回折格子5は被測定光10の中心波長λ。にお
いて回折角ψと入射角θが等しくなるようにθを調整し
である。回折条件はよく知られているように、回折格子
5の格子定数をdとし、mを整数とすれば、次式(1)
を満たすことである。
The light beam 11 is reflected by the mirror 4 and returns to the half mirror 3 again. On the other hand, the light beam 12 is diffracted by the diffraction grating 5 and is reflected by the half mirror 3.
Return to The diffraction grating 5 has a center wavelength λ of the light 10 to be measured. θ is adjusted so that the diffraction angle ψ and the incident angle θ are equal. As is well known, the diffraction conditions are expressed by the following equation (1), where d is the lattice constant of the diffraction grating 5, and m is an integer.
It is to satisfy the following.

d (sinθ+sin  ψ)=mλ     ・・
・・・・(1)λ=λ。、ψ=θとして2dsinθ=
mλ。
d (sin θ+sin ψ)=mλ...
...(1) λ=λ. , 2dsinθ=
mλ.

・・・・・・(2) ハーフミラ−3は合成された光束13が2次元センサ7
上で適当な本数(数本〜数十本)の横縞を生じるように
わずかに前傾または後傾させである。ここでハーフミラ
−3とミラー4の距離LH、ハーフミラ−3と回折格子
5の下端の距離L2としてLl=L2とすれば、光束1
1と光束12の干渉パターンのコントラストは、2次元
センサ7の受光部の1端aではいわゆるマイケルソン干
渉計において、光路差0での2光束干渉のコントラスト
に等しく、他端すでは同様に光路差D tanθでの2
光束干渉のコントラストに等しい。この理由を次に述べ
る。回折格子の分散は、式(1)をλて微分した後、式
(2)でmとdを消去して と表わされるので、回折格子5による波長λ0の光と波
長λ、=λ。+Δλの光では回折光の方向が だけ異なる。したがって、ハーフミラ−で合成された光
束13の1端Oではλ0とλ1の光の位相差δの差Δδ
は、Δδ=0であり点0からXだけ離れた点Pでは ・・・・・・(5) となる。ここで位相差δとはハーフミラ−3で分離され
た光束11と光束12がハーフミラ−で再結合した時の
位相差であり、位相差の差Δδとは、波長λ1の光の位
相差δ1と波長λ。の光の位相差δ。の差δ1−δ。の
ことである。一方いわゆるマイケルソン干渉計では、分
離された2光束の光路長差がkの場合、波長λ0の光の
位相差δ。は、 波長λ、の光の位相差δ1は である。したがって、 Δ δ = δ 1−6゜ ・・・・・・(8) 式(5)と(8)を比較して42 = x tanθと
すれば両式の値は等しくなる。言い換えれば、図1の点
Pのコントラストとマイケルソン干渉計で光路差がx 
tanθである時の2光束干渉のコントラストが等しい
(2) The half mirror 3 transmits the combined light beam 13 to the two-dimensional sensor 7
It is tilted slightly forward or backward to produce an appropriate number (several to several dozen) of horizontal stripes on the top. Here, if Ll=L2 as the distance LH between the half mirror 3 and the mirror 4, and the distance L2 between the half mirror 3 and the lower end of the diffraction grating 5, then the luminous flux 1
At one end a of the light receiving section of the two-dimensional sensor 7, the contrast of the interference pattern between the light beam 1 and the light beam 12 is equal to the contrast of the interference of two light beams with an optical path difference of 0 in a so-called Michelson interferometer, and at the other end, the contrast of the interference pattern between the two light beams 2 at difference D tanθ
Equal to the contrast of luminous flux interference. The reason for this will be explained next. The dispersion of the diffraction grating is expressed by differentiating equation (1) by λ and then eliminating m and d in equation (2), so that the light of wavelength λ0 by the diffraction grating 5 and the wavelength λ, = λ. +Δλ light differs only in the direction of the diffracted light. Therefore, at one end O of the light beam 13 combined by the half mirror, the difference Δδ in the phase difference δ between the lights λ0 and λ1
is Δδ=0, and at a point P that is away from point 0 by X, it becomes...(5). Here, the phase difference δ is the phase difference when the light beams 11 and 12 separated by the half mirror 3 are recombined by the half mirror, and the phase difference Δδ is the phase difference δ1 between the light beams with the wavelength λ1 and the phase difference Δδ. Wavelength λ. phase difference δ of light. The difference δ1−δ. It is about. On the other hand, in a so-called Michelson interferometer, if the optical path length difference between the two separated beams is k, then the phase difference δ between the lights of wavelength λ0. The phase difference δ1 of light with wavelength λ is . Therefore, Δ δ = δ 1-6° (8) Comparing equations (5) and (8) and setting 42 = x tan θ, the values of both equations become equal. In other words, the optical path difference between the contrast at point P in Figure 1 and the Michelson interferometer is x
When tan θ, the contrast of two beam interference is equal.

