JPH045571A - Rotating direction discriminating and rotation detecting device - Google Patents

Rotating direction discriminating and rotation detecting device

Info

Publication number
JPH045571A
JPH045571A JP10670990A JP10670990A JPH045571A JP H045571 A JPH045571 A JP H045571A JP 10670990 A JP10670990 A JP 10670990A JP 10670990 A JP10670990 A JP 10670990A JP H045571 A JPH045571 A JP H045571A
Authority
JP
Japan
Prior art keywords
output
differential operational
elements
magneto
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10670990A
Other languages
Japanese (ja)
Inventor
Toshio Tatai
田多井 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10670990A priority Critical patent/JPH045571A/en
Publication of JPH045571A publication Critical patent/JPH045571A/en
Pending legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

PURPOSE:To discriminate a rotating direction with high detection sensitivity by employing simple constitution which uses a 3rd magneto-resistance element for reference. CONSTITUTION:The outputs of magneto-resistance elements 11 and 12 are inputted to the plus terminals of differential operational amplifiers 14 and 15 and the output of the 3rd magneto-resistance element 13 is connected to the minus terminals in common. The three magneto-resistance elements 11 - 13 are arranged on the same plane perpendicular to the rotary shaft of a magnet 101. The output amplitudes of the three elements are equal because of the symmetrical position relation between the elements and magnet and their output waveforms are 120 deg. out of phase with one another. The output of the element 13 can, therefore, be used for the reference of other outputs and the need for a conventional semi-fixed resistance and its adjusting operation is eliminated. The input difference voltage of the differential operational amplifier 14 is the difference voltage between the outputs of the magneto-resistance elements 11 and 13 and an amplitude which is one and half time as large as the amplitude of the output voltage of one element is obtained in this case because of the position relation between two elements to improve the sensitivity by about 50%. The differential operational amplifier 15 is the same.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁界による非接触回転方向弁別回転検出に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to non-contact rotation direction discrimination rotation detection using a magnetic field.

[発明の概要] 本発明は、回転軸に取り付けた磁石の回転による回転磁
界を2個の磁気抵抗素子と2個の差動演算増幅器により
非接触で回転方向の識別を含め回転数を検出する装置に
おいて、さらに1個の磁気抵抗素子を、前記磁気抵抗素
子の比較対象として用い、磁界検出感度の向上と無調整
化を可能としたものである。
[Summary of the Invention] The present invention uses two magnetoresistive elements and two differential operational amplifiers to non-contactly detect the number of rotations, including identification of the direction of rotation, using a rotating magnetic field caused by the rotation of a magnet attached to a rotating shaft. In the apparatus, one magnetoresistive element is further used as a comparison object for the magnetoresistive element, thereby making it possible to improve the magnetic field detection sensitivity and eliminate adjustment.

[従来の技術1 従来、非接触で回転数を検出する簡便な方法として、回
転軸に取り付けた永久磁石の磁界の変化を磁気抵抗素子
で検出し、この磁気抵抗素子の微小な検出出力を演算増
幅器で増幅した後、カウンタなどで回転数をカウントす
る方法が一般的である。さらに、例えば、水道メータの
回転検出では、水を供給する回転方向と断水など逆流の
回転方向を識別し、正確な供給水量を加減算して算出す
るため、回転方向識別して回転検出する方法が必要であ
る。
[Conventional technology 1] Conventionally, as a simple method for non-contact detection of rotation speed, changes in the magnetic field of a permanent magnet attached to a rotating shaft are detected by a magnetoresistive element, and the minute detection output of this magnetoresistive element is calculated. A common method is to amplify it with an amplifier and then count the number of rotations with a counter or the like. Furthermore, when detecting the rotation of a water meter, for example, the direction of rotation for supplying water and the direction of rotation for reverse flow due to a water outage are identified, and the accurate amount of supplied water is calculated by adding and subtracting. is necessary.

第3図に従来の例を示す。FIG. 3 shows a conventional example.

