JPH0455701A - Measuring method for displacement through impedance of coil - Google Patents

Measuring method for displacement through impedance of coil

Info

Publication number
JPH0455701A
JPH0455701A JP16560090A JP16560090A JPH0455701A JP H0455701 A JPH0455701 A JP H0455701A JP 16560090 A JP16560090 A JP 16560090A JP 16560090 A JP16560090 A JP 16560090A JP H0455701 A JPH0455701 A JP H0455701A
Authority
JP
Japan
Prior art keywords
measured
coils
impedance
coil
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16560090A
Other languages
Japanese (ja)
Inventor
Jiro Isobe
磯部 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP16560090A priority Critical patent/JPH0455701A/en
Publication of JPH0455701A publication Critical patent/JPH0455701A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure displacement highly accurately without contact by making an AC flow through three coils having the different distances with respect to a material to be measured, and operating the distance between the material to be measured and the coils based on the amounts of the changes in impedance of the coils. CONSTITUTION:AC is made to flow through three coils L1 - L3 having the different distances with respect to a material to be measured 1. Then, the impedance of the coils L1 - L3 are changed differently with changes in distances between the material to be measured 1 and the coils L1 - L3. The distance X between the coils L1 - L3 and the material to be measured 1 is operated and obtained by the specified expression based on the differences in changing amounts of the impedances.

Description

【発明の詳細な説明】 (1)本発明は磁界の変化によって導体に生じる渦電流
を応用する。一般に、コイルに交流電流を流すと、磁界
が変り、その磁界の変動によって、磁界の中に在る導体
に渦電流が生じる。その渦電流によって、コイルのイン
ピーダンスは変化する。
DETAILED DESCRIPTION OF THE INVENTION (1) The present invention applies eddy currents generated in a conductor due to changes in a magnetic field. Generally, when an alternating current is passed through a coil, the magnetic field changes, and the fluctuations in the magnetic field generate eddy currents in conductors within the magnetic field. The impedance of the coil changes due to the eddy current.

導体との距離を違えて3つのコイルを固定し、コイルに
交流電流を流すと、導体とコイルとの距離が変化するに
つれて、3つのコイルのインピーダンスはそれぞれ異な
る変化をする。そのインピーダンス変化量の違いから、
コイルと被認定物との距離(以下、変位と呼ぶ)を式の
により演算して、求める。
When three coils are fixed at different distances from the conductor and an alternating current is passed through the coils, the impedance of the three coils changes differently as the distance between the conductor and the coil changes. From the difference in the amount of impedance change,
The distance between the coil and the object to be certified (hereinafter referred to as displacement) is calculated by the following equation.

X =Ln−”[E J LnY 1 + E2 Ln
Yl +Els LnY3十E4 ] ■ ここで、 Xは求める変位である。
X = Ln-” [E J LnY 1 + E2 Ln
Yl +Els LnY30E4 ] ■ Here, X is the displacement to be sought.

Ln−’は逆対数を意味する。Ln-' means antilogarithm.

Yl、YiおよびYsは3つのコイルのそれぞれのイン
ピーダンス変化量である。
Yl, Yi, and Ys are the impedance changes of each of the three coils.

LnXはXの自然対数である。以下Lnの意味は同様で
ある。
LnX is the natural logarithm of X. The meaning of Ln is the same below.

El、E、、E、およびR4は定数である。El, E, , E, and R4 are constants.

従来から知られていることであるが、渦電流を用いて変
位を測定する場合、コイルのインピーダンスは被測定物
の材質および形状に影響される。
As is conventionally known, when measuring displacement using eddy currents, the impedance of the coil is affected by the material and shape of the object to be measured.

そのため、測定中に被測定物の材質あるいは形状が変化
する場合、例えば工作機械における被工作物を対象とす
るような場合、渦電流を用いて変位を測定することが不
可能であった。
Therefore, when the material or shape of the object to be measured changes during measurement, for example, when the object is a workpiece in a machine tool, it has been impossible to measure displacement using eddy currents.

本発明は、このような被測定物の変化に影響されずに、
非接触で、高精度に、変位を測定することを目的とする
− 以降で、本発明を導く式を解く。
The present invention is not affected by such changes in the object to be measured.
The purpose is to measure displacement with high precision in a non-contact manner.The equations that lead to the present invention will be solved below.

尚、ここで用いられる定数とは、被測定物の材質あるい
は形状や、変位に影響されない、あるいはそれらの影響
を無視できる数値を意味する。また、変数とは、被測定
物の材質あるいは形状や、変位に影響される数値を意味
する。
Note that the constant used here means a numerical value that is not affected by the material, shape, or displacement of the object to be measured, or a value that can be ignored. Further, a variable means a numerical value that is affected by the material or shape of the object to be measured, or by displacement.