したがって2次元センサ5上の一端aから他端すに向フ
て光路差lが0からD tanθまで連続的に変化する
2光束干渉による干渉縞が生じる。2次元センサ7の受
光部を縦に細かく区分して、縦長の多数の列を作り各列
毎の干渉縞の可視度を画像処理装置8により計算する。
Therefore, from one end a to the other end on the two-dimensional sensor 5, interference fringes are generated due to two-beam interference in which the optical path difference l changes continuously from 0 to D tan θ. The light-receiving section of the two-dimensional sensor 7 is divided vertically into a large number of vertically long columns, and the visibility of the interference fringes for each column is calculated by the image processing device 8.

区分数をnとすれば、各列の可視度はマイケルソン干渉
計において一方のミラーを−taneづつ1回移動させ
て、その度に測定した干渉の可視度に等しい。一般にフ
ーリエ分光法として知られるように、光路長差ρと可視
度V (J2)の関係から次式(2)によってスペクト
ルE(ν)を求めることができる。ただしνは波数であ
る。
If the number of sections is n, then the visibility of each row is equal to the visibility of interference measured each time one mirror is moved by -tane in the Michelson interferometer. Generally known as Fourier spectroscopy, the spectrum E (v) can be determined from the relationship between the optical path length difference ρ and the visibility V (J2) using the following equation (2). However, ν is the wave number.

E(ν)−const x ’)”、 V (It )
 C05(2πv ・Q)dΩ・・・・・・  (2) ここでスペクトル幅Δνによってぎまる一定光路1ハ1
以上は可視度V(Il)はv(1)〜0となるので式(
2)の積分範囲は0からJZ 、、、までとしてよい、
ガウス分布のスペクトルの場合はj2.、、=1/2Δ
νである0例えば波長λ=248nm、Δλl!!!1
pmとすればΔν=Δλ・C/λ” ”0.16cm−
’ (ただしCは光束)となる。したがって、11 v
aa* −311Jとなる。これよりD tanθ≧3
11■となればよい。
E(ν)−const x′)”, V(It)
C05(2πv ・Q)dΩ... (2) Here, the constant optical path 1c1 bounded by the spectral width Δν
In the above, the visibility V(Il) is v(1) ~ 0, so the formula (
The integral range of 2) may be from 0 to JZ , ,
In the case of a Gaussian distribution spectrum, j2. ,,=1/2Δ
For example, wavelength λ = 248 nm, Δλl! ! ! 1
If it is pm, Δν=Δλ・C/λ""0.16cm-
' (where C is the luminous flux). Therefore, 11 v
aa* -311J. From this, D tanθ≧3
It should be 11■.

第2図は光路長差を大きくとるために、2個の回折格子
を用いた実施例を示している。同図において24は第1
図のミラー4に代えて用いた回折格子である。
FIG. 2 shows an embodiment in which two diffraction gratings are used to increase the difference in optical path length. In the figure, 24 is the first
This is a diffraction grating used in place of mirror 4 in the figure.

上記のように変更することにより、第1の実施例と同じ
光束径で、より大籾な光路差を得ることができる。たと
えば回折格子24を回折格子5と同じ物を使用すれば第
1の実施例の2倍の光路長差が得られる。これにより、
スペクトル測定の分解能を2倍にすることができる。
By making the above changes, it is possible to obtain a larger optical path difference with the same luminous flux diameter as in the first embodiment. For example, if the same material as the diffraction grating 5 is used as the diffraction grating 24, an optical path length difference twice that of the first embodiment can be obtained. This results in
The resolution of spectral measurements can be doubled.