第3図(a)において、31と32は磁気抵抗素子、3
3は半固定抵抗、34と35は差動演算増幅器、36.
37はそれぞれ31と32の磁気抵抗素子の出力、38
.39はそれぞれ34と35の差動演算増幅器の出力、
310,311は電源供給端子である。第3図(b)に
おいて、31と32は磁気抵抗素子、301は2極の永
久磁石である。第3図(b)は磁気抵抗素子と永久磁石
の位置関係を示した図であり、上の図は平面図、下の図
は正面図である。
In FIG. 3(a), 31 and 32 are magnetoresistive elements;
3 is a semi-fixed resistor, 34 and 35 are differential operational amplifiers, 36.
37 are the outputs of the magnetoresistive elements 31 and 32, respectively, and 38
.. 39 are the outputs of differential operational amplifiers 34 and 35, respectively;
310 and 311 are power supply terminals. In FIG. 3(b), 31 and 32 are magnetoresistive elements, and 301 is a two-pole permanent magnet. FIG. 3(b) is a diagram showing the positional relationship between the magnetoresistive element and the permanent magnet, with the upper diagram being a plan view and the lower diagram being a front view.

第4図に第3図の信号の波形を示す、第4図において、
縦軸は電圧であり、横軸は永久磁石301の時計方向の
回転角度であり、41は磁気抵抗素子31の出力36の
波形、42は磁気抵抗素子32の出力37の波形、40
1は差動演算増幅器34の出力38の波形、402は差
動演算増幅器35の出力39の波形である。
FIG. 4 shows the waveform of the signal in FIG. 3. In FIG. 4,
The vertical axis is the voltage, the horizontal axis is the clockwise rotation angle of the permanent magnet 301, 41 is the waveform of the output 36 of the magnetoresistive element 31, 42 is the waveform of the output 37 of the magnetoresistive element 32, 40
1 is the waveform of the output 38 of the differential operational amplifier 34, and 402 is the waveform of the output 39 of the differential operational amplifier 35.

差動演算増幅器の出力に磁石の回転に応じて401.4
02のような矩型波が現れるように磁気抵抗素子の出力
波形のスライスレベルを半固定抵抗33を調整する。
401.4 depending on the rotation of the magnet to the output of the differential operational amplifier
The slice level of the output waveform of the magnetoresistive element is adjusted by the semi-fixed resistor 33 so that a rectangular wave like 02 appears.

401.402は、2相の矩型波であり、相互の位相進
み、または遅れにより、磁石の回転方向が判別でき、か
つ一方の矩型波のパルス数をカウントして磁石の回転数
を算出することができる。
401 and 402 are two-phase rectangular waves, and the rotation direction of the magnet can be determined by the mutual phase lead or lag, and the rotation speed of the magnet can be calculated by counting the number of pulses of one rectangular wave. can do.

[発明が解決しようとする課題] しかしながら、従来技術では、磁気抵抗素子の出力電圧
は微小であり、かつその中心値が磁石の磁界強度のバラ
ツキ、磁石と素子の相対位置関係、素子自体のバラツキ
によりバラツくため、必ず半固定抵抗を調整しなければ
ならない問題点を有していた。
[Problems to be Solved by the Invention] However, in the conventional technology, the output voltage of a magnetoresistive element is minute, and its center value is affected by variations in the magnetic field strength of the magnet, the relative positional relationship between the magnet and the element, and variations in the element itself. Therefore, there was a problem in that the semi-fixed resistance had to be adjusted without fail.

本発明は、このような問題点を解決するもので、その目
的とするところは、半固定抵抗の調整を必要としない簡
単な構成の回転方向弁別回転検出装置を提供することに
ある。
The present invention has been made to solve these problems, and an object thereof is to provide a rotation detection device for discriminating rotation direction with a simple configuration that does not require adjustment of a semi-fixed resistor.

[課題を解決するための手段] 本発明は、かかる課題を解決するために、回転する磁石
の磁界の変化を磁気抵抗素子と差動演算増幅器で検出す
る回転方向弁別回転検出装置において、3個の磁気抵抗
素子と2個の差動演算増幅器からなり、2個の該磁気抵
抗素子の出力は2個の該差動演算増幅器のそれぞれ一方
の入力に接続され、他の1個の該磁気抵抗素子の出力は
該2個の該差動演算増幅器の他方の入力に共通に接続さ
れ、かつ、該3個の磁気抵抗素子は磁石の回転軸に垂直
な同一面上に配置したことを特徴とするものである。
[Means for Solving the Problems] In order to solve the problems, the present invention provides a rotation detection device for detecting rotation direction that detects changes in the magnetic field of a rotating magnet using a magnetoresistive element and a differential operational amplifier. The outputs of the two magnetoresistive elements are connected to one input of each of the two differential operational amplifiers, and the output of the other magnetoresistive element is connected to one input of each of the two differential operational amplifiers. The output of the element is commonly connected to the other input of the two differential operational amplifiers, and the three magnetoresistive elements are arranged on the same plane perpendicular to the rotation axis of the magnet. It is something to do.

