JPH0455691A - Pin fin heat exchanger - Google Patents

Pin fin heat exchanger

Info

Publication number
JPH0455691A
JPH0455691A JP2162586A JP16258690A JPH0455691A JP H0455691 A JPH0455691 A JP H0455691A JP 2162586 A JP2162586 A JP 2162586A JP 16258690 A JP16258690 A JP 16258690A JP H0455691 A JPH0455691 A JP H0455691A
Authority
JP
Japan
Prior art keywords
pin
airstream
pin fin
fin
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2162586A
Other languages
Japanese (ja)
Inventor
Mitsuaki Hagino
光明 萩野
Hiroaki Sasaki
佐々木 尋章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2162586A priority Critical patent/JPH0455691A/en
Publication of JPH0455691A publication Critical patent/JPH0455691A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/124Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being formed of pins

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

PURPOSE:To expand the temperature range of heat exchange, improve a heat exchanging capacity remarkably and permit the miniaturization of a ventilating fan for a heat exchanger having the same size by a method wherein the heights of the tip ends of pin fins are formed so as to be lowered sequentially as the position is approached to the receiving side of airstream. CONSTITUTION:The rate of the length of the vertical part 6a of a pin fin 6 to the length of the bent part 6b of the same is designed so as to be changed gradually and the bent part 6b is longer than the vertical part 6a in the pin fin 6A of the upstream side of airstream A. On the other hand, the vertical part 6a is designed so as to be longer than the bent part 6b as the position of the pin fin is approached to the pin fins 6B, 6C of the downstream side of air conditioning airstream A. The airstream A hits the pin fin heat exchanger 1 from one side whereby the airstream A passes easily while being guided by a passage B between the pin fin groups 60, 61 and increasing the flow speed thereof. Accordingly, new air-conditioning airstream A prevails over the whole area of the upstream side and the downstream side of the pin fins 6 whereby the bent parts 6b of the pin fins 6 are contacted with the new airstream A at the upstream side while and at least one part of the vertical parts 6a of the same are contacted with the same airstream A in the downstream side and heat exchanging can be made effectively by the whole of the pin fins 6.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) この発明は、空調用、産業用、車両用等の熱交換器に供
されるピンフィン熱交換器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Industrial Application Field) This invention relates to a pin fin heat exchanger used as a heat exchanger for air conditioning, industrial use, vehicle use, etc.

(従来の技術) 従来のピンフィン熱交換器としては、例えば、第6図(
a)、(b)に示すものが知られている。
(Prior art) As a conventional pin fin heat exchanger, for example, the one shown in Fig. 6 (
Those shown in a) and (b) are known.

この第6図は、例えば自動車用空気調和装置のエバポレ
ータとして構成されたものである。同図(a)のように
ピンフィン熱交換器1は、左右に冷媒C等の管路5と連
通ずるマニホールド3,4を有し、これらのマニホール
ド3,4の間に、伝熱部として複数本の伝熱チューブ2
が両端を接続して、等間隔で配置されている。伝熱チュ
ーブ2は、例えば同図(b)のように方形断面の筒状を
成し、上下の伝熱面2a、2bに多数のピンフィン6が
垂直に取付けられている。ピンフィン6はすべてが同一
の長さの直線上のものであり、根元を溶接したり、伝熱
面2a等の表面を切欠いて設けられる。
This FIG. 6 is constructed as an evaporator of an air conditioner for an automobile, for example. As shown in the figure (a), the pin fin heat exchanger 1 has manifolds 3 and 4 communicating with pipes 5 such as refrigerant C on the left and right sides, and a plurality of heat transfer parts are arranged between these manifolds 3 and 4. book heat transfer tube 2
are connected at both ends and placed at equal intervals. The heat transfer tube 2 has a cylindrical shape with a rectangular cross section, for example, as shown in FIG. 2(b), and a large number of pin fins 6 are vertically attached to the upper and lower heat transfer surfaces 2a and 2b. The pin fins 6 are all linear and have the same length, and are provided by welding the base or by cutting out the surface of the heat transfer surface 2a or the like.

