JPH045553Y2 - - Google Patents

Info

Publication number
JPH045553Y2
JPH045553Y2 JP1983042027U JP4202783U JPH045553Y2 JP H045553 Y2 JPH045553 Y2 JP H045553Y2 JP 1983042027 U JP1983042027 U JP 1983042027U JP 4202783 U JP4202783 U JP 4202783U JP H045553 Y2 JPH045553 Y2 JP H045553Y2
Authority
JP
Japan
Prior art keywords
block
brittle fracture
plastic deformation
hood
ship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983042027U
Other languages
Japanese (ja)
Other versions
JPS59147711U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983042027U priority Critical patent/JPS59147711U/en
Publication of JPS59147711U publication Critical patent/JPS59147711U/en
Application granted granted Critical
Publication of JPH045553Y2 publication Critical patent/JPH045553Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、橋脚等の水中構造物に船舶が衝突し
た際、その衝突エネルギーを吸収して衝突を緩和
する緩衝工に関する。さらに詳しくは、小型船か
ら大型船に至る各種の船舶がそれぞれ異なる速度
で水中構造物に衝突した場合において、荷重−変
形特性の異なる緩衝体の合理的組み合わせによつ
て船舶の損傷を軽減し、かつ水中構造物を保護す
るようにした緩衝工に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a hood that absorbs the impact energy and alleviates the collision when a ship collides with an underwater structure such as a bridge pier. More specifically, when various types of ships, ranging from small ships to large ships, collide with underwater structures at different speeds, the damage to the ships is reduced by a rational combination of shock absorbers with different load-deformation characteristics. The present invention also relates to a hood for protecting underwater structures.

〔従来の技術〕[Conventional technology]

従来、この種の緩衝工としては、第5図に示す
ように、脆性破壊材cを主体として形成され前面
に低反力弾性体fを設けることができる脆性破壊
ブロツクeと、塑性変形体gを主体として形成さ
れ前面に低反力弾性体fを設けることができる塑
性変形ブロツクhとからなる浮遊式緩衝工があ
る。これらのブロツクの連結方法としては、脆性
破壊ブロツクeの表面層をなす補強材dを塑性変
形ブロツクhの表面層と一体化する方法、或いは
脆性破壊ブロツクeと塑性変形ブロツクhをボル
トナツトによつて接合する方法が採られていた。
Conventionally, as shown in Fig. 5, this type of hood has been divided into a brittle fracture block e formed mainly of a brittle fracture material c and having a low reaction force elastic body f on the front surface, and a plastically deformable body g. There is a floating type hood which consists of a plastic deformation block h which is formed mainly from a plastically deformed block h which can be provided with a low reaction force elastic body f on the front surface. These blocks can be connected by integrating the reinforcing material d forming the surface layer of the brittle fracture block e with the surface layer of the plastic deformation block h, or by connecting the brittle fracture block e and the plastic deformation block h with bolts and nuts. A method of joining was used.

ところが、脆性破壊ブロツクeの主材である脆
性破壊材cは、圧縮強度に比して引張り強度、曲
げ強度等が低いので、強度部材としての機能がな
い。そこで、脆性破壊ブロツクeの表面層をなす
補強材dに船舶非衝突時の外力に耐える強度を持
たせていた。
However, the brittle fracture material c, which is the main material of the brittle fracture block e, has lower tensile strength, bending strength, etc. than compressive strength, and therefore does not function as a strength member. Therefore, the reinforcing material d forming the surface layer of the brittle fracture block e is made to have strength to withstand external forces when a ship does not collide.

一方、緩衝工の主機能である船舶衝突時の機能
としては、衝突船を破損することなく緩衝工が圧
壊して衝突エネルギーを吸収しなければならな
い。従つて、緩衝工の衝突面の圧壊強度を少なく
とも船舶の船側強度以下に抑えると、船舶非衝突
時の外力に対する安全率を海洋構造物一般に要求
されている値を確保できなくなる。これに対し、
船舶非衝突時の外力に対する安全率を確保する
と、表面層をなす補強材dを強固にしなければな
らなくなり、緩衝工の衝突面の圧壊強度が船舶の
船体強度以上になり緩衝工として機能しなくなる
という問題があつた。
On the other hand, the main function of the entrance hood in the event of a ship collision is to collapse the entrance hood and absorb the energy of the collision without damaging the colliding ship. Therefore, if the crushing strength of the impact surface of the entrance hood is suppressed to at least below the strength of the ship's side, it will not be possible to ensure the safety factor against external forces during non-ship collisions, which is generally required for offshore structures. On the other hand,
To ensure a safety factor against external forces when a ship does not collide, the reinforcing material d that forms the surface layer must be made stronger, and the crushing strength of the collision surface of the hood exceeds the hull strength of the ship, making it impossible to function as a hood. There was a problem.

