JPH0455202B2 - - Google Patents

Info

Publication number
JPH0455202B2
JPH0455202B2 JP58210543A JP21054383A JPH0455202B2 JP H0455202 B2 JPH0455202 B2 JP H0455202B2 JP 58210543 A JP58210543 A JP 58210543A JP 21054383 A JP21054383 A JP 21054383A JP H0455202 B2 JPH0455202 B2 JP H0455202B2
Authority
JP
Japan
Prior art keywords
polymerization
vinyl chloride
chloride resin
crosslinked
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58210543A
Other languages
Japanese (ja)
Other versions
JPS60104105A (en
Inventor
Hajime Kitamura
Takeji Yanagisawa
Genji Nokuki
Nobuhiro Tsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP21054383A priority Critical patent/JPS60104105A/en
Publication of JPS60104105A publication Critical patent/JPS60104105A/en
Publication of JPH0455202B2 publication Critical patent/JPH0455202B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明は塩化ビニル系重合体の製造方法に関す
るものであり、特に塩化ビニル系重合体の成形加
工性を阻害せずに、圧縮永久歪、反発弾性、機械
的強度等の物性を改良することを目的とするもの
である。 塩化ビニル樹脂については、圧縮永久歪、反発
弾性、機極的強度等を改良する目的において、平
均重合度を上昇させるかあるいは架橋構造にする
ことが行われている。しかし平均重合度を上昇さ
せたりあるいは架橋構造にすると加工性が非常に
悪くなり、また架橋構造にすると圧縮永久歪は改
良されるが、機械的強度が悪くなるという欠点が
ある。平均重合度の高い(2000以上)ポリ塩化ビ
ニル樹脂と架橋したポリ塩化ビニル樹脂とをブレ
ンドすると圧縮永久歪はかなり改良されるが、反
面加工性および機械的特性が悪くなる。架橋した
ポリ塩化ビニル樹脂を乳化重合法により粒子の細
かいものとして製造し、これをポリ塩化ビニル樹
脂にブレンドすることにより加工性をそれほど阻
害せずに圧縮永久歪を改良することができるが、
この場合にも作業性に劣るほか成形品の機械的特
性が悪い欠点がある。 本発明者らはこの点にかんがみ鋭意研究を重ね
た結果、塩化ビニル系単量体を水性媒体中で懸濁
重合させるに当り、重合転化率3〜85%の時期に
架橋結合含有塩化ビニル系樹脂ラテツクスを添加
し重合反応を行わせることにより、成形加工性を
阻害せずに、圧縮永久歪、反発弾性、機械的強度
等の物性にすぐれた重合体が得られることを確認
し本発明を完成した。 以下本発明を詳細に説明する。 本発明の方法を実施するに当つて使用される架
橋結合含有塩化ビニル系樹脂ラテツクスは、塩化
ビニル単量体と1分子中に少なくとも2個のエチ
レン性二重結合を有する多官能性モノマー(架橋
剤)とを乳化重合法により共重合させることによ
り製造されるものである。この架橋剤としてはジ
アリルフタレート、ジアリルイソフタレート等の
フタル酸のジアリルエステル類、ジアリルマレエ
ート、ジアリルイタコネート等のエチレン性不飽
和二塩基酸のジアリルエステル、ポリエチレング
リコールジアクリレートあるいはジエチレングリ
コールジアクリレート等のジアクリルエステル
類、エチレングリコールジメタクリレート、ポリ
エチレングリコールジメタクリレート等のジメタ
クリルエステル類、トリメチロールプロパントリ
アクリレート等の多価アルコールのトリアクリル
エステル類、トリメチロールプロパントリメタク
リレート等の多価アルコールのトリメタクリルエ
ステル類、および1,2−ブタジエンホモポリマ
ー等の分子内に少なくとも2個のエチレン性二重
結合を有する化合物が例示される。これらの架橋
剤はその使用すべき全量を重合当初から仕込んで
もよく、また重合中に逐次添加してもよい。 上記乳化共重合のために使用される乳化剤およ
び重合開始剤としては、塩化ビニル単量体の乳化
重合に通常使用されるものでよく、乳化剤として
はアルキルスルホン酸ナトリウム塩、アルキル硫
酸塩、アルキルスルホコハク酸塩、アルキルエー
テル硫酸塩などのアニオン系乳化剤、ソルビタン
脂肪酸エステル、ポリオキシエチレンソルビタン
脂肪酸エステル、ポリオキシエチレンアルキルエ
ーテル、ポリオキシエチレンアルキルフエニルエ
ーテル、ポリエチレングリコール脂肪酸エステル
などのノニオン系乳化剤が例示される。 また重合開始剤としては、油溶性過酸化物、ア
ゾ化合物が使用できるがさらに水溶性の開始剤、
過硫酸アンモニウム、アルカリ金属過硫酸塩、過
酸化水素、ブチルハイドロパーオキサイド、クミ
ルハイドロパーオキサイド、メチルエチルケトン
ハイドロパーオキサイド等の無機あるいは有機過
酸化物が例示される。レドツクス系も使用でき
る。これらの乳化剤及び重合開始剤は1種類に限
られず、2種類以上併用することは差支えない。
また生成ラテツクスの安定化のため高級アルコー
ル、脂肪酸等の助剤を添加することも差支えな
い。 本発明の方法は塩化ビニル系単量体を水性媒体
中で懸濁重合させるに当り、重合中に前記架橋結
合含有塩化ビニル系樹脂ラテツクスを添加し重合
させるのであるが、このラテツクスの添加は重合
転化率3%前の初期に行うと生成重合体が粒度状
態の悪いものになるし、一方85%を過ぎた後に行
うと重合により生成する重合体粒子と架橋結合含
有塩化ビニル樹脂ラテツクスの粒子との結合(合
粒)が不完全となるので、重合転化率3〜85%特
に30〜70%の時期に行うのが適切である。 このようにして得られた重合体は懸濁重合によ
つて形成された粒径100〜150μmの多孔質なレジ
ンに、粒径1μm前後の微細なラテツクス樹脂が
くつついた構造をしているので、成形加工性に影
響する重合体の多孔質が損なわれず、またラテツ
クス樹脂中の架橋結合の存在によつて圧縮永久
歪、反発弾性、機械的強度に優れた成形体になる
と考えられる。 上記架橋結合含有塩化ビニル樹脂ラテツクスの