(発明が解決しようとする課題) しかしながら、上記従来のピンフィン熱交換器1にあっ
ては、ピンフィン6の全ての長さが等しくて、空調風の
気流Aに対して直角となるように伝熱チューブ2に固着
されているため、気流Aの流れが妨げられて、通気抵抗
が大きい。また、空調風Aの下流付近のピンフィン6に
は、既に熱交換した気流Aが当るので、上流の気流受け
入れ側に比べて熱交換量が少なくなり、これらの理由に
より全体の熱交換能力に限界がある。
(Problem to be Solved by the Invention) However, in the conventional pin fin heat exchanger 1, all the lengths of the pin fins 6 are equal, and heat is transferred at right angles to the airflow A of the air conditioned air. Since it is fixed to the tube 2, the flow of the airflow A is obstructed, and ventilation resistance is large. In addition, since the airflow A that has already exchanged heat hits the pin fins 6 near the downstream of the conditioned air A, the amount of heat exchanged is smaller than that at the upstream airflow receiving side, and for these reasons, there is a limit to the overall heat exchange capacity. There is.

そこでこの発明は、熱交換能力の向上を図ることができ
るピンフィン熱交換器の提供を目的とする。
Therefore, an object of the present invention is to provide a pin fin heat exchanger that can improve heat exchange capability.

[発明の構成] (課題を解決するための手段) 上記課題を解決するためにこの発明は、並設された複数
の伝達部と、この伝達部の相互間で少なくとも一方の伝
熱部の他方の伝熱面に設けられ他方の伝熱部側へ延びた
多数のピンフィンとを備え、前記ピンフィンの先端の気
流に対する高さが、気流の受け入れ側ほど順次低くなる
ように形成したことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention provides a plurality of heat transfer parts arranged in parallel, and a heat transfer part of at least one of the heat transfer parts between the heat transfer parts. and a large number of pin fins provided on the heat transfer surface of the heat transfer section and extending toward the other heat transfer section, and the height of the tips of the pin fins relative to the airflow is formed so as to become lower as the side receives the airflow. do.

(作用) 上記構成によれば、ピンフィンの先端の高さが、気流の
受け入れ側ほど順次低くなるように形成することで、気
流はピンフィンの間を通気抵抗の小さい状態で流速を増
して通過し、且つ、各ピンフィンにおいて、少なくとも
一部には新しい気流が触れ、気流とピンフィンの温度差
を大きくするようになる。これにより、ピンフィンでの
熱交換が促進して、熱交換能力を大幅に向上することが
可能になる。
(Function) According to the above configuration, the height of the tips of the pin fins is formed so that it becomes lower as the airflow is received, so that the airflow can pass between the pin fins at an increased flow velocity with low ventilation resistance. , and the new airflow comes into contact with at least a portion of each pin fin, increasing the temperature difference between the airflow and the pin fin. This promotes heat exchange with the pin fins, making it possible to significantly improve heat exchange capacity.

(実施例) 以下この発明の詳細な説明する。(Example) This invention will be described in detail below.

第1図(a)はこの発明の第1の実施例は、第6図と同
様に熱交換器として、自動車用空調装置のエバポレータ
に係る伝熱部として伝熱チューブを示す断面図である。
FIG. 1(a) is a cross-sectional view showing a heat transfer tube as a heat exchanger and a heat transfer portion of an evaporator of an automobile air conditioner according to a first embodiment of the present invention, similar to FIG. 6.

同図(b)はピンフィン部の斜視図であり、ビンフィン
熱交換器1において伝熱チューブ2は方形断面の筒状に
形成され、その上下の伝熱面2a、2bにピンフィン6
が多数取付けられている。ピンフィン6はすべてのもの
が路間−の長さであり、途中が上流の気流の受け入れ側
へ直角に屈曲して形成されて、垂直部6aと水平な折曲
部6bとから成る。そして、折曲部6bが先端を空調風
の気流Aの上流に向けてその流れと略平行に設置され、
この状態で垂直部6aの根元が伝熱チューブ2に溶接等
により固着されている。
The same figure (b) is a perspective view of the pin fin part. In the pin fin heat exchanger 1, the heat transfer tube 2 is formed in a cylindrical shape with a rectangular cross section, and the pin fins are formed on the upper and lower heat transfer surfaces 2a, 2b.
are installed in large numbers. All of the pin fins 6 have a length between the channels, and are bent in the middle at right angles toward the upstream airflow receiving side, and are composed of a vertical portion 6a and a horizontal bent portion 6b. Then, the bent portion 6b is installed substantially parallel to the airflow A of the conditioned air with its tip facing upstream of the airflow A,
In this state, the base of the vertical portion 6a is fixed to the heat transfer tube 2 by welding or the like.