第3図は、第1の実施例の回折格子5の代りに分散素子
としてプリズムを用いた場合の実施例を示している。
FIG. 3 shows an embodiment in which a prism is used as a dispersion element in place of the diffraction grating 5 of the first embodiment.

30はプリズム、35はミラーである。30 is a prism, and 35 is a mirror.

この実施例では、プリズム30の分散と等しい分散の回
折格子を用いた場合の第1の実施例と同じ効果が得られ
る。
In this embodiment, the same effect as in the first embodiment can be obtained when a diffraction grating with a dispersion equal to that of the prism 30 is used.

一般にプリズムの分散は回折格子に比べて、数分の1か
ら数10分の1程度なので、スペクトル幅の狭い光の測
定は困難だが、光量損失が小さいので、光量損失が大き
い回折格子に比べて微弱光の測定には有利である。また
回折格子を使用した場合に比べ、コストの低減にもなる
In general, the dispersion of a prism is about one to several tenths of that of a diffraction grating, making it difficult to measure light with a narrow spectral width.However, since the loss of light is small, it is better than that of a diffraction grating, which has a large loss of light. This is advantageous for measuring weak light. Furthermore, the cost can be reduced compared to the case where a diffraction grating is used.

[発明の効果] 以上説明したように、フーリエ分光器を構成しているマ
イケルソン干渉計等の一方または両方のミラーを回折格
子等の分散素子にすることによりミラーを移動させるこ
となく、フーリエ分光ができる。
[Effects of the Invention] As explained above, by using one or both mirrors of a Michelson interferometer, etc. that constitute a Fourier spectrometer as a dispersive element such as a diffraction grating, Fourier spectroscopy can be performed without moving the mirrors. I can do it.

特にエキシマレーザ光のようにパルス発光の各パルスの
スペクトルを測定する場合には有効である。
This is particularly effective when measuring the spectrum of each pulse of pulsed light emission such as excimer laser light.

更にミラーの移動が不用なため装置の簡素化および測定
時間の短縮が図られる。
Furthermore, since there is no need to move the mirror, the apparatus can be simplified and the measurement time can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施したフーリエ分光器の構成図、 第2図は2個の回折格子を使用した実施例の干渉計部分
を表わした部分構成図、 第3図はプリズムを使用した実施例の干渉計部分を表わ
した部分構成図である。 30ニブリズム、 35:ミラー
Figure 1 is a block diagram of a Fourier spectrometer embodying the present invention, Figure 2 is a partial diagram showing the interferometer part of an embodiment using two diffraction gratings, and Figure 3 is an implementation using a prism. FIG. 3 is a partial configuration diagram showing an example interferometer section. 30 Nibrism, 35: Mirror

Claims (3)

【特許請求の範囲】[Claims] (1)被測定光束の光路上に該被測定光束を2分割する
ためのビームスプリッタを設け、該ビームスプリッタに
より2分割された透過光束および反射光束の各々の光路
上に各光束を前記ビームスプリッタに戻すための反射手
段を設け、該反射手段のうち少なくとも一方は光束の出
射方向を波長に依って分散させる固定された分散素子に
より構成し、該ビームスプリッタにより再合成された前
記被測定光束の光路上に該被測定光束の干渉縞を検出す
る光センサを設け、該光センサの検出結果に基づき被測
定光束のスペクトルを演算する画像処理装置を備えたこ
とを特徴とするフーリエ分光器。
(1) A beam splitter is provided on the optical path of the light beam to be measured to split the light beam to be measured into two, and each of the transmitted light beam and the reflected light beam divided into two by the beam splitter is placed on each optical path of the beam splitter. At least one of the reflecting means is constituted by a fixed dispersion element that disperses the emission direction of the light beam depending on the wavelength, and the light beam to be measured is recombined by the beam splitter. 1. A Fourier spectrometer, comprising: an optical sensor that detects interference fringes of the light beam to be measured on an optical path; and an image processing device that calculates a spectrum of the light beam to be measured based on the detection result of the light sensor.
(2)前記分散素子は回折格子からなることを特徴とす
る特許請求の範囲第1項記載のフーリエ分光器。
(2) The Fourier spectrometer according to claim 1, wherein the dispersive element comprises a diffraction grating.
(3)前記分散素子はプリズムおよびミラーの組合せか
らなることを特徴とする特許請求の範囲第1項記載のフ
ーリエ分光器。
(3) The Fourier spectrometer according to claim 1, wherein the dispersive element comprises a combination of a prism and a mirror.
JP16556690A 1990-06-26 1990-06-26 Fourier spectroscope Pending JPH0455726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16556690A JPH0455726A (en) 1990-06-26 1990-06-26 Fourier spectroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16556690A JPH0455726A (en) 1990-06-26 1990-06-26 Fourier spectroscope