添加にあたつては、全量を一括して添加しても、
ある程度の時間をかけて連続的に添加しても差支
えない。添加する架橋結合含有塩化ビニル樹脂ラ
テツクスの量としては、懸濁重合させる塩化ビニ
ル単量体100重量部に対し樹脂分として1〜100重
量部とすることが望ましい。1重量部以下である
と目的とした物性を満足することができず、また
100重量部以上とすることは工業的にコスト高と
なり不利である。 本発明の方法の場合重合温度は45℃以下とする
ことが望ましい。この理由は重合温度が高いと塩
化ビニル単量体の懸濁重合により生成される重合
体が平均重合度の低いものとなり、前記架橋結合
含有塩化ビニル樹脂ラテツクスの添加をともなつ
ても目的とする物性改良の実をあげることができ
ない。しかし、重合温度を45℃以下で実施すると
平均重合度2000以上の塩化ビニル重合体が得られ
るので、この高重合度化と前記ラテツクス添加に
よる効果とが相まつて大幅に物性が改良される。 上記懸濁重合の実施に当り使用される懸濁剤と
しては、たとえば部分ケン化ポリ酢酸ビニル、水
溶性セルロースエーテル類、酢酸ビニル−無水マ
レイン酸共重合体、ポリビニルピロリドン、スチ
レン−無水マレイン酸共重合体等の水溶性高分子
物質などが、また重合開始剤としては、2−エチ
ルヘキシルパーオキシジカーボネート、α−クミ
ルパーオキシネオデカノエート、イソプロピルパ
ーオキシジカーボネート、アセチルシクロヘキシ
ルスルホニルパーオキサイド、イソブチリルパー
オキサイド等の油溶性過酸化物、あるいはα,
α′−アゾビス−2,4−ジメチルバレロニトリ
ル、α,α′−アゾビス−4−メトキシ−2,4−
ジメチルバレロニトリル等のアゾ化合物がそれぞ
れ例示される。なおこれらの懸濁剤及び重合開始
剤は1種類に限られず、2種類以上を併用するこ
とは差支えない。 なお、塩化ビニル単量体はこれ単独で使用され
る場合に限られず、塩化ビニルに他のコモノマー
が併用されてもよく、このコモノマーとしてはオ
レフイン、ビニルエステル、アクリル酸もしくは
その塩、メタクリル酸もしくはその塩、スチレ
ン、アクリロニトリルなどが例示される。しかし
これらコモノマーは比較的小割合で使用されるべ
きである。 つぎに具体的実施例をあげるが、本発明はこれ
により制限を受けるものではない。なお、各物性
値は次のようにして測定したものである。 圧縮永久歪:JISK6301による 反発弾性率:同上 引張り強度:JISK6723による ロール巻き付き時間:試料重合体を含む下記配合
(※)からなる混合物を175℃に加熱されたロー
ルに投入し、その投入時から混合物が見掛け上
ロール面でゲル化した状態となるまでの時間
(秒)をストツプウオツチで測定した。 (※)配合 重合体 100重量部 ジオクチルフタレート 100 〃 炭酸カルシウム 20 〃 Ba−Zn系安定剤 2.5重量部 エポキシ化大豆油 3 〃 THF不溶解分:THF不溶解分は試料重合体1.00
gを100mlのTHFに投入し、THF沸点にて60
分間振とう溶解し不溶解分を遠心分離したの
ち、上澄の溶解20mlをビーカーに採り105℃で
蒸発乾固したあとの重量の5倍をもつてTHF
可溶分とし、100%よりTHF可溶分を差引いた
ものをTHF不溶解分とした。 実施例(実験No.1〜6) 〔塩化ビニル樹脂ラテツクスの製造〕 かくはん機を備えたステンレス製オートクレー
ブに、脱イオン水200部(部は重量部を示す、以
下同様)、ラウリル硫酸ソーダ2部、セタノール
2部および表に示すような架橋剤を仕込み、つい
で真空ポンプにより排気を行つた後、塩化ビニル
100部とα−クミルパーオキシネオデカノエート
0.15部を添加し、40℃で重合を行ない内圧が4.0
Kg/cm3Gに降下したら重合を停止し排ガスを行
い、架橋結合含有塩化ビニル樹脂ラテツクスを得
た。 〔架橋結合含有塩化ビニル樹脂ラテツクスの重
合途中添加による塩化ビニル樹脂の製造〕 かくはん機を備えたステンレス製オートクルー
ブに、脱イオン水200部、部分ケン化ポリビニル
アルコールとヒドロキシプロピルメチルセルロー
スとを合計で0.1部を仕込み、ついで真空ポンプ
により排気を行つた後、塩化ビニル100部とα−
クミルパーオキシネオデカノエートを0.1部添加
し、40℃で重合を行つた。反応(重合転化率)が
約50%進行した時点で前記の方法により得られた
架橋結合含有塩化ビニル樹脂ラテツクスを樹脂分
として10部を添加し重合を継続した。重合機内圧
が4.0Kg/cm3Gに下降した時点で重合を停止し排
ガスを行い、その後脱水乾燥して重合体を得た。 なお、上記において架橋結合含有塩化ビニル樹
脂ラテツクスを添加しないほかは同じようにして
重合した場合には平均重合度約2500のポリ塩化ビ
ニルが得られる。 得られた重合体を前記配合(※)のものとして
8インチロールで混練し、厚さ1mmのシートをつ
くり、これをプレスして圧縮永久歪、反発弾性
率、引張り強度の試験に供した。これらの物性測
定の結果は表に示すとおりであつた。 比較例(実験No.7〜13) 実験No.7:平均重合度2450のポリ塩化ビニル樹脂
について同様にして諸物性を測定した結果を表
に示した。 実験No.8〜13:平均重合度2450のポリ塩化ビニル
樹脂と、実施例(実験No.1〜6)に記した方法
で重合した架橋結合含有塩化ビニル樹脂を脱水
乾燥した架橋樹脂との比率が実施例で得られた
塩化ビニル樹脂と同等になるように割合で混合
したものについて同様にして諸物性を測定し
た。 その結果は表に示すとおりであつた。 表から明らかなように架橋結合含有塩化ビニル
樹脂ラテツクスを重合中に添加して得られた塩化
ビニル樹脂では機械的強度が低下することなく圧
縮永久歪や反発弾性が改良され、また加工性もよ
いことがわかる。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a vinyl chloride polymer, and in particular, improves compression set, impact resilience, mechanical strength, etc. without impeding the moldability of the vinyl chloride polymer. The purpose is to improve the physical properties of. Regarding vinyl chloride resins, for the purpose of improving compression set, impact resilience, mechanical strength, etc., the average degree of polymerization has been increased