また、ピンフィン6の垂直部6aと折曲部6bの長さの
割合が漸次変化して設定され、気流Aの上流側のピンフ
ィン6Aは垂直部6aが短くて折曲部6bの方が長い。
Further, the ratio of the lengths of the vertical portion 6a and the bent portion 6b of the pin fin 6 is set to gradually change, and the pin fin 6A on the upstream side of the airflow A has the vertical portion 6a shorter and the bent portion 6b longer.

一方、空調風Aの下流側のピンフィン6B、6C−φに
いくほど折曲部6bが短くなって逆に垂直部6aか長く
設定される。
On the other hand, the bent portion 6b becomes shorter and the vertical portion 6a becomes longer as the pin fins 6B, 6C-φ are located on the downstream side of the conditioned air A.

こうして、ピンフィン6の先端の気流Aに対する高さが
、気流の受け入れ側ほど順次低くなった構成となってい
る。すなわち、気流Aの上流がら下流に向って折曲部6
bは長い状態がら徐々に短くなり、ピンフィン6の先端
を結ぶ線が気流Aの上流(第1図(a)左側)にいくほ
ど低くなるように構成されている。また、このような゛
ピンフィン6の構成により、上段の伝熱チューブ2のピ
ンフィン群60と下段の伝熱チューブ2のピンフィン群
61との間には、冷却風Aの通路Bが先細に形成される
In this way, the height of the tip of the pin fin 6 with respect to the airflow A is gradually lowered toward the receiving side of the airflow. In other words, the bending portion 6
b gradually becomes shorter from a long state, and is configured such that the line connecting the tips of the pin fins 6 becomes lower as it goes upstream of the airflow A (to the left in FIG. 1(a)). Further, due to the configuration of the pin fins 6, a passage B for the cooling air A is formed in a tapered manner between the pin fin group 60 of the upper heat transfer tube 2 and the pin fin group 61 of the lower heat transfer tube 2. Ru.

次に、この実施例の作用を説明する。Next, the operation of this embodiment will be explained.

先ず、ビンフィン熱交換器1の片側がら気流Aが当るこ
とにより、その気流Aがピンフィン群60.61の間の
通路Bにより案内され流速を増大しながら容易に通過す
る。従って、ピンフィン6の上、下流の全域に新しい空
調の気流Aが行き渡ることになり、この新しい気流Aに
対して上流側ではピンフィン6の折曲部6bが、下流側
では垂直部6aの少なくとも一部が触れ、ピンフィン6
の全体で熱交換が効果的に行なわれる。そして、このよ
うなピンフィン6の熱交換作用で伝熱チューブ2の内部
の冷媒Cとの熱交換が効率良く行なわれる。
First, when the airflow A hits one side of the pin fin heat exchanger 1, the airflow A is guided by the passage B between the pin fin groups 60 and 61 and easily passes through while increasing the flow velocity. Therefore, the new air-conditioning airflow A will spread over the entire area above and downstream of the pin fin 6, and with respect to this new airflow A, the bent portion 6b of the pin fin 6 will be on the upstream side, and at least one of the vertical portions 6a will be on the downstream side. part touches, pin fin 6
Heat exchange is carried out effectively throughout. The heat exchange action of the pin fins 6 allows efficient heat exchange with the refrigerant C inside the heat transfer tube 2.

そこで、上記熱交換作用の能力について、更に詳細に説
明する。
Therefore, the ability of the heat exchange function will be explained in more detail.

一般に、第2図に示す断面形状を持ったピンフィン6の
通気抵抗は、摩擦を無視した形状のみの要素の形状抵抗
と、形状を無視した摩擦抵抗とに分けることができる。
In general, the ventilation resistance of the pin fin 6 having the cross-sectional shape shown in FIG. 2 can be divided into a shape resistance of only the shape, ignoring friction, and a frictional resistance, ignoring the shape.