変位と各コイルのインピーダンスとの関係をべきの関数
で近似する。このべきの関数を式■、■および■に示す
The relationship between the displacement and the impedance of each coil is approximated by a power function. The functions of this power are shown in equations ■, ■, and ■.

Zt  =At  X−”  +c。Zt = At X-” +c.

Z !  = A x  X−”  + CyZ3 ”
 As  X−113+ Cs尚、 Zs、Zsおよび
Z3はそハぞれ3つのコイルL1.L!およびA3のイ
ンピーダンスとする。
Z! = A x X-" + CyZ3"
As X-113+ Cs, Zs, Zs and Z3 are each three coils L1. L! and the impedance of A3.

Xはコイルと被測定物との変位である。X is the displacement between the coil and the object to be measured.

X−1は、Xの(−Bl )乗を意味する。以下同様で
ある A、、A、およびA3は、被測定物の材質、形状および
変位に影響される変数である。
X-1 means X to the (-Bl) power. A, , A, and A3, which are the same below, are variables influenced by the material, shape, and displacement of the object to be measured.

B、、B、およびR3は、被測定物の材質および形状に
影響される変数である。
B, , B, and R3 are variables influenced by the material and shape of the object to be measured.

Cs 、CsおよびC3は定数である。Cs, Cs and C3 are constants.

上記3つの式から、インピーダンス2..2゜及びz3
を次のようにインピーダンス変化ff1y、、Y、およ
びYsで置き換える。
From the above three equations, impedance 2. .. 2° and z3
are replaced by impedance changes ff1y, , Y, and Ys as follows.

Yl  =Z1 −C。Yl = Z1 - C.

Y、  =Z、  −c。Y, =Z, -c.

Ys  ” Zs    Cs これらより、式■、■および■は次の3つの式に置き換
えられる。
Ys ” Zs Cs From these, formulas ■, ■, and ■ can be replaced with the following three formulas.

Y *  = A t  X−”” Yl  =A、X−” Y s  = A s  X−” この式のなかで、変数A、およびA3は、物理的な現象
から、次のように変数A、の関数で表される。
Y * = A t X-”” Yl = A, X-” Y s = A s It is expressed as a function.

A *  = Rx。AI”” A、=R3゜A、”” 尚。A * = Rx. AI”” A,=R3゜A,”” still.

R1゜、R□、R3゜およびR3□は定数である。R1°, R□, R3° and R3□ are constants.

式■、■および■の変数BよおよびR3は次のように、
物理的な現象から、変数B1の1次式で表される。
The variables B and R3 in formulas ■, ■, and ■ are as follows,
From a physical phenomenon, it is expressed by a linear equation of variable B1.

B z  = D xoB 1  + D 2BB3 
=D、。B、  +D3゜ 二こで、Dよ。、D□、R3゜およびR31は定数であ
る。
B z = D xoB 1 + D 2BB3
=D. B, +D3 degrees, D. , D□, R3° and R31 are constants.

以上のAI、A、、B、およびR3の式を式■および■
へ代入すると、次の式が求まる。
The above formulas of AI, A, , B, and R3 are expressed as ■ and ■
By substituting into , the following formula is obtained.

Yl  =A、  X−” Y 、: RzoA 、121  X −fD20R+
  40211Ys  =R3,A、  ”’  X’
−”””  ””’」1記の3つの式において1両辺の
対数をとり、変数A、およびB1を消去して、Xを求め
ると、前述の式■が求まる。ただし、式■の係数E1、
Ex、B3およびE、は次の式によって定まる定数であ
る。
Yl = A, X-"Y,: RzoA, 121 X-fD20R+
40211Ys =R3,A, ”'X'
-"""""'"If we take the logarithm of both sides of 1 in the three equations listed in 1, eliminate the variables A and B1, and find X, we find the above-mentioned equation (2). However, the coefficient E1 of formula ■,
Ex, B3 and E are constants determined by the following formula.

E I =  (R3+Dxo  Rz+D3o)/M
        ■Ez=(Da。−R3□)/M [相] B3 =CR□−D2゜)/M ■ E 4  ”  (D mol、nR30R2+I−n
R3゜+ R3+LnRto  D 3oLnRzo)
/M     −@尚、上式のMは次の式で表される。
E I = (R3+Dxo Rz+D3o)/M
■Ez=(Da.-R3□)/M [Phase] B3=CR□-D2゜)/M ■E4'' (D mol, nR30R2+I-n
R3゜+ R3+LnRto D 3oLnRzo)
/M −@ Note that M in the above formula is expressed by the following formula.