or the resin has a crosslinked structure. However, increasing the average degree of polymerization or creating a crosslinked structure results in very poor workability, and while creating a crosslinked structure improves compression set, it has the drawback of poor mechanical strength. Blending a polyvinyl chloride resin with a high average degree of polymerization (2000 or more) and a crosslinked polyvinyl chloride resin considerably improves compression set, but on the other hand, processability and mechanical properties deteriorate. By producing fine particles of crosslinked polyvinyl chloride resin by emulsion polymerization and blending them with polyvinyl chloride resin, compression set can be improved without significantly impeding processability.
In this case as well, there are disadvantages of poor workability and poor mechanical properties of the molded product. In view of this point, the present inventors have conducted extensive research and found that when vinyl chloride monomers are suspended polymerized in an aqueous medium, when the polymerization conversion rate is 3 to 85%, cross-linked vinyl chloride monomers It was confirmed that by adding a resin latex and carrying out a polymerization reaction, a polymer with excellent physical properties such as compression set, impact resilience, and mechanical strength could be obtained without inhibiting moldability, and the present invention was developed. completed. The present invention will be explained in detail below. The crosslinked vinyl chloride resin latex used in carrying out the method of the present invention consists of a vinyl chloride monomer and a polyfunctional monomer (crosslinked) having at least two ethylenic double bonds in one molecule. It is manufactured by copolymerizing the following agents with the following agents) by emulsion polymerization method. Examples of the crosslinking agent include diallyl esters of phthalic acid such as diallyl phthalate and diallyl isophthalate, diallyl esters of ethylenically unsaturated dibasic acids such as diallyl maleate and diallylitaconate, polyethylene glycol diacrylate and diethylene glycol diacrylate. Diacrylic esters, dimethacrylic esters such as ethylene glycol dimethacrylate and polyethylene glycol dimethacrylate, triacrylic esters of polyhydric alcohols such as trimethylolpropane triacrylate, and trimethacrylate of polyhydric alcohols such as trimethylolpropane trimethacrylate. Examples include esters and compounds having at least two ethylenic double bonds in the molecule, such as 1,2-butadiene homopolymer. The entire amount of these crosslinking agents to be used may be added from the beginning of the polymerization, or may be added sequentially during the polymerization. The emulsifier and polymerization initiator used for the above emulsion copolymerization may be those commonly used for emulsion polymerization of vinyl chloride monomers, and the emulsifier may include sodium alkyl sulfonate, alkyl sulfate, alkyl sulfosuccinate, etc. Examples include anionic emulsifiers such as acid salts and alkyl ether sulfates, and nonionic emulsifiers such as sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, and polyethylene glycol fatty acid esters. Ru. As the polymerization initiator, oil-soluble peroxides and azo compounds can be used, but water-soluble initiators,