ここで、形状抵抗は直径aの円柱の形状抵抗に近似し、
摩擦抵抗は代表長a+b−0−の平板の摩擦抵抗に近似
できるので、長さ1m当りの1本のピンフィン6に働く
抵抗Rは、形状抵抗RDと摩擦抵抗RFの和として、次
式で表わせる。
Here, the shape resistance approximates the shape resistance of a cylinder with diameter a,
Since the frictional resistance can be approximated to the frictional resistance of a flat plate with a representative length a+b-0-, the resistance R acting on one pin fin 6 per 1 meter length can be expressed as the sum of the geometrical resistance RD and the frictional resistance RF using the following equation. Ru.

R−RD+R,mcD−p/24 tLax ’ −a
+CF・ρ/2・U m * x′ ・21U□8 ;
ピンフィンピンフィン間最大流速;Co、Cp :抵抗
係数、ρ;空気密度従って、長さhのビンフィン601
本の通気抵抗R,は、 Ro −Co ” /)/ 2 ” Umax ’ ”
 a h十CF・ρ/2・U 1B a K′ ・21
hとなる。上式の右側第2項の21hは、ビンフィン6
の空気に触れる接触面積とみなせる。この実施例は従来
例と長さが等しいので、右側第2項の摩擦抵抗に変化は
ない。つまり、ビンフィン6を折曲げることにより代わ
るのは、第1項の部分となる。この実施例の場合、気流
Aの方向から見ればビンフィン6の折曲部6bの分だけ
短い長さh′の円柱とみなせるため、通気抵抗の差ΔR
は、 ΔR−Co  ”  p/2  ”  Umax  ”
  a  (h−h’  )となる。これを線図で示す
と第3図、第4図のようになり、この実施例では折曲部
6bの分の八Rに応じて通気抵抗が大幅に減少すること
がわかる。
R-RD+R,mcD-p/24 tLax'-a
+CF・ρ/2・U m * x′ ・21U□8;
Maximum flow velocity between pin fins; Co, Cp: resistance coefficient, ρ; air density; therefore, the pin fin 601 with length h
The ventilation resistance R of the book is Ro −Co ”/)/2 ”Umax'”
a h1CF・ρ/2・U 1B a K′・21
h. The second term on the right side of the above equation, 21h, is the bin fin 6
It can be regarded as the contact area that comes into contact with the air. Since this embodiment has the same length as the conventional example, there is no change in the frictional resistance of the second term on the right side. In other words, what is replaced by bending the bin fin 6 is the portion of the first term. In this embodiment, when viewed from the direction of the airflow A, it can be regarded as a cylinder with a length h' shorter by the bent portion 6b of the bottle fin 6, so the difference in ventilation resistance ΔR
is ΔR-Co ” p/2 ” Umax ”
a (hh'). This is illustrated in diagrams as shown in FIGS. 3 and 4, and it can be seen that in this example, the ventilation resistance is significantly reduced according to the 8/8 radius of the bent portion 6b.

また、この通気抵抗の減少に伴ない、気流Aを造るファ
ンの能力が同一ならば、ビンフィン6の間を流れる気流
Aの流速も早くなる。
Further, as the ventilation resistance decreases, the flow rate of the airflow A flowing between the bin fins 6 also increases if the ability of the fan to create the airflow A is the same.

次に、ビンフィン熱交換器1の熱交換能力について説明
する。先ず、流体か10列以上の管群に直角に流れる場
合の管群の平均ヌセルト数N。は、近似的に次式で示さ
れる。
Next, the heat exchange capacity of the bottle fin heat exchanger 1 will be explained. First, the average Nusselt number N of a group of tubes when fluid flows at right angles to a group of 10 or more tubes. is approximately expressed by the following equation.

Nu−C−R。Nu-C-R.

C,r;諸条件で定まる定数、R1;レイノルズ数 また、平均ヌセルト数N。は平均熱伝達率α1、管群径
d1流体の熱伝導率λの関数で次式で示される。
C, r: Constant determined by various conditions, R1: Reynolds number and average Nusselt number N. is a function of the average heat transfer coefficient α1, the tube group diameter d1, and the thermal conductivity λ of the fluid, and is expressed by the following equation.