[実 施 例1 第1図に本発明の実施例を示す。[Implementation Example 1] FIG. 1 shows an embodiment of the present invention.

第1図(a)において、11と12と13は磁気抵抗素
子、14と15は差動演算増幅器、16.17はそれぞ
れ11と12の磁気抵抗素子の出力、18.19はそれ
ぞれ14と15の差動演算増幅器の出力、110.11
1は電源供給端子である。第1図(b)において、11
と12と13は、磁気抵抗素子、101は2極の永久磁
石である。第1図(b)は磁気抵抗素子と永久磁石の位
置関係を示した図であり、上の図は平面図、下の図は正
面図である。3個の磁気抵抗素子は磁石の回転軸を中心
とする同一円周上にそれぞれ120度の位置に配置され
ている。
In FIG. 1(a), 11, 12, and 13 are magnetoresistive elements, 14 and 15 are differential operational amplifiers, 16.17 are the outputs of the magnetoresistive elements 11 and 12, respectively, and 18.19 are 14 and 15, respectively. The output of the differential operational amplifier, 110.11
1 is a power supply terminal. In FIG. 1(b), 11
and 12 and 13 are magnetoresistive elements, and 101 is a two-pole permanent magnet. FIG. 1(b) is a diagram showing the positional relationship between the magnetoresistive element and the permanent magnet, with the upper diagram being a plan view and the lower diagram being a front view. The three magnetoresistive elements are arranged at positions of 120 degrees on the same circumference centered on the rotation axis of the magnet.

2個の磁気抵抗素子11と12の出力は2個の差動演算
増幅器14.15のそれぞれの非反転入力に接続され、
もう1個の磁気抵抗素子13の出力は差動演算増幅器1
4.15の反転入力に共通に接続され、かつ前記3個の
磁気抵抗素子は磁石の回転軸に垂直な同一平面に配置さ
れている。
The outputs of the two magnetoresistive elements 11 and 12 are connected to respective non-inverting inputs of two differential operational amplifiers 14,15,
The output of the other magnetoresistive element 13 is the differential operational amplifier 1.
4.15, and the three magnetoresistive elements are arranged on the same plane perpendicular to the rotation axis of the magnet.

第2図に第1図の信号の波形を示す、第2図において、
縦軸は電圧であり、横軸は永久磁石lO1の時計方向の
回転角度であり、21は磁気抵抗素子11の出力16の
波形、22は磁気抵抗素子12の出力17の波形、23
は磁気抵抗素子13の出力103の波形、201は差動
演算増幅器14の出力18の波形、202は差動演算増
幅器15の出力19の波形である。
Figure 2 shows the waveform of the signal in Figure 1. In Figure 2,
The vertical axis is the voltage, the horizontal axis is the clockwise rotation angle of the permanent magnet lO1, 21 is the waveform of the output 16 of the magnetoresistive element 11, 22 is the waveform of the output 17 of the magnetoresistive element 12, 23
is the waveform of the output 103 of the magnetoresistive element 13, 201 is the waveform of the output 18 of the differential operational amplifier 14, and 202 is the waveform of the output 19 of the differential operational amplifier 15.

3個の磁気抵抗素子と磁石の対称的な位置関係から、3
個の磁気抵抗素子の出力振幅は同一であり、その出力波
形は互いに120度の位相差を有している、したがって
、第三の磁気抵抗素子の出力を他の2個の磁気抵抗素子
の出力のレファレンスとして使用することができ、従来
技術では必要であった半固定抵抗とその調整作業を省く
ことができる。
From the symmetrical positional relationship between the three magnetoresistive elements and the magnet, 3
The output amplitudes of the three magnetoresistive elements are the same, and their output waveforms have a phase difference of 120 degrees from each other. Therefore, the output of the third magnetoresistive element is the output of the other two magnetoresistive elements. It can be used as a reference, and the semi-fixed resistor and adjustment work required in the conventional technology can be omitted.

また、差動演算増幅器14の入力差電圧は磁気抵抗素子
11と13の出力の差電圧であり、この場合、2個の磁
気抵抗素子の位置関係からこの差電圧は1個素子の出力
電圧の振幅の1.5倍が得られるため検出感度は従来技
術より50%向上する。差動演算増幅器15についても
同様である。
Furthermore, the input differential voltage of the differential operational amplifier 14 is the differential voltage between the outputs of the magnetoresistive elements 11 and 13. In this case, due to the positional relationship between the two magnetoresistive elements, this differential voltage is equal to the output voltage of one element. Since 1.5 times the amplitude can be obtained, the detection sensitivity is improved by 50% compared to the conventional technology. The same applies to the differential operational amplifier 15.