Examples include inorganic or organic peroxides such as ammonium persulfate, alkali metal persulfates, hydrogen peroxide, butyl hydroperoxide, cumyl hydroperoxide, and methyl ethyl ketone hydroperoxide. Redox systems can also be used. These emulsifiers and polymerization initiators are not limited to one type, and two or more types may be used in combination.
Furthermore, auxiliary agents such as higher alcohols and fatty acids may be added to stabilize the latex produced. In the method of the present invention, when a vinyl chloride monomer is polymerized by suspension in an aqueous medium, the crosslinked vinyl chloride resin latex is added during the polymerization. If it is carried out at an early stage before the conversion rate is 3%, the resulting polymer will have a poor particle size, whereas if it is carried out after the conversion rate has exceeded 85%, the polymer particles produced by polymerization and the particles of the cross-linked vinyl chloride resin latex will be separated. Since the bonding (agglomeration) of the particles becomes incomplete, it is appropriate to carry out the process when the polymerization conversion rate is 3 to 85%, especially 30 to 70%. The polymer obtained in this way has a structure in which fine latex resin with a particle size of around 1 μm is stuck to a porous resin with a particle size of 100 to 150 μm formed by suspension polymerization. It is thought that the porosity of the polymer, which affects moldability, is not impaired, and the presence of crosslinking in the latex resin results in a molded product with excellent compression set, impact resilience, and mechanical strength. When adding the above-mentioned crosslinked vinyl chloride resin latex, even if the entire amount is added at once,
It may be added continuously over a certain period of time. The amount of the crosslinked vinyl chloride resin latex to be added is desirably 1 to 100 parts by weight as a resin component per 100 parts by weight of the vinyl chloride monomer to be subjected to suspension polymerization. If it is less than 1 part by weight, the desired physical properties cannot be satisfied, and