また、船舶衝突により脆性破壊ブロツクeが破
損した場合、脆性破壊ブロツクeと塑性変形ブロ
ツクhとが補強材dによつて覆われて一体化され
た構造では、脆性破壊ブロツクeの交換のため
に、脆性破壊ブロツクeの表面を覆つている補強
材dを切除したあと、新たに取りつける必要があ
り、脆性破壊ブロツクeの交換性が悪い。さら
に、脆性破壊ブロツクeをボルトナツトによつて
接合した構造では、脆性破壊ブロツクeに作用す
る浮力が大きく、脆性破壊ブロツクeの底面のみ
で浮力を支持するためには、ボルトナツトの接合
部分をかなり強固に補強する必要があり、衝突時
に船体を損傷する危険性が大きいと共に、ボルト
接合部が水面下にあるため、交換性が悪い。
In addition, if the brittle fracture block e is damaged due to a ship collision, in a structure in which the brittle fracture block e and the plastic deformation block h are covered and integrated with the reinforcing material d, it is necessary to replace the brittle fracture block e. After removing the reinforcing material d covering the surface of the brittle fracture block e, it is necessary to install a new one, making it difficult to replace the brittle fracture block e. Furthermore, in a structure in which the brittle fracture blocks e are joined by bolts and nuts, the buoyant force acting on the brittle fracture blocks e is large, and in order to support the buoyant force only on the bottom surface of the brittle fracture blocks e, the joints of the bolts and nuts must be made quite strong. There is a high risk of damaging the hull in the event of a collision, and the bolted joints are underwater, making them difficult to replace.

そこで、第6図に示すように、脆性破壊材cを
主体として形成され、低反力弾性体fを設ける設
けることができる脆性破壊ブロツクeと、塑性変
形体gを主体として形成された塑性変形ブロツク
hとで構成された衝撃吸収ブロツクを水中構造物
aと衝撃吸収ブロツクとの間に設けた取付用剛体
iに脆性破壊ブロツクeと塑性変形ブロツクhを
着脱可能に取り付けた浮遊式緩衝工が考案され
た。
Therefore, as shown in FIG. 6, a brittle fracture block e is formed mainly of a brittle fracture material c and can be provided with a low reaction force elastic body f, and a plastic deformation block e is formed mainly of a plastically deformable body g. A floating hood is constructed by removably attaching a brittle fracture block e and a plastic deformation block h to a mounting rigid body i in which a shock absorption block consisting of a block h is provided between an underwater structure a and the shock absorption block. devised.

この緩衝工では、取付用剛体iの剛性により非
衝突時外力に対する強度、とりわけ緩衝工の長さ
がある程度以上の大きさになると顕著にあらわれ
るサツギング、ホツギングに対する強度を持たせ
ることができるので、脆性破壊ブロツクeと塑性
変形ブロツクhの補強層を弱くすることがある程
度可能になり、船舶衝突時の緩衝機能を改善でき
ると共に、脆性破壊ブロツクeが破損した場合の
交換が取付用剛体iに吊具を設けることにより水
面上で容易に行うことができる。
In this hood, the rigidity of the mounting rigid body i can provide strength against external forces in non-collision situations, especially against sagging and hogging, which become noticeable when the length of the hood exceeds a certain length. It is now possible to weaken the reinforcing layers of the fracture block e and the plastic deformation block h to some extent, improving the buffering function in the event of a ship collision, and in the event that the brittle fracture block e is damaged, it can be replaced by adding a hanging tool to the mounting rigid body i. This can be easily carried out on the water surface by providing a

