JPH0455194B2 - - Google Patents

Info

Publication number
JPH0455194B2
JPH0455194B2 JP59074895A JP7489584A JPH0455194B2 JP H0455194 B2 JPH0455194 B2 JP H0455194B2 JP 59074895 A JP59074895 A JP 59074895A JP 7489584 A JP7489584 A JP 7489584A JP H0455194 B2 JPH0455194 B2 JP H0455194B2
Authority
JP
Japan
Prior art keywords
bicyclo
compound
group
polymerization
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59074895A
Other languages
Japanese (ja)
Other versions
JPS60218393A (en
Inventor
Haruo Nishida
Takeshi Nakahara
Koji Kusumoto
Takeshi Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP59074895A priority Critical patent/JPS60218393A/en
Publication of JPS60218393A publication Critical patent/JPS60218393A/en
Publication of JPH0455194B2 publication Critical patent/JPH0455194B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、一般式、下記一般式(1) (但し、R1は水素原子又はアルキル基であり、 R2は水素原子、アルキル基又はヒドロキシア
ルキル基であり、 nは1〜4の整数である。) で示されるビシクロオルソエステル化合物に関す
る。 従来、2,6,7−トリオキシサビシクロ
〔2,2,2〕オクタン基を有する化合物(以下、
ビシクロ化合物と略記する。)のうち数種のもの
については、塩化ビニル樹脂の安定剤や、除草剤
等への用途が検討されてきた。最近、この種の化
合物の開環異性化重合が検討され、重合に伴なう
体積変化が非常に小さいという特異な現象が報告
されるに及んで、新たに成型材料、注型材料、封
止材料及び接着剤などへの用途が注目されてい
る。 近年、この2,6,7−トリオキサビシクロ
〔2,2,2〕オクタン基(以下、ビシクロ基と
略記する)を側鎖に有する重合体の開発が進めら
れている。適当な溶媒に溶解させたこのような重
合体は、開環異性化剤或いは紫外線等により、側
鎖に有するビシクロ基の開環異性化を起こし、架
橋して不溶化する。従つて、このようなビシクロ
基を側鎖に有する重合体は、塗料、接着剤或いは
フオトレジスト等への応用が検討されている。 ビシクロ基を側鎖に有する重合体を与えるビシ
クロ化合物としては、次のようなものが知られて
いる。 (但し、Rは水素原子又はアルキル基である。) しかし、上記のビシクロ化合物中、(2)及び(3)
は、該ビシクロ化合物のビニル基のラジカル重合
時に側鎖のビシクロ基の開環異性化による架橋の
ため不溶化を起こし易く、又、ラジカル重合によ
り得られたビシクロ基を側鎖に有する重合体の保
存安定性が良くない等の問題がある。また、上記
のビシクロ化合物(4)は、該ビシクロ化合物の重合
時に副反応として、ビシクロ基の開環異性化が起
こるという問題点がある(日本化学会、第49春季
年会講演予稿集、1229(1984))。 そこで本発明者らは、上記の如き問題点を有し
ないビシクロ化合物、即ち、ビニル基のラジカル
重合時に架橋及びビシクロ基の開環を伴なわず、
生成した重合体の保存安定性も良好なビニル基を
有するビシクロ化合物の開発を続けてきた。その
結果、ある特定の構造を有するビシクロ化合物
が、上記の条件を満足し得る事を見出し、本発明
を完成するに至つた。 即ち、本発明は、下記一般式(1) (但し、R1は水素原子又はアルキル基であり、 R2は水素原子、アルキル基、又はヒドロキシ
アルキル基であり、 nは1〜4の整数である。) で示されるビシクロオルソエステル化合物であ
る。 前記一般式(1)中、R1及びR2で示されるアルキ
ル基としては、その炭素数に特に限定されず、
種々のものが用いられる。しかし、一般に原料の
入手の容易さから炭素数1〜4のアルキル基、例
えば、メチル基、エチル基、プロピル基、並びに
ブチル基等が特に好適である。 また、前記一般式(1)中、R2で示されるヒドロ
キシアルキル基としては、その炭素数に特に限定
されず、種々のものが用いられるが、一般に原料
の入手の容易さから炭素数1〜4のものが好まし
い。一般に本発明に於いて好ましいヒドロキシア
ルキル基としては、ヒドロキシメチル基、ヒドロ
キシエチル基、ヒドロキシプロピル基、ヒドロキ
シブチル基等が挙げられる。 さらに、前記一般式(1)中、nの値が小さいもの
は、本発明のビシクロオルソエステル化合物の合
成反応後、該ビシクロオルソエステル化合物を単
離するための精留が比較的容易に行なえる。従つ
て、nが1のものは、合成反応後の単離操作の面
から最も好ましい化合物である。 本発明のビシクロオルソエステル化合物は室温
下で、無色透明結晶又は無色透明液状であり、
R1及びR2の炭素数が少ない程より結晶性が良く
なる傾向がある。又、該ビシクロオルソエステル
化合物は四塩化炭素、クロロホルム、塩化メチレ
ン、アセトン、ヘキサン、ベンゼン、トルエン、