Nu−α力 ◆d/λ これらの式により、平均熱伝達率α、はR,rに比例す
ることがわかる。R1は流速Uに比例するので、結局平
均熱伝達率α。がU′に比例することになる。rの値は
単純な円管の場合は約0.6であり、更にこの実施例に
おいて通気抵抗が50%低減されたとした場合の流速は
、472倍になるので、平均熱伝達率α、は、CJ 2
) 06−1゜23倍となって、23%向上するといえ
る。
Nu-α force ◆d/λ From these equations, it can be seen that the average heat transfer coefficient α is proportional to R and r. Since R1 is proportional to the flow rate U, it is the average heat transfer coefficient α. is proportional to U'. The value of r is approximately 0.6 in the case of a simple circular pipe, and if the ventilation resistance is reduced by 50% in this example, the flow rate will be 472 times greater, so the average heat transfer coefficient α is , CJ 2
) 06-1°23 times, which can be said to be an improvement of 23%.

ところで、ビンフィン熱交換器1の熱交換能力Qは、次
式で定義されている。
By the way, the heat exchange capacity Q of the bottle fin heat exchanger 1 is defined by the following equation.

Q−にφS・ΔTII K;熱交換器の熱通過率、S;伝熱面積、ΔT、;伝熱
チューブ2の冷媒と気流Aの対数平均温度差 Sは従来と同じであり、Kの値は平均熱伝達率α1に9
割近く支配されることが知られている。
Q- is φS・ΔTII K: Heat transfer rate of heat exchanger, S: Heat transfer area, ΔT; Logarithmic average temperature difference S between the refrigerant of heat transfer tube 2 and air flow A is the same as before, and the value of K is is the average heat transfer coefficient α19
It is known that it is closely controlled.

従って、平均熱伝達率α、が23%向上することは、熱
交換能力Qが約20%向上することを意味する。
Therefore, a 23% improvement in the average heat transfer coefficient α means that the heat exchange capacity Q increases by approximately 20%.

更に、この実施例では、後流側のビンフィン6の少なく
とも一部に新しい低温の気流Aが当るため、ΔT1の値
が大きくなる。このため、熱交換能力Qは上記のものよ
り一層大きくなる。こうして、数式によっても通気抵抗
が減じ、熱交換能力が増大することが証明される。
Furthermore, in this embodiment, the new low-temperature airflow A hits at least a portion of the bottle fin 6 on the downstream side, so the value of ΔT1 increases. Therefore, the heat exchange capacity Q becomes even larger than that described above. Thus, the formula also proves that the ventilation resistance is reduced and the heat exchange capacity is increased.

第5図(a)はこの発明の第2の実施例の伝熱チューブ
を示す断面図、(b)はビンフィン部の斜視図であり、
この実施例では、伝熱チューブ2′の断面形状が三角形
にされ、上下の伝熱面2a’ 、2b’が気流Aの上流
に向って傾斜するように構成される。そして、これらの
伝熱面2a’ 、2b’ に直線状のビンフィン6′が
垂直に固着されるのであり、この場合も上、下段の伝熱
チューブ2′のビンフィン群60’ 、61’ の間に
気流Aの通路Bが形成され、且つビンフィン6′の先端
の気流Aに対する高さが、気流の受け入れ側ほど順次低
くなっている。
FIG. 5(a) is a sectional view showing a heat transfer tube according to a second embodiment of the present invention, and FIG. 5(b) is a perspective view of a bin fin portion.
In this embodiment, the cross-sectional shape of the heat transfer tube 2' is triangular, and the upper and lower heat transfer surfaces 2a' and 2b' are configured to be inclined toward the upstream side of the air flow A. Straight bottle fins 6' are fixed perpendicularly to these heat transfer surfaces 2a' and 2b', and in this case as well, between the bottle fin groups 60' and 61' of the upper and lower heat transfer tubes 2'. A passage B for the airflow A is formed in the airflow A, and the height of the tip of the bottle fin 6' with respect to the airflow A is gradually lowered toward the airflow receiving side.