しかしながら、この緩衝工は、脆性破壊ブロツ
クe、塑性変形ブロツクhおよび取付用剛体iを
個々に製作したあと、連結して構成されたもので
あり、サツギング、ホツギングに対して取付用剛
体iを十分に機能させるためには、脆性破壊ブロ
ツクe、塑性変形ブロツクh及び取付用剛体iが
一体として外力に抵抗できるように取り付けるこ
とが必要である。そのためには、脆性破壊ブロツ
クe及び塑性変形ブロツクhの相互の取り付け、
並びにこれら2つのブロツクと取付用剛体iとの
間の取付部は強固な補強が必要であり、船舶衝突
時の緩衝性能が悪くなる。また、緩衝工には、前
面からの波力、潮流力等による偏心外力、浮力
(浮力変化によるサツギング、ホツギングを含
む)、揚圧力等の鉛直力が作用し、これらの外力
により脆性破壊ブロツクeと塑性変形ブロツク
h、並びにこれら2つのブロツクと取付用剛体i
の間の連結部に応力集中が生じ、取付部が破損し
易い。
However, this hood is constructed by individually fabricating the brittle fracture block e, plastic deformation block h, and rigid mounting body i, and then connecting them. In order to function properly, the brittle fracture block e, the plastic deformation block h, and the mounting rigid body i must be mounted so that they can resist external forces as one body. For this purpose, mutual attachment of the brittle fracture block e and the plastic deformation block h,
Furthermore, the mounting portion between these two blocks and the mounting rigid body i requires strong reinforcement, which deteriorates the buffering performance in the event of a ship collision. In addition, vertical forces such as eccentric external forces such as wave force and tidal current force from the front, buoyancy (including sagging and hogging caused by changes in buoyancy), and uplift force act on the entrance hood, and these external forces cause brittle fracture blocks. and a plastically deformed block h, as well as these two blocks and a rigid body i for attachment.
Stress concentration occurs at the connection between the parts, and the mounting part is likely to be damaged.

また、大型船舶が緩衝工に衝突した場合、脆性
破壊ブロツクeと塑性変形ブロツクhが圧壊する
と共に、上下2つのブロツクe,hと取付用剛体
iとが固定的に連結されているため、取付用剛体
iを変形させる。したがつて、緩衝工を交換する
ときは、全体を取り替える必要がある。さらに、
取付用剛体iが図示のような骨組み構造では、船
体、とりわけ船側部を破損することがある。
In addition, when a large ship collides with the entrance hood, the brittle fracture block e and the plastic deformation block h are crushed, and the upper and lower blocks e and h are fixedly connected to the mounting rigid body i, so the mounting Deform rigid body i. Therefore, when replacing the entrance hood, it is necessary to replace the entire structure. moreover,
If the mounting rigid body i has a frame structure as shown in the figure, the ship body, especially the ship side part, may be damaged.

さらに、取付用剛体iに非衝突時の外力に耐え
る強度を持たせるためには、かなりの構造寸法が
必要になり、緩衝工の水中構造物からの張出幅
は、衝突エネルギー吸収に必要な上下2つのブロ
ツクの張出幅と取付用剛体iの張出幅との和にな
るので、特に、航路幅が狭く船舶交通量の多い海
域に設置された場合、船舶の航行に支障をきたす
等の欠点があつた。
Furthermore, in order to provide the mounting rigid body i with the strength to withstand external forces in the event of a non-collision, considerable structural dimensions are required, and the width of the hood overhanging the underwater structure is determined by the width necessary to absorb collision energy. Since it is the sum of the overhanging width of the upper and lower two blocks and the overhanging width of the mounting rigid body i, it may hinder the navigation of ships, especially if it is installed in a sea area where the channel width is narrow and there is a lot of ship traffic. There were some shortcomings.

〔考案が解決しようとする課題〕[The problem that the idea aims to solve]

本考案は、かかる従来の欠点を解消するために
なされたものであり、非衝突時の外力に耐えると
共に、脆性破壊ブロツクと塑性変形ブロツクから
なる複合型ブロツクの緩衝性能を損なうことな
く、緩衝工の張出幅を最小限に抑えた緩衝工を提
供することを目的とするものである。
The present invention was devised to eliminate such conventional drawbacks, and is capable of withstanding external forces in non-collision situations, without impairing the shock absorbing performance of a composite block consisting of a brittle fracture block and a plastically deformed block. The purpose of this invention is to provide a hood whose overhanging width is minimized.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本考案の緩衝工は、脆性破壊材を主
体として形成され前面に低反力弾性体を備えた脆
性破壊ブロツクと、塑性変形体を主体として形成
した塑性変形ブロツクとからなる緩衝工におい
て、前記塑性変形ブロツクを横断面L又はコ字状
に形成し、該塑性変形ブロツクの前面に設けられ
たL又はコ字状の凹部に前記脆性破壊ブロツクを
着脱可能に取り付けたことを特徴とするものであ
る。
That is, the hood of the present invention consists of a brittle fracture block formed mainly of a brittle fracture material and equipped with a low reaction force elastic body on the front surface, and a plastically deformed block mainly formed of a plastically deformable body. The plastically deformed block is formed to have an L or U-shaped cross section, and the brittle fracture block is removably attached to an L- or U-shaped recess provided on the front surface of the plastically deformed block. It is.