[発明の効果] 以上述べたように、本発明によれば、回転する磁石の磁
界の変化を磁気抵抗素子と差動演算増幅器で検出する回
転方向弁別回転検出装置において、第三の磁気抵抗素子
をレファレンスとして用いる簡単な構成により、従来の
半固定抵抗の調整作業を省くことができる。
[Effects of the Invention] As described above, according to the present invention, in the rotation direction discrimination rotation detection device that detects changes in the magnetic field of a rotating magnet using a magnetoresistive element and a differential operational amplifier, the third magnetoresistive element With a simple configuration that uses the resistor as a reference, the adjustment work for conventional semi-fixed resistors can be omitted.

さらに、本発明によれば、従来技術より回転磁界の検出
感度を高くすることができる。
Further, according to the present invention, the detection sensitivity of a rotating magnetic field can be made higher than that of the prior art.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は本発明の1実施例の図。 第2図(a)、(b)は第1図の信号の波形の図。 第3図(a)、(b)は往来例の図。 第4図(a)、(b)は第3図の信号の波形図。 11 、12゜ 14、15 ・ 16、17. 18、19 ・ 110、11 101 ・ ・ ・ 21 ・ ・ ・ ・ 13 ・ 1 ・ ・ 22 ・ ・ ・ ・ ・ ・ ・ 23 ・ ・ ・ ・ ・ ・ ・ ・磁気抵抗素子 ・差動演算増幅器 ・磁気抵抗素子の出力 ・差動演算増幅器の出力 ・電源供給端子 ・2極の永久磁石 ・磁気抵抗素子11の出 刃渡形 ・・磁気抵抗素子12の出 刃渡形 ・・磁気抵抗素子13の出 201  ・ ・ ・ ・ ・ ・ ・202 ・ ・
 ・ ・ ・ ・ ・ 31、32 ・ 33 ・ ・ ・ ・ 34°、 35 ・ 36、37 ・ 38、39 ・ 310、31 301  ・ ・ ・ 41 ・ ・ ・ ・ 401  ・ ・ ・ ・ ・ ・ ・402 ・ ・
 ・ ・ ・ ・ ・ 刃渡形 ・差動演算増幅器14の 出力波形 ・差動演算増幅器15の 出力波形 ・磁気抵抗素子 ・半固定抵抗 ・差動演算増幅器 ・磁気抵抗素子の出力 ・差動演算増幅器の出力 ・電源供給端子 ・2極の永久磁石 ・磁気抵抗素子31の出 刃渡形 ・磁気抵抗素子37の出 刃渡形 ・差動演算増幅器34の 出力波形 ・差動演算増幅器35の 出力波形 驚”5f3(α)
FIGS. 1(a) and 1(b) are diagrams of one embodiment of the present invention. 2(a) and 2(b) are diagrams of waveforms of the signals in FIG. 1. FIGS. 3(a) and 3(b) are diagrams of examples of traffic. 4(a) and 4(b) are waveform diagrams of the signals in FIG. 3. 11, 12゜14, 15 ・ 16, 17. 18, 19 ・ 110, 11 101 ・ ・ ・ 21 ・ ・ ・ 13 ・ 1 ・ ・ 22 ・ ・ ・ ・ ・ ・ ・ 23 ・ ・ ・ ・ ・ ・ ・ ・ Magnetoresistive element, differential operational amplifier, magnetoresistive element Output of the differential operational amplifier, power supply terminal, two-pole permanent magnet, magnetoresistive element 11, magnetoresistive element 11, magnetoresistive element 12, magnetoresistive element 12, output 201, magnetoresistive element 13, output 201.・ ・ ・ ・202 ・ ・
...
・ ・ ・ ・ ・ Blade type / Output waveform of differential operational amplifier 14 / Output waveform of differential operational amplifier 15 / Magnetoresistive element / Semi-fixed resistance / Differential operational amplifier / Output of magnetoresistive element / Differential operational amplifier・Power supply terminal ・Two-pole permanent magnet ・Width-edge type of magnetic resistance element 31 ・Width-edge type of magnetoresistive element 37 ・Output waveform of differential operational amplifier 34 ・Output waveform of differential operational amplifier 35 5f3(α)