A content of 100 parts by weight or more is industrially disadvantageous due to high costs. In the method of the present invention, the polymerization temperature is preferably 45°C or lower. The reason for this is that if the polymerization temperature is high, the polymer produced by suspension polymerization of vinyl chloride monomers will have a low average degree of polymerization, and even with the addition of the crosslinked vinyl chloride resin latex, It is not possible to achieve any improvement in physical properties. However, if the polymerization temperature is 45° C. or lower, a vinyl chloride polymer having an average degree of polymerization of 2,000 or more can be obtained, and this increase in the degree of polymerization and the effect of adding the latex combine to significantly improve the physical properties. Suspending agents used in carrying out the above suspension polymerization include, for example, partially saponified polyvinyl acetate, water-soluble cellulose ethers, vinyl acetate-maleic anhydride copolymer, polyvinylpyrrolidone, styrene-maleic anhydride copolymer, etc. Water-soluble polymeric substances such as polymers, etc., and polymerization initiators such as 2-ethylhexyl peroxydicarbonate, α-cumyl peroxyneodecanoate, isopropyl peroxydicarbonate, acetylcyclohexylsulfonyl peroxide, and Oil-soluble peroxides such as butyryl peroxide, or α,
α'-azobis-2,4-dimethylvaleronitrile, α,α'-azobis-4-methoxy-2,4-
Examples include azo compounds such as dimethylvaleronitrile. Note that these suspending agents and polymerization initiators are not limited to one type, and two or more types may be used in combination. Note that the vinyl chloride monomer is not limited to being used alone, and other comonomers may be used in combination with vinyl chloride, such as olefin, vinyl ester, acrylic acid or its salt, methacrylic acid, or Examples include salts thereof, styrene, acrylonitrile, and the like. However, these comonomers should be used in relatively small proportions. Next, specific examples will be given, but the present invention is not limited thereto. In addition, each physical property value was measured as follows. Compression set: According to JISK6301 Resilience modulus: Same as above Tensile strength: According to JISK6723 Roll winding time: A mixture consisting of the following formulation (*) including the sample polymer was placed on a roll heated to 175℃, and from the time of loading the mixture The time (seconds) required for the material to become apparently gelled on the roll surface was measured using a stopwatch. (*) Compound polymer 100 parts by weight Dioctyl phthalate 100 〃 Calcium carbonate 20 〃 Ba-Zn stabilizer 2.5 parts by weight Epoxidized soybean oil 3 〃 THF-insoluble content: THF-insoluble content is 1.00% of the sample polymer
Pour g into 100 ml of THF and reduce to 60 at THF boiling point.
After dissolving by shaking for a minute and centrifuging the undissolved matter, take 20 ml of the supernatant into a beaker and evaporate to dryness at 105°C.
The THF-soluble content was defined as the soluble content, and the THF-insoluble content was obtained by subtracting the THF-soluble content from 100%. Examples (Experiment Nos. 1 to 6) [Manufacture of vinyl chloride resin latex] In a stainless steel autoclave equipped with a stirrer, 200 parts of deionized water (parts indicate parts by weight, the same applies hereinafter) and 2 parts of sodium lauryl sulfate were placed in a stainless steel autoclave equipped with a stirrer. , 2 parts of cetanol and a crosslinking agent as shown in the table, and then evacuated with a vacuum pump, and then the vinyl chloride