このように塑性変形ブロツクを横断面L又はコ
字状に形成し、該塑性変形ブロツクの前面に設け
られたL又はコ字状の凹部に脆性破壊ブロツクを
着脱可能に取り付けたことにより、船舶非衝突時
の外力に対し脆性破壊ブロツクに比して強度が大
きい塑性変形ブロツクの剛性によつて耐えること
ができると共に、脆性破壊ブロツクの圧縮強度が
一様でエネルギー吸収性能の優れた緩衝性能を損
なうことがない。さらに、塑性変形ブロツクが非
衝突時の外力に対する強度部材となるので、別
途、強度部材を設ける必要がなく、緩衝工の張出
幅を必要最小限に抑えることができ、船舶航行に
支障をきたすことがない。さらに、製造コストを
低減でき、経済的である。
In this way, the plastically deformed block is formed to have an L or U-shaped cross section, and the brittle fracture block is removably attached to the L- or U-shaped recess provided on the front surface of the plastically deformed block. The rigidity of the plastically deformed block, which has greater strength than the brittle fracture block, can withstand external forces during a collision, and the compressive strength of the brittle fracture block is uniform, which impairs the shock absorbing performance, which has excellent energy absorption performance. Never. Furthermore, since the plastic deformation block serves as a strength member against external forces in the event of a non-collision, there is no need to provide a separate strength member, and the overhanging width of the entrance hood can be kept to the minimum necessary, preventing obstacles to ship navigation. Never. Furthermore, manufacturing costs can be reduced and it is economical.

〔実施例〕〔Example〕

以下、添付図面に即して本考案をさらに詳細に
説明する。
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

第2図は、本考案に係る緩衝工を水中構造物に
取り付けた状態を示す図であつて、前面に低反力
弾性体10を設けた脆性破壊ブロツク20と塑性
変形ブロツク30からなる緩衝工Eを水中構造物
である橋脚Gの周囲を囲むように浮遊させて設置
したものである。
FIG. 2 is a diagram showing the state in which the hood according to the present invention is attached to an underwater structure, in which the hood is composed of a brittle fracture block 20 with a low reaction force elastic body 10 on the front surface and a plastic deformation block 30. E is installed in a floating manner surrounding the pier G, which is an underwater structure.

脆性破壊ブロツク20は、第1図に示すよう
に、鋼材、FRP、コンクリート、ゴム等で形成
された箱状の外殻24内に脆性破壊材25を封入
したものである。脆性破壊材25としては、硬質
ウレタンフオーム、フエノールフオーム等の合成
樹脂発泡体、或いは発泡コンクリート、パーライ
ト、泡ガラス等の無機質発泡体等を代表例として
挙げることができる。
As shown in FIG. 1, the brittle fracture block 20 has a brittle fracture material 25 enclosed within a box-shaped outer shell 24 made of steel, FRP, concrete, rubber, or the like. Typical examples of the brittle fracture material 25 include synthetic resin foams such as hard urethane foam and phenol foam, and inorganic foams such as foamed concrete, perlite, and foamed glass.

一方、塑性変形ブロツク30は、気室32を形
成するように主として塑性変形体30aにより形
成され、吃水調整のために前記気室32内には、
コンクリート等のバラストが適宜注入できる構造
になつている。塑性変形体32としては、薄肉鋼
板、各種の型鋼、鋼管等の金属材料、FRPや
PVC等の合成樹脂材料等を代表例として挙げる
ことができる。
On the other hand, the plastically deformed block 30 is mainly formed of a plastically deformed body 30a so as to form an air chamber 32, and in order to adjust the hydration, the air chamber 32 includes:
The structure is such that ballast such as concrete can be injected as needed. As the plastically deformed body 32, metal materials such as thin steel plates, various steel shapes, steel pipes, FRP, etc.
Representative examples include synthetic resin materials such as PVC.