Publications (1)

Publication Number Publication Date
JPH0455726A true JPH0455726A (en) 1992-02-24

Family

ID=15814799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16556690A Pending JPH0455726A (en) 1990-06-26 1990-06-26 Fourier spectroscope

Country Status (1)

Country Link
JP (1) JPH0455726A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0930485A2 (en) * 1998-01-16 1999-07-21 Thilo Weitzel Device to detect or to create optical signals
WO2000062026A1 (en) * 1999-04-09 2000-10-19 Campus Technologies Ag Device and method for optical spectroscopy
US7466421B2 (en) 2002-07-15 2008-12-16 Campus Technologies Ag Diffractive interferometric optical device for measuring spectral properties of light
WO2019240227A1 (en) * 2018-06-13 2019-12-19 国立大学法人香川大学 Spectrometer and spectroscopic method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0930485A2 (en) * 1998-01-16 1999-07-21 Thilo Weitzel Device to detect or to create optical signals
EP0930485A3 (en) * 1998-01-16 2001-08-08 Campus Technologies AG Device to detect or to create optical signals
WO2000062026A1 (en) * 1999-04-09 2000-10-19 Campus Technologies Ag Device and method for optical spectroscopy
US7466421B2 (en) 2002-07-15 2008-12-16 Campus Technologies Ag Diffractive interferometric optical device for measuring spectral properties of light
WO2019240227A1 (en) * 2018-06-13 2019-12-19 国立大学法人香川大学 Spectrometer and spectroscopic method

Similar Documents

Publication Publication Date Title
JPH05113316A (en) Three wavelength optical measuring device and method
JPH0587524A (en) Optical measuring device
JP2001349781A (en) Double pass double etalon spectrometer
US4191473A (en) Method of and apparatus for measuring the absolute wavelength of a source of unknown frequency radiation
US9025156B2 (en) Interferometer and fourier spectrometer using same
US6462827B1 (en) Phase-based wavelength measurement apparatus
JP5511162B2 (en) Multi-wavelength interference displacement measuring method and apparatus
KR20130035464A (en) Three dimensional shape and depth measuring device using polarized light
JPH0455726A (en) Fourier spectroscope
JPH0642918A (en) Aligning method and apparatus
US11274915B2 (en) Interferometer with multiple wavelength sources of different coherence lengths
JP3219879B2 (en) Wavelength detector
JPH11183116A (en) Method and device for light wave interference measurement
US7088450B2 (en) Method and apparatus for measuring amplified stimulated emission in the output of a master oscillator power amplifier system
JP2010261776A (en) Device for measuring optical interference
JP2006269631A (en) Laser apparatus having multi-wavelength measurement means
US6816264B1 (en) Systems and methods for amplified optical metrology
JPH0227202A (en) Light interference measuring apparatus
US20060007447A1 (en) Method and apparatus for feedback control of tunable laser wavelength
JP2010085408A (en) Method of measuring spectrum of narrow band light source and spectrometer arrangement
JPH0634439A (en) High-resolution spectroscope
JP7452227B2 (en) Measuring device and measuring method
US5493394A (en) Method and apparatus for use in measuring frequency difference between light signals
JPH0862041A (en) Method and apparatus for measuring spectrum
JP2502092B2 (en) Interfering device