テトラヒドロフラン、ジオキサン等に溶解性を示
す。 本発明のビシクロオルソエステル化合物は次の
様な測定によつて、該化合物である事を確認でき
る。 (1) 赤外吸収スペクトル(IR)の測定 ビシクロ基
The present invention is based on the general formula, the following general formula (1) (However, R 1 is a hydrogen atom or an alkyl group, R 2 is a hydrogen atom, an alkyl group, or a hydroxyalkyl group, and n is an integer of 1 to 4.) Conventionally, compounds having a 2,6,7-trioxysabicyclo[2,2,2]octane group (hereinafter referred to as
Abbreviated as bicyclo compound. ) have been investigated for use as stabilizers for vinyl chloride resins, herbicides, etc. Recently, ring-opening isomerization polymerization of this type of compound has been investigated, and a unique phenomenon in which the volume change accompanying polymerization is extremely small has been reported. It is attracting attention for its use in materials and adhesives. In recent years, progress has been made in developing polymers having this 2,6,7-trioxabicyclo[2,2,2]octane group (hereinafter abbreviated as bicyclo group) in its side chain. Such a polymer dissolved in an appropriate solvent undergoes ring-opening isomerization of the bicyclo group in the side chain using a ring-opening isomerizing agent or ultraviolet rays, and becomes crosslinked and insolubilized. Therefore, the application of such polymers having bicyclo groups in their side chains to paints, adhesives, photoresists, etc. is being considered. The following are known as bicyclo compounds that yield polymers having bicyclo groups in their side chains. (However, R is a hydrogen atom or an alkyl group.) However, among the above bicyclo compounds, (2) and (3)
During radical polymerization of the vinyl group of the bicyclo compound, insolubilization tends to occur due to crosslinking due to ring-opening isomerization of the bicyclo group in the side chain, and storage of the polymer having a bicyclo group in the side chain obtained by radical polymerization is difficult. There are problems such as poor stability. Furthermore, the above bicyclo compound (4) has the problem that ring-opening isomerization of the bicyclo group occurs as a side reaction during polymerization of the bicyclo compound (Chemical Society of Japan, Proceedings of the 49th Spring Annual Meeting, 1229 (1984)). Therefore, the present inventors developed a bicyclo compound that does not have the above-mentioned problems, that is, a bicyclo compound that does not involve crosslinking or ring opening of the bicyclo group during radical polymerization of the vinyl group.