前述した脆性破壊ブロツク20は、船舶の衝突
エネルギーを主として脆性破壊材25の脆性破壊
によつて吸収し、塑性変形ブロツク30は塑性変
形体30aの塑性変形によつて吸収するようにな
つている。
The aforementioned brittle fracture block 20 absorbs the collision energy of the ship mainly through brittle fracture of the brittle fracture material 25, and the plastic deformation block 30 absorbs it through plastic deformation of the plastically deformed body 30a.

低反力弾性体10は、小型船舶の緩衝を対象と
するものであり、脆性破壊ブロツク20の前面2
1の水面Wの付近にボルトナツト等の取付手段に
よつて装着されている。低反力弾性体10は、ゴ
ム防舷材、ポリエチレンフオーム材等ゴム状弾性
材料を主体として形成され、脆性破壊ブロツク2
0よりも単位受衝面積当りの圧縮反力が小さくな
つている。
The low reaction force elastic body 10 is intended for cushioning small ships, and is attached to the front surface 2 of the brittle fracture block 20.
It is mounted near the water surface W of No. 1 by means of mounting means such as bolts and nuts. The low reaction force elastic body 10 is mainly formed of a rubber-like elastic material such as a rubber fender or a polyethylene foam material, and the brittle fracture block 2
The compression reaction force per unit impact receiving area is smaller than 0.

塑性変形ブロツク30は、大型船舶(船側強度
20〜30t/m2)を対象とするものであつて横断面
がL字状になつている。さらに、塑性変形ブロツ
ク30の上部前端に設けられたL字形の凹部33
には、衝突頻度が最も多い中型船舶の緩衝を対象
にした脆性破壊ブロツク20がボルトナツト等の
取付手段によつて着脱可能に取り付けられてい
る。その際、脆性破壊ブロツク20の背面22及
び底面23は、凹部33のL字形の壁面に密着さ
れている。また、第2図に示すように、一個の塑
性変形ブロツク30に複数個(図示の場合、2〜
3個)の脆性破壊ブロツク20が取り付けられて
いる。
The plastic deformation block 30 is a large ship (ship side strength
20 to 30t/m 2 ) and has an L-shaped cross section. Furthermore, an L-shaped recess 33 provided at the upper front end of the plastic deformation block 30
A brittle fracture block 20, which is intended for use as a shock absorber for medium-sized ships that have the highest frequency of collisions, is removably attached using attachment means such as bolts and nuts. At this time, the back surface 22 and bottom surface 23 of the brittle fracture block 20 are in close contact with the L-shaped wall surface of the recess 33. Moreover, as shown in FIG.
3) brittle fracture blocks 20 are attached.

緩衝工Eの強度は、船側強度以下になるように
設計されるため、中型船を対象とした脆性破壊ブ
ロツク20の強度よりも大型船を対象にした塑性
変形ブロツク30の方が大きくなる。さらに、塑
性変形ブロツク30は、L字状に一体的に形成さ
れ、しかも、多くの気室32を有する多室構造で
あるから剛性が大きく非衝突時の外力に十分耐え
ることができる。その結果、脆性破壊ブロツク2
0の外殻24の剛性を小さくできるので、脆性破
壊ブロツク20の緩衝性能を損なうことがない。
Since the strength of the entrance hood E is designed to be less than the ship side strength, the strength of the plastic deformation block 30 intended for large ships is greater than the strength of the brittle fracture block 20 intended for medium-sized ships. Further, since the plastic deformation block 30 is integrally formed in an L-shape and has a multi-chamber structure having many air chambers 32, it has high rigidity and can sufficiently withstand external forces during non-collision. As a result, brittle fracture block 2
Since the rigidity of the zero outer shell 24 can be made small, the buffering performance of the brittle fracture block 20 is not impaired.