M  =  D zoD 3I   D 21D3(+
+  R31D zx−RxID 31式■で使われる
定数E 1.Ex 、B3及びB4は・上記の定数D 
to−D zs、 D so、 D sl、 R!o、
R21,R3゜、およびR3□より求めることができ、
その定数D2゜、I)zt、B3゜、B31、R3゜、
R2I、R30、およびR31は実験によって求めるこ
とができる。
M = D zoD 3I D 21D3 (+
+ R31D zx-RxID Constant E used in formula 31 ■ 1. Ex, B3 and B4 are the above constant D
to-D zs, D so, D sl, R! o,
It can be determined from R21, R3°, and R3□,
The constant D2゜, I)zt, B3゜, B31, R3゜,
R2I, R30, and R31 can be determined by experiment.

ただし、本方式を電子回路で実施する場合は、定数Dz
o、 D!1. B30. B31. RlO,Rx+
、R30、およびR31を求めることなく、El 、E
x 、B3およびB4を直接求めることが可能である。
However, when implementing this method in an electronic circuit, the constant Dz
o, D! 1. B30. B31. RlO, Rx+
, R30, and R31, El, E
It is possible to determine x, B3 and B4 directly.

すなわち、Er、Ex、E、およびE、は定数であるか
ら、4つの異なる既知の変位に対して、Y、、B2及び
B3の値な測り、その測定値を式■に代入し1式■にお
いてE□、Ez、EsおよびB4を未知数とする4つの
連立方程式を作り、その方程式を解くことによって、E
l 、E、、ElおよびB4を求める。
That is, since Er, Ex, E, and E are constants, the values of Y, , B2, and B3 are measured for four different known displacements, and the measured values are substituted into equation (1). By creating four simultaneous equations with E□, Ez, Es, and B4 as unknowns, and solving the equations, E
Find l, E, , El and B4.

入すれば、式■が求まる。If you enter the formula, you will find the formula ■.

ただし、式■の係数F 1.FxおよびB3は次の式に
よって定まる定数である。
However, the coefficient F of formula (■) is 1. Fx and B3 are constants determined by the following formula.

(2)特許請求の範囲第2項で使われる式を式■に示す
。この式■は式のより、物理的条件を緩和して、導かれ
るものである。
(2) The formula used in claim 2 is shown in formula (■). This formula (■) is derived from the formula by relaxing the physical conditions.

F r  =  (Dto  B30)/NF!  =
  (D、。−1)/N LnX = F +  Ln (Y +  / Y x
  )+ p’ z  Ln (Yx  / B3  
)十 Fユ ■ ここで、 F、、F、およびB3は定数である。
F r = (Dto B30)/NF! =
(D,.-1)/N LnX = F + Ln (Y + / Y x
) + p' z Ln (Yx / B3
) 10 Fyu ■ Here, F, , F, and B3 are constants.

以降で弐〇の導き方を説明する。Below, I will explain how to guide Ni〇.

式■、[相]、■、■および0で使われている定数のな
かで、定数R31およびR31は物理的に1に近い数値
をとる。このことから、Rx + = R3r = 1
とみなして、これを弐〇、[相]、■、@および@に代
F s  ”  (D zoLnR3o  LnR3゜
+LnRto  D 3oLnRgo)/ NN=Dx
oD3.  D!ID3G+D!1−D31式■の定数
F1.F、およびFユは5式■の定数E1.E、、B3
およびB4を求めたと同じように、既知の変位よりコイ
ルのインピーダンス変化量を求めて、算出することがで
きる。
Among the constants used in formulas (1), [phase], (2), (2), and 0, constants R31 and R31 physically take values close to 1. From this, Rx + = R3r = 1
Assuming this as
oD3. D! ID3G+D! Constant F1 of 1-D31 formula (■). F and Fyu are constants E1. E,,B3
And B4 can be calculated by finding the amount of change in impedance of the coil from the known displacement in the same way as finding B4.

本発明の効果 従来の方法を使うと、渦電流によって生じるコイルのイ
ンピーダンスは、変位のほかに、被測定物の材質あるい
は被測定物の面積によって変る。
Effects of the Invention When conventional methods are used, the impedance of the coil caused by eddy currents varies depending on the material or area of the object to be measured, in addition to displacement.