100 parts and α-cumyl peroxyneodecanoate
Add 0.15 parts and polymerize at 40℃ until the internal pressure is 4.0.
When the temperature decreased to Kg/cm 3 G, the polymerization was stopped and exhaust gas was removed to obtain a crosslinked vinyl chloride resin latex. [Production of vinyl chloride resin by adding cross-linked vinyl chloride resin latex during polymerization] In a stainless steel autoclub equipped with a stirrer, 200 parts of deionized water, a total of 0.1 part of partially saponified polyvinyl alcohol and hydroxypropyl methylcellulose were added. After evacuating with a vacuum pump, add 100 parts of vinyl chloride and α-
0.1 part of cumyl peroxy neodecanoate was added and polymerization was carried out at 40°C. When the reaction (polymerization conversion rate) had progressed to about 50%, 10 parts of the crosslinked vinyl chloride resin latex obtained by the above method was added as a resin component, and the polymerization was continued. When the internal pressure of the polymerization machine decreased to 4.0 Kg/cm 3 G, the polymerization was stopped and gas was removed, followed by dehydration and drying to obtain a polymer. In addition, when polymerization is carried out in the same manner as described above except that the crosslinked vinyl chloride resin latex is not added, polyvinyl chloride having an average degree of polymerization of about 2500 is obtained. The resulting polymer having the above formulation (*) was kneaded using an 8-inch roll to form a sheet with a thickness of 1 mm, which was then pressed and subjected to tests for compression set, rebound modulus, and tensile strength. The results of these physical property measurements were as shown in the table. Comparative Examples (Experiments Nos. 7 to 13) Experiment No. 7: Physical properties of polyvinyl chloride resin having an average degree of polymerization of 2450 were similarly measured, and the results are shown in the table. Experiment Nos. 8 to 13: Ratio of polyvinyl chloride resin with an average degree of polymerization of 2450 to crosslinked resin obtained by dehydrating and drying crosslinked vinyl chloride resin polymerized by the method described in Examples (Experiments Nos. 1 to 6) Various physical properties were measured in the same manner for a mixture of the vinyl chloride resin and the vinyl chloride resin obtained in the examples in the same proportions. The results were as shown in the table. As is clear from the table, the vinyl chloride resin obtained by adding a cross-linked vinyl chloride resin latex during polymerization has improved compression set and impact resilience without decreasing mechanical strength, and has good processability. I understand that. 【table】