また、脆性破壊ブロツク20の長さを塑性変形
ブロツク30の長さより短くして複数個配置する
ことにより、脆性破壊ブロツク20に作用するサ
ツギングやホツギングに起因する応力を軽減でき
るので、外殻24の剛性を小さくできると共に、
塑性変形ブロツク30の取付部の補強も少なくな
るため、緩衝性能が向上する。
Furthermore, by arranging a plurality of brittle fracture blocks 20 with a length shorter than that of the plastic deformation blocks 30, stress caused by sagging or hogging acting on the brittle fracture blocks 20 can be reduced, so that the outer shell 24 In addition to reducing rigidity,
Since the reinforcement of the mounting portion of the plastic deformation block 30 is also reduced, the cushioning performance is improved.

さらに、塑性変形ブロツク30は、緩衝機能と
船舶非衝突時の外力に対する強度機能を兼備して
いるため、緩衝工Eの張出幅lを必要最小限に抑
えることができる。その結果、船舶航行に支障を
きたすことがないと共に、製造コストを低減でき
るので、経済的である。ここで、31は、塑性変
形ブロツク30の前面、Eaは背面を示している。
Further, since the plastic deformation block 30 has both a buffering function and a strength function against external forces when a ship does not collide, the overhang width l of the entrance hood E can be suppressed to the necessary minimum. As a result, it is economical because it does not interfere with ship navigation and the manufacturing cost can be reduced. Here, 31 indicates the front surface of the plastic deformation block 30, and Ea indicates the back surface.

脆性破壊ブロツク20と塑性変形ブロツク30
との取付方法には、第3図a,第3図b及び第3
図cに示すようなものがある。
Brittle fracture block 20 and plastic deformation block 30
For installation methods, see Figure 3a, Figure 3b, and Figure 3.
There is something like the one shown in Figure c.

即ち、第3図aは、脆性破壊ブロツク20の前
面下部に鍔部23aを設けると共に、上面後部に
鍔部22aを設け、ボルト等の固定手段により着
脱可能に取り付けたものである。
That is, in FIG. 3a, a brittle fracture block 20 is provided with a flange 23a at the lower front and a flange 22a at the rear of the upper surface, which are detachably attached using fixing means such as bolts.

また、第3図bは、第3図aと同様の固定手段
およびワイヤロープ等の引張部材40を用いて脆
性破壊ブロツク20を塑性変形ブロツク30に着
脱可能に取り付けたものである。この方法は、脆
性破壊ブロツク20に作用する浮力を引張部材4
0によつて支持し、脆性破壊ブロツク20の前方
への移動をボルト等の固定手段によつて抑えたも
のである。引張部材40は船舶の衝突方向と直角
方向に配置されているので、船舶の衝突時の脆性
破壊ブロツク20の緩衝性能を損なうことがな
い。また、浮力は引張部材40で支持するため、
ボルト等の固定手段に作用する力は第3図aに比
して小さくなるので、ボルト等の固定手段を採用
することによる緩衝性能の低下は第3図aに比し
て小さくなる。
FIG. 3b shows a brittle fracture block 20 removably attached to a plastic deformation block 30 using the same fixing means as in FIG. 3a and a tension member 40 such as a wire rope. This method reduces the buoyant force acting on the brittle fracture block 20 to the tensile member 4.
0, and forward movement of the brittle fracture block 20 is suppressed by fixing means such as bolts. Since the tension member 40 is disposed in a direction perpendicular to the direction of the ship's collision, it does not impair the buffering performance of the brittle fracture block 20 in the event of a ship's collision. In addition, since the buoyancy is supported by the tension member 40,
Since the force acting on the fixing means such as bolts is smaller than that shown in FIG. 3a, the reduction in shock absorbing performance due to the use of the bolt or other fixing means is smaller than that shown in FIG. 3a.

さらに、第3図cは、塑性変形ブロツク30の
上部に起伏可能に取り付けられ脆性破壊ブロツク
20の前方への移動を抑えるL型の保持アーム5
0、塑性変形ブロツク30の前面31に取り付け
た受金具51並びに受金具51とL型保持アーム
50との間に設けた保持ワイヤ52とによつて脆
性破壊ブロツク20を塑性変形ブロツク30に着
脱可能に取り付けたものである。この取付方法
は、脆性破壊ブロツク20の上面及び前面に部材
を配すればよく、船舶衝突時における脆性破壊ブ
ロツク20の緩衝性能を損なうことがのみなら
ず、第3図a及び第3図bに比して脆性破壊ブロ
ツク20の交換性が向上する。
Furthermore, FIG. 3c shows an L-shaped holding arm 5 which is attached to the upper part of the plastic deformation block 30 so as to be able to rise and fall, and which suppresses the forward movement of the brittle fracture block 20.
0. The brittle fracture block 20 can be attached to and detached from the plastic deformation block 30 by the receiving metal fitting 51 attached to the front surface 31 of the plastic deforming block 30 and the holding wire 52 provided between the receiving metal fitting 51 and the L-shaped holding arm 50. It was attached to. This mounting method requires that members be placed on the top and front surfaces of the brittle fracture block 20, but it not only impairs the buffering performance of the brittle fracture block 20 in the event of a ship collision, but also In comparison, the replaceability of the brittle fracture block 20 is improved.