このため、測定中に被測定物の材質あるいは形状が変化
するような場合、たとえば工作eliIIAで使われる
ような場合、非接触で変位を精度良く測定することが、
不可能であった。
Therefore, when the material or shape of the object to be measured changes during measurement, for example when used in machining eliIIA, it is difficult to accurately measure displacement without contact.
It was impossible.

本発明は、このような被測定物の材質や形状の変化にも
かかわらず変位を測定できるものである6
The present invention is capable of measuring displacement despite such changes in the material and shape of the object to be measured6.

【図面の簡単な説明】[Brief explanation of drawings]

化測定することが本発明の目的である。 被測定物 発振器 磁界 コイルL。 コイルL2 コイルL3 変位 コイル間の間隔 コイル間の間隔 j11図 It is an object of the present invention to measure the Object to be measured oscillator magnetic field Coil L. Coil L2 Coil L3 displacement Spacing between coils Spacing between coils j11 figure

Claims (2)

【特許請求の範囲】[Claims] (1)被測定物に対して距離を違えて配置した三つのコ
イルに交流電流を流し、それによって被測定物内に生じ
る渦電流に起因するそれぞれ三つのコイルのインピーダ
ンスの変化量から、被測定物とコイルとの距離を演算し
て求める方法。
(1) An alternating current is passed through three coils placed at different distances from the object to be measured, and the amount of change in impedance of each of the three coils due to the eddy current generated in the object to be measured is calculated. A method of calculating and finding the distance between an object and a coil.
(2)特許請求の範囲第1項記載の演算方法より導くこ
とのできる更に簡易な演算式を使って、被測定物とコイ
ルとの距離を求める方法。
(2) A method of determining the distance between the object to be measured and the coil using a simpler calculation formula that can be derived from the calculation method described in claim 1.
JP16560090A 1990-06-26 1990-06-26 Measuring method for displacement through impedance of coil Pending JPH0455701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16560090A JPH0455701A (en) 1990-06-26 1990-06-26 Measuring method for displacement through impedance of coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16560090A JPH0455701A (en) 1990-06-26 1990-06-26 Measuring method for displacement through impedance of coil

Publications (1)

Publication Number Publication Date
JPH0455701A true JPH0455701A (en) 1992-02-24

Family

ID=15815433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16560090A Pending JPH0455701A (en) 1990-06-26 1990-06-26 Measuring method for displacement through impedance of coil

Country Status (1)

Country Link
JP (1) JPH0455701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021505919A (en) * 2018-01-08 2021-02-18 レイセオン カンパニー Inductive sensor with digital demodulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021505919A (en) * 2018-01-08 2021-02-18 レイセオン カンパニー Inductive sensor with digital demodulation

Similar Documents

Publication Publication Date Title
JPH09501492A (en) Method and device for measuring displacement of object and linearization device for electric signal
JP2911828B2 (en) Multi-parameter eddy current measurement system with parameter compensation
JPH0324602B2 (en)
JPH0455701A (en) Measuring method for displacement through impedance of coil
Diakov et al. Large-scaled details flatness measurement method
Sarathi et al. Realization of fractional order inductive transducer
TW201423041A (en) Film measurement
US5886522A (en) Dual mode coating thickness measuring probe for determining the thickness of a coating on ferrous and non-ferrous substrates
CN205718820U (en) The probe of a kind of current vortex sensor and current vortex sensor
JP3899477B2 (en) Measuring displacement by coil impedance
EP0644997B1 (en) Magnetic measuring method and apparatus for determining the size and shape of a slot
JPH0653804A (en) Method and device for preparing correction table and displacement detecting sensor
RU2163350C2 (en) Meter of linear displacement
Seo et al. Shape optimization of interface between ferromagnetic material and air in eddy current system using continuum sensitivity analysis and level-set method
Bavall Determination of coating thickness of a copper-plated steel wire by measurement of the internal wire impedance
RU2717904C1 (en) Method of measuring using differential sensor
JPH11513497A (en) Guidance device for determining the size and position of a measuring object made of conductive material
SU879286A2 (en) Device for touch-free measuring of electroconductive surface tilt angle
Melaab et al. Control of an induction heat treatment by the measure of power
JPH02156113A (en) Linear displacement detector
Piaskowy et al. The determination of measuring transformer windings impedance by using an three stage measuring method
Xu et al. Design and analysis of an eddy current displacement sensor with extended linear range
SU1693528A1 (en) Method of determining coordinates of positions of linear electroconductive articles
RU2624844C2 (en) Linear displacement meter
JPS6228604A (en) Noncontact type profile measuring instrument