従って、この実施例でも上記実施例と同様にビンフィン
6′により吸熱作用され、熱交換能力を向上することが
できる。更に、この実施例では、伝熱チューブ2′自体
の形状が通気抵抗の小さいものになって、効果が大きい
。また、ビンフィン6′は折曲げる必要がないので、製
造が容易で、低コストになる。
Therefore, in this embodiment as well, the bottle fins 6' act to absorb heat as in the above embodiment, and the heat exchange ability can be improved. Furthermore, in this embodiment, the shape of the heat transfer tube 2' itself has a small ventilation resistance, which is highly effective. Further, since the bottle fin 6' does not need to be bent, manufacturing is easy and cost is reduced.

尚、この発明は、上記実施例に限定されるものではない
。例えば、ピンフィンの断面形状は角柱以外のものでも
良い。ピンフィンの折曲部は気流Aの流れに対し傾斜し
て設けても良い。第1図の例において、後流側のピンフ
ィンの全ての先端を気流の受け入れ端まで延ばすことも
できる。この場合、通路Bは形成されないが、後流側ほ
ど長い折曲部で新しい気流と熱交換でき、熱交換能ノj
の向上を図ることかできる。この発明は、ラジエタ、ヒ
ータコア等にも適用することができる。
Note that this invention is not limited to the above embodiments. For example, the pin fin may have a cross-sectional shape other than a prism. The bent portion of the pin fin may be provided at an angle with respect to the flow of the airflow A. In the example of FIG. 1, all tips of the pin fins on the wake side could extend to the airflow receiving end. In this case, although passage B is not formed, heat can be exchanged with the new airflow at the longer bent portion toward the downstream side, and the heat exchange capacity no.
It is possible to improve this. This invention can also be applied to radiators, heater cores, etc.

[発明の効果コ 以上より明らかなように、この発明によれば、ピンフィ
ン熱交換器においてピンフィンの先端の高さが、気流の
受け入れ側ほど順次低くなるように形成されるので、熱
交換の温度差を広げることができ、熱交換能力を大幅に
向上することが可能になる。ピンフィンや伝熱部の形状
を変更するだけであるから、構造もコンパクトになる。
[Effects of the Invention] As is clear from the above, according to the present invention, in a pin fin heat exchanger, the height of the tips of the pin fins is formed so as to be gradually lower toward the receiving side of the airflow, so that the heat exchange temperature can be lowered. This makes it possible to widen the difference and significantly improve heat exchange capacity. The structure can also be made more compact since only the shapes of the pin fins and heat transfer parts need to be changed.

従って、同一サイズの熱交換器では、送風ファンを小型
にできて、熱交換器システムを総合的に軽量、小型化し
、低コスト化できる。
Therefore, for heat exchangers of the same size, the blower fan can be made smaller, and the overall heat exchanger system can be made lighter, smaller, and lower in cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)はこの発明の第コの実施例に係る断面図、
(b)は同要部の斜視図、第2図はピンフィンの形状の
断面図、第3図は11本のピンフィン通気抵抗の図、第
4図はピンフィンの周囲の空気温度分布の図、第5図(
a)はこの発明の第2の実施例に係る断面図、(b)は
同要部の斜視図、第6図(a)は従来のピンフィン熱交
換器の斜視図、(b)は同断面図である。 1・・・ビンフィン熱交換器 2・・・伝熱チューブ(伝熱部) 2a、2b、2a’ 、2b’ −=−伝熱面6・・・
ピンフィン 代理人 弁理士  三 好 秀 和 1・・ピンフィン熱交換器 2・・伝熱チューブ(伝熱部) 2m、2b、2a’ 、  2b’−伝熱面6 ピンフ
ィン 第 1図(a) A/ 第1図(b) D 第2図 [m/s]
FIG. 1(a) is a sectional view according to a fourth embodiment of the present invention;
(b) is a perspective view of the main part, Figure 2 is a cross-sectional view of the shape of the pin fin, Figure 3 is a diagram of the ventilation resistance of 11 pin fins, Figure 4 is a diagram of the air temperature distribution around the pin fins, Figure 4 is a diagram of the air temperature distribution around the pin fins, Figure 5 (
6(a) is a cross-sectional view of the second embodiment of the present invention, (b) is a perspective view of the same essential parts, FIG. 6(a) is a perspective view of a conventional pin fin heat exchanger, and (b) is the same cross-sectional view. It is a diagram. 1... Bin fin heat exchanger 2... Heat transfer tube (heat transfer part) 2a, 2b, 2a', 2b' -=-Heat transfer surface 6...
Pin fin agent Patent attorney Hidekazu Miyoshi 1.Pin fin heat exchanger 2.Heat transfer tube (heat transfer part) 2m, 2b, 2a', 2b' - heat transfer surface 6 Pin fin Figure 1 (a) A/ Figure 1 (b) D Figure 2 [m/s]