第4図は、本考案の第2の実施例を示す緩衝工
の断面図であり、塑性変形ブロツク30は、横断
面がコ字状に形成されている。さらに、塑性変形
ブロツク30の前面に設けられたコ字状の凹部3
5に脆性破壊ブロツク20が着脱可能に組み込ま
れ、その上面26、背面22及び底面23は、凹
部33のコ字状の壁面に密着されている。10
は、脆性破壊ブロツク20の前面に取付けられた
低反力弾性体である。
FIG. 4 is a sectional view of a hood showing a second embodiment of the present invention, and the plastic deformation block 30 has a U-shaped cross section. Further, a U-shaped recess 3 provided on the front surface of the plastic deformation block 30
A brittle fracture block 20 is removably incorporated into the recess 33, and its top surface 26, back surface 22, and bottom surface 23 are in close contact with the U-shaped wall surface of the recess 33. 10
is a low reaction force elastic body attached to the front surface of the brittle fracture block 20.

この例の場合は、塑性変形ブロツク30が船舶
非衝突時の外力に耐えるに十分な剛性を有し、脆
性破壊ブロツク20に作用する浮力は、凹部35
真上の塑性変形ブロツク部分で支持されるため、
脆性破壊ブロツク20の剛性を小さくすることが
でき、脆性破壊ブロツクの緩衝性能を損なうこと
がない。
In this example, the plastic deformation block 30 has sufficient rigidity to withstand the external force when the ship does not collide, and the buoyant force acting on the brittle fracture block 20 is absorbed by the recess 35.
Because it is supported by the plastic deformation block directly above,
The rigidity of the brittle fracture block 20 can be reduced without impairing the buffering performance of the brittle fracture block.

〔考案の効果〕[Effect of idea]