We have continued to develop bicyclo compounds containing vinyl groups, which produce polymers with good storage stability. As a result, the inventors discovered that a bicyclo compound having a specific structure could satisfy the above conditions, and completed the present invention. That is, the present invention provides the following general formula (1) (However, R 1 is a hydrogen atom or an alkyl group, R 2 is a hydrogen atom, an alkyl group, or a hydroxyalkyl group, and n is an integer of 1 to 4.) . In the general formula (1), the alkyl groups represented by R 1 and R 2 are not particularly limited in the number of carbon atoms,
Various types are used. However, in general, alkyl groups having 1 to 4 carbon atoms, such as methyl, ethyl, propyl, and butyl groups, are particularly preferred because of the ease of obtaining raw materials. In addition, in the general formula (1), the hydroxyalkyl group represented by R 2 is not particularly limited in its carbon number, and various types can be used, but it generally has 1 to 1 carbon atoms due to the ease of obtaining raw materials. 4 is preferred. In general, preferred hydroxyalkyl groups in the present invention include hydroxymethyl, hydroxyethyl, hydroxypropyl, and hydroxybutyl groups. Furthermore, in the general formula (1), when the value of n is small, rectification for isolating the bicycloorthoester compound of the present invention can be relatively easily carried out after the synthesis reaction of the bicycloorthoester compound. . Therefore, compounds in which n is 1 are the most preferred compounds from the standpoint of isolation operations after the synthesis reaction. The bicycloorthoester compound of the present invention is a colorless transparent crystal or a colorless transparent liquid at room temperature,
Crystallinity tends to improve as the number of carbon atoms in R 1 and R 2 decreases. In addition, the bicycloorthoester compound includes carbon tetrachloride, chloroform, methylene chloride, acetone, hexane, benzene, toluene,
Soluble in tetrahydrofuran, dioxane, etc. The bicycloorthoester compound of the present invention can be confirmed to be such a compound by the following measurements. (1) Measurement of infrared absorption spectrum (IR) Bicyclo group

【式】 と二重結合(−C=C−)の存在が確認でき
る。前者に由来する吸収帯は1100〜900cm-1
数本現われ、後者に由来する吸収帯は1600〜
1680cm-1に1本現われる。 (2) 1H−核磁気共鳴吸収スペクトル(1H−
NMR)の測定 重クロロホルム溶媒中でテトラメチルシラン
を基準として測定すると、δ(ppm)=3.8〜4.1
の位置にビシクロ基中の6個のメチレン水素に
由来する一重線の吸収ピークが現われる。又、
δ(ppm)=4.7〜6.5の位置に、二重結合構造中
の水素に由来する多重線の吸収ピークが現われ
る。更に、二重結合とビシクロ基との間のアル