Claims (1)

【特許請求の範囲】[Claims]  並設された複数の伝達部と、この伝達部の相互間で少
なくとも一方の伝熱部の伝熱面に設けられ他方の伝熱部
側へ延びた多数のピンフィンとを備え、前記ピンフィン
の先端の気流に対する高さが、気流の受け入れ側ほど順
次低くなるように形成したことを特徴とするピンフィン
熱交換器。
A plurality of transfer parts arranged in parallel, and a large number of pin fins provided on a heat transfer surface of at least one heat transfer part between the transfer parts and extending toward the other heat transfer part, and a tip of the pin fin. A pin fin heat exchanger characterized in that the height of the pin fin heat exchanger is formed such that the height of the pin fin heat exchanger relative to the airflow becomes lower toward the receiving side of the airflow.
JP2162586A 1990-06-22 1990-06-22 Pin fin heat exchanger Pending JPH0455691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2162586A JPH0455691A (en) 1990-06-22 1990-06-22 Pin fin heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2162586A JPH0455691A (en) 1990-06-22 1990-06-22 Pin fin heat exchanger

Publications (1)

Publication Number Publication Date
JPH0455691A true JPH0455691A (en) 1992-02-24

Family

ID=15757411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2162586A Pending JPH0455691A (en) 1990-06-22 1990-06-22 Pin fin heat exchanger

Country Status (1)

Country Link
JP (1) JPH0455691A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327533A (en) * 1993-05-20 1994-11-29 Okamura Corp Chair
CN104728985A (en) * 2015-01-21 2015-06-24 李仁侠 Ventilation device
WO2018185840A1 (en) * 2017-04-04 2018-10-11 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327533A (en) * 1993-05-20 1994-11-29 Okamura Corp Chair
CN104728985A (en) * 2015-01-21 2015-06-24 李仁侠 Ventilation device
WO2018185840A1 (en) * 2017-04-04 2018-10-11 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Similar Documents

Publication Publication Date Title
CN1295476C (en) Condenser for air cooled chillers
CA1269975A (en) Heat exchanger
JPH0250399B2 (en)
US4791984A (en) Heat transfer fin
JP3284904B2 (en) Heat exchanger
US3835923A (en) Heat exchanger for fluid media having unequal surface conductances
US20060266503A1 (en) Heat transfer fin, heat exchanger, evaporator and condenser for use in car air-conditioner
JPH0455691A (en) Pin fin heat exchanger
JPH0914885A (en) Heat exchanger
JP3811909B2 (en) Heat transfer tube and heat exchanger using the same
JP3957021B2 (en) Heat exchanger
US5727625A (en) Heat exchanger having fins with air conducting slits formed therein
CN209689460U (en) Heat exchanger tube is around band, heat exchanger and air conditioner
JPH0552563U (en) Tube for heat exchanger
JPH0842959A (en) Refrigerator and evaporator used therefor
JPS62112997A (en) Heat exchanger
JPS633185A (en) Finned heat exchanger
KR20030020563A (en) Louver fin for heat exchanger
JPH02166394A (en) Heat exchanger with fin
CN218915529U (en) Heat radiation structure and household appliance
JPH0160759B2 (en)
Min-Sheng et al. 3-D simulation of thermal-hydraulic characteristics of louvered fin-and-tube heat exchangers with oval tubes
JPH0227597B2 (en) FUINTSUKINETSUKOKANKI
JP2516966B2 (en) Heat exchanger with fins
JPS6238150Y2 (en)