Claims (1)

【特許請求の範囲】 1 塩化ビニル系単量体を水性媒体中で懸濁重合
させるに当り、重合転化率が3〜85%の時期に架
橋結合含有塩化ビニル系樹脂ラテツクスを添加し
て重合反応を完了させることを特徴とする塩化ビ
ニル系重合体の製造方法。 2 重合反応を45℃以下の温度で行うことを特徴
とする特許請求の範囲第1項記載の塩化ビニル系
重合体の製造方法。
[Scope of Claims] 1. When a vinyl chloride monomer is subjected to suspension polymerization in an aqueous medium, a crosslinked vinyl chloride resin latex is added at a polymerization conversion rate of 3 to 85% to carry out the polymerization reaction. A method for producing a vinyl chloride polymer, characterized by completing the following steps. 2. The method for producing a vinyl chloride polymer according to claim 1, wherein the polymerization reaction is carried out at a temperature of 45° C. or lower.
JP21054383A 1983-11-09 1983-11-09 Production of vinyl chloride polymer Granted JPS60104105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21054383A JPS60104105A (en) 1983-11-09 1983-11-09 Production of vinyl chloride polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21054383A JPS60104105A (en) 1983-11-09 1983-11-09 Production of vinyl chloride polymer

Publications (2)

Publication Number Publication Date
JPS60104105A JPS60104105A (en) 1985-06-08
JPH0455202B2 true JPH0455202B2 (en) 1992-09-02

Family

ID=16591081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21054383A Granted JPS60104105A (en) 1983-11-09 1983-11-09 Production of vinyl chloride polymer

Country Status (1)

Country Link
JP (1) JPS60104105A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996152A (en) * 1982-11-25 1984-06-02 Tokuyama Soda Co Ltd Production of polyvinyl chloride composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996152A (en) * 1982-11-25 1984-06-02 Tokuyama Soda Co Ltd Production of polyvinyl chloride composition

Also Published As

Publication number Publication date
JPS60104105A (en) 1985-06-08

Similar Documents

Publication Publication Date Title
US5399621A (en) Process for the preparation of a graft copolymer latex of core/shell dispersion particles having improved phase binding between core and shell
JP4938170B2 (en) Process for producing modified thermoplastic polyvinyl chloride molding compound, thermoplastic polyvinyl chloride molding compound and use thereof
JPS61207411A (en) Production of vinyl chloride resin
JPH0455202B2 (en)
JPS6312089B2 (en)
JPS6028286B2 (en) Suspension polymerization method for vinyl compounds
JPH02305804A (en) Production of vinyl chloride polymer
JPH06287237A (en) Production of vinyl chloride-based polymer
JPH0820616A (en) Production of polymer based on vinylimidazole
JPH0347808A (en) Production of matte vinyl chloride polymer
JP2549940B2 (en) Method for producing highly crosslinked polymer particles
JP3375776B2 (en) Method for producing vinyl chloride polymer
JP2910774B2 (en) Method for producing vinyl chloride resin
JP3236188B2 (en) Suspension polymerization of vinyl chloride resin
JPH09221505A (en) Production of vinyl chloride polymer
JPS5811889B2 (en) Method for producing vinyl chloride polymer
JP3340275B2 (en) Method for producing vinyl chloride polymer
JPH0476005A (en) Production of matte vinyl chloride polymer
JPH10110014A (en) Preparation of vinyl chloride polymer
JPS6320308A (en) Production of protective colloid system acryl hydrosol
JPH02308804A (en) Production of delustering vinyl chloride-based polymer
JPH0543728B2 (en)
JP2024131232A (en) Polyvinyl alcohol resin, method for producing polyvinyl alcohol resin, dispersant, and dispersant for suspension polymerization
JPH03244614A (en) Production of matte vinyl chloride polymer
JPS60206803A (en) Production of emulsion polymer