上記のように、本考案は、塑性変形ブロツクを
横断面L又はコ字状に形成し、該塑性変形ブロツ
クの前面に設けられたL又はコ字状の凹部に脆性
破壊ブロツクを着脱可能に取り付けたので、船舶
非衝突時の外力に対し脆性破壊ブロツクに比して
強度が大きい塑性変形ブロツクの剛性によつて耐
えることができると共に、脆性破壊ブロツクの圧
縮強度が一様でエネルギー吸収性能の優れた緩衝
性能を損なうことがない。さらに、塑性変形ブロ
ツクが非衝突時の外力に対する強度部材となるの
で、別途、強度部材を設ける必要がなく、緩衝工
の張出幅を必要最小限に抑えることができ、船舶
の航行に支障をきたすことがない。さらに、製造
コストも低減でき、経済的である。
As described above, the present invention forms a plastic deformation block with an L or U-shaped cross section, and detachably attaches the brittle fracture block to the L- or U-shaped recess provided on the front surface of the plastic deformation block. Therefore, the rigidity of the plastic deformation block, which has greater strength than the brittle fracture block, can withstand external forces when a ship does not collide, and the compressive strength of the brittle fracture block is uniform, resulting in excellent energy absorption performance. buffering performance is not impaired. Furthermore, since the plastic deformation block serves as a strength member against external forces in the event of a non-collision, there is no need to provide a separate strength member, and the overhanging width of the entrance hood can be kept to the minimum necessary, ensuring no hindrance to ship navigation. There's nothing wrong with that. Furthermore, manufacturing costs can be reduced and it is economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案にかかる緩衝工の第1の実施例
を示す横断面図、第2図は本考案にかかる緩衝工
を橋脚の周囲に配設した状態を示す斜視図、第3
図a〜第3図cは脆性破壊ブロツクを塑性変形ブ
ロツクに取付ける方法を示す説明図、第4図は本
考案にかかる緩衝工の第2の実施例を示す横断面
図、第5図及び第6図は従来の緩衝工の横断面図
である。 10……低反力弾性体、20……脆性破壊ブロ
ツク、25……脆性破壊材、30……塑性変形ブ
ロツク、30a……塑性変形体、33,35……
凹部。
FIG. 1 is a cross-sectional view showing a first embodiment of the hood hood according to the present invention, FIG. 2 is a perspective view showing the hood hood according to the present invention arranged around a pier, and FIG.
Figures a to 3c are explanatory diagrams showing a method of attaching a brittle fracture block to a plastic deformation block, Figure 4 is a cross-sectional view showing a second embodiment of the hood of the present invention, Figures 5 and 3c are Figure 6 is a cross-sectional view of a conventional entrance hood. 10...Low reaction force elastic body, 20...Brittle fracture block, 25...Brittle fracture material, 30...Plastic deformation block, 30a...Plastic deformation body, 33, 35...
recess.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 脆性破壊材を主体として形成され前面に低反力
弾性体を備えた脆性破壊ブロツクと、塑性変形体
を主体として形成した塑性変形ブロツクとからな
る緩衝工において、前記塑性変形ブロツクを横断
面L又はコ字状に形成し、該記塑性変形ブロツク
の前面に設けられたL又はコ字状の凹部に前記脆
性破壊ブロツクを着脱可能に取り付けたことを特
徴とする緩衝工。
In the hood, which consists of a brittle fracture block formed mainly of a brittle fracture material and equipped with a low reaction force elastic body on the front surface, and a plastic deformation block formed mainly of a plastic deformation body, the plastic deformation block has a cross section L or 1. A buffer structure characterized in that the brittle fracture block is removably attached to an L- or U-shaped recess formed on the front surface of the plastically deformable block.
JP1983042027U 1983-03-25 1983-03-25 entrance hood Granted JPS59147711U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983042027U JPS59147711U (en) 1983-03-25 1983-03-25 entrance hood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983042027U JPS59147711U (en) 1983-03-25 1983-03-25 entrance hood

Publications (2)

Publication Number Publication Date
JPS59147711U JPS59147711U (en) 1984-10-02
JPH045553Y2 true JPH045553Y2 (en) 1992-02-17

Family

ID=30172585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983042027U Granted JPS59147711U (en) 1983-03-25 1983-03-25 entrance hood

Country Status (1)

Country Link
JP (1) JPS59147711U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6668603B2 (en) * 2015-03-30 2020-03-18 株式会社Ihi Lifeboat
CN111335265A (en) * 2020-03-14 2020-06-26 佛山舒宜添科技有限公司 Anti-collision facility for bridge

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611810A (en) * 1979-07-10 1981-02-05 Fujikura Ltd Method of manufacturing hard copper coated wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611810A (en) * 1979-07-10 1981-02-05 Fujikura Ltd Method of manufacturing hard copper coated wire

Also Published As

Publication number Publication date
JPS59147711U (en) 1984-10-02

Similar Documents

Publication Publication Date Title
US3306053A (en) Marine facilities
JP2007162221A (en) Fender
JP2000052897A (en) Bumper structure
KR101005500B1 (en) A prefabricated and floating marine structure having a pontoon storage frame
JPH045553Y2 (en)
KR101183545B1 (en) Assemble type float device
JP2008013124A (en) Energy absorbing member for personal protection
JP6338040B2 (en) Lifeboat
CN211228374U (en) Anticollision piece and anticollision structure
JPH0118670Y2 (en)
CN212670484U (en) Floating type anti-collision device
JPS6024725Y2 (en) shock absorber
JP6478075B2 (en) Lifeboat
JPH0118672Y2 (en)
US7207283B2 (en) Marine craft
CN103350745B (en) Ship side composite sandwich plate structure and construction method
CN217536645U (en) Novel tower column casing with multilayer buffer structure
JPH0141776Y2 (en)
JPH0115712Y2 (en)
CN217969847U (en) Anti-collision platform for offshore floating platform
JPS59210112A (en) Fender
CN219470675U (en) Bridge protection device for municipal works
CN214573290U (en) Pier buffer stop
CN115450175B (en) Anti-collision fender and coal conveying stack bridge comprising same
KR100577285B1 (en) The preventive device for the slamming damage