Claims (1)

【特許請求の範囲】[Claims] 回転する磁石の磁界の変化を磁気抵抗素子と差動演算増
幅器で検出する回転方向弁別回転検出装置において、3
個の磁気抵抗素子と2個の差動演算増幅器からなり、2
個の該磁気抵抗素子の出力は2個の該差動演算増幅器の
それぞれ一方の入力に接続され、他の1個の該磁気抵抗
素子の出力は該2個の該差動演算増幅器の他方の入力に
共通に接続され、かつ、該3個の磁気抵抗素子は磁石の
回転軸に垂直な同一平面上に配置したことを特徴とする
回転方向弁別回転検出装置。
In a rotation detection device for detecting rotation direction that detects changes in the magnetic field of a rotating magnet using a magnetoresistive element and a differential operational amplifier, 3
It consists of 2 magnetoresistive elements and 2 differential operational amplifiers.
The outputs of the two magnetoresistive elements are connected to one input of each of the two differential operational amplifiers, and the output of the other magnetoresistive element is connected to the other input of the two differential operational amplifiers. A rotation detection device for discriminating rotation direction, characterized in that the three magnetoresistive elements are commonly connected to an input and arranged on the same plane perpendicular to the rotation axis of the magnet.
JP10670990A 1990-04-23 1990-04-23 Rotating direction discriminating and rotation detecting device Pending JPH045571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10670990A JPH045571A (en) 1990-04-23 1990-04-23 Rotating direction discriminating and rotation detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10670990A JPH045571A (en) 1990-04-23 1990-04-23 Rotating direction discriminating and rotation detecting device

Publications (1)

Publication Number Publication Date
JPH045571A true JPH045571A (en) 1992-01-09

Family

ID=14440507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10670990A Pending JPH045571A (en) 1990-04-23 1990-04-23 Rotating direction discriminating and rotation detecting device

Country Status (1)

Country Link
JP (1) JPH045571A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014103588A1 (en) 2013-03-29 2014-10-02 Tdk Corporation MAGNETIC SENSOR SYSTEM
DE102014111045A1 (en) 2013-08-27 2015-03-05 Tdk Corporation Rotating field sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014103588A1 (en) 2013-03-29 2014-10-02 Tdk Corporation MAGNETIC SENSOR SYSTEM
US9200884B2 (en) 2013-03-29 2015-12-01 Tdk Corporation Magnetic sensor system including three detection circuits
DE102014111045A1 (en) 2013-08-27 2015-03-05 Tdk Corporation Rotating field sensor
US10386169B2 (en) 2013-08-27 2019-08-20 Tdk Corporation Rotating field sensor
US10648787B2 (en) 2013-08-27 2020-05-12 Tdk Corporation Rotating field sensor
DE102014111045B4 (en) 2013-08-27 2023-10-26 Tdk Corporation Rotating field sensor

Similar Documents

Publication Publication Date Title
US7694200B2 (en) Integrated circuit having built-in self-test features
CN108303562B (en) Demagnetization field robust torsion sensitive magnetic speed sensor
US8994369B2 (en) Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation of a ferromagnetic object
US5568048A (en) Three sensor rotational position and displacement detection apparatus with common mode noise rejection
US10436611B2 (en) Rotation angle measuring apparatus and measuring method
CN101646922A (en) Method of detecting absolute rotational position
JP2000065596A5 (en) Magnetic encoder and motor with magnetic encoder
JP3855801B2 (en) Rotation detector
JPH045571A (en) Rotating direction discriminating and rotation detecting device
US3762876A (en) Driven vane anemometers
US3189886A (en) Displacement amplifier
JP2002267494A (en) Rotation detector
JPS6176911A (en) Magnetic encoder
JP3201238B2 (en) Speed detector
JP2687602B2 (en) Rotational position detector
JPH0723691Y2 (en) Magnetic rotary encoder
SU838564A1 (en) Angular velocity transmitter
JPH02194316A (en) Displacement detecting device
JPH04223218A (en) Magnetic sensor
JPH01259217A (en) Rotation detecting device
CN116753833A (en) 360-degree magnetic angle detection method and system
JPS61189412A (en) Magnetic flux density change detector
JPH03172715A (en) Rotational angle detector
JPS5928241B2 (en) Houkoukenshiyutsusouchi
JPH04110725A (en) Magnetic sensor and manufacture thereof