キレン水素に由来する吸収ピークは、例えばn
=1の場合、δ(ppm)=2.3〜2.6に二重線とし
て現われる。 (3) 質量分析(MS) 質量分析として電子衝撃法(EI法)及び電
解脱離法(FD法)を用いる事によつて分子量
を確認できる。該化合物の分子量をMとする
と、m/e=M+の位置に分子イオンピークが、
或いは(M±1)+の位置に擬分子イオンピーク
が観測される。 (4) 元素分析 炭素及び水素の分析結果を前記一般式(1)から
算出される理論値と比較する事により確認でき
る。 以上に説明した種々の測定方法により、本発明
のビシクロオルソエステル化合物が確認できる。 前記一般式(1)で示されるビシクロオルソエステ
ル化合物の製造方法は、特に限定されず、如何な
る方法を採用してもよい。一般に工業的に好適な
方法を例示すれば次のとおりである。 即ち、一般式(5) (但し、R1は水素原子又はアルキル基であり、 R2は水素原子、アルキル基又はヒドロキシア
ルキル基であり、 nは1〜4の整数である。) で示されるビシクロ化合物の脱臭化水素反応を行
なう事によつて前記一般式(1)で示されるビシクロ
オルソエステル化合物を製造する事ができる。そ
の反応式を前記(5)式中、R1が水素原子であり、
n=1である化合物について示せば下記のとおり
である。 脱臭化水素反応に際しては、公知の脱臭化水素
試剤が何ら制限されず用いられる。好適に用いら
れる脱臭化水素試剤としては、アルカリ金属のア
ルコキシドが挙げられる。就中、カリウム−t−
ブトキシド、カリウム−イソプロポキシド等のカ
リウムアルコキシドが好ましい。前記一般式(5)で
示されるビシクロ化合物と脱臭化水素試剤の仕込
み比は等モル或いは脱臭化水素試剤を最高1.5倍
モル程度過剰に用いるのが好適である。前記一般
式(5)で示されるビシクロ化合物の脱臭化水素反応
は、適当な溶媒、例えば、テトラヒドロフラン等
に溶解させて行なえば良い。又、上記反応の温度
は、室温〜溶媒の沸点、好ましくは50℃〜溶媒の
沸点の範囲で行なえば良い。 該脱臭化水素反応の後、生成した塩を分離し、
続いて反応液を濃縮し、減圧蒸留する事によつて
本発明のビシクロオルソエステル化合物と、副反
応により生じるビシクロ化合物との混合物が得ら
れる。更にこの混合物を精留する事により、本発
明の前記一般式(1)で示されるビシクロオルソエス
テル化合物が単離される。 本発明の前記一般式(1)で示されるビシクロオル
ソエステル化合物はビシクロ基とビニル基を共に
有し、両基の間にアルキレン基を有する化合物で
ある。本発明のビシクロオルソエステル化合物(1)
は、ラジカル重合開始剤により、ビニル基の付加
重合を行ない、バルク及び溶液重合のいずれの方
法に於いてもビシクロ基の開環異性化等の副反応
が少なく、種々の溶媒に可溶で保存安定性の良好
な重合体を与える。上記ラジカル重合開始剤とし
ては、例えば、t−ブチルハイドロパーオキシ
ド、ジ−t−ブチルパーオキシド、ジクミルパー
オキシド、ベンゾイルパーオキシド等の有機過酸
化物、アゾビスイソビチロニトリル、アゾビスシ
クロヘキサンカルボニトリル等のアソビス系開始
剤等が好適に用いられる。又、開始剤の使用量は
ビシクロオルソエステル化合物(1)に対して、0.1
〜20mol%の範囲で用いれば良く、一般に開始剤
量が多い程、重合率が高く、開環異性化率も小さ
い。更に重合は減圧から加圧まで0℃から200℃
まで、いかなる条件下でも行ない得るが、好まし
くは常圧付近の圧力下、50〜150℃で行なうのが
良い。 上記溶液重合に於いて用いられる溶媒は、ビシ
クロオルソエステル化合物(1)に対して不活性な物
質であれば、公知の有機溶媒が何ら制限無く使用
できるが、具体的に例示すればベンゼン、トルエ
ン、キシレン、クロルベンゼン、ジオキサン、テ
トラヒドロフラン、ジメチルホルムアミド、ジエ
チルアセトアミド等が好適に使用される。 本発明のビシクロオルソエステル化合物のラジ
カル重合によつて生成し、側鎖にビシクロ基を有
する重合体は、白色粉末状であり、クロロホル
ム、塩化メチレン、アセトン、テトラヒドロフラ
ン、ジオキサン等に可溶である。又、上記重合体
は、その赤外吸収スペクトルよりビシクロ基の開
環異性化率が3%以下にすぎない事が見出され
た。 本発明のビシクロオルソエステル化合物と類似
した構造を有し、公知の化合物である下記ビシク
ロ化合物(7)の場合 (但し、Rはアルキル基である。) ラジカル重合に伴なう開環異性化率は、6%程
度に達する。開環異性化率の上昇は、ビシクロ基
の損失を引き起こすばかりでなく、重合体の架橋
による不溶化等も引き起こし、生成した重合体の
以後の操作性を著しく悪化させる。従つて、本発
明のビシクロオルソエステル化合物(1)は上記の点
で公知の化合物より大きく改善された化合物であ
る事が明らかである。 但し、ここで示した開環異性化率の値は、次の
様な方法で求めた値である。即ち、ビシクロ化合
物が開環異性化した際、エステルを生成する事よ
り、下記の2つのモデル化合物を選び これらを所定の割合で混合し、その混合物の赤外
吸収スペクトル上のエステルの吸光度を用いて検
量線を作製し、この検量線より求めた。 又、本発明のビシクロオルソエステル化合物(1)
は、他のビニル基を有する化合物と容易に共重合
し得る。上記ビニル基を有する化合物としては、
一般に公知のエチレン性不飽和化合物が何ら制限
なく用いられ得るが、具体的に例示すれば、アク
リロニトリル、酢酸ビニル、無水マレイン酸、ス
チレン、アクリル酸メチル、アクリル酸エチル、
メタクリル酸メチル、メタクリル酸エチル、メタ
クリル酸プロピル、メタクリル酸ブチル等が挙げ
られる。 更に、本発明のビシクロオルソエステル化合物
(1)は、カチオン重合触媒によりビシクロ基のカチ
オン開環異性化重合を行ない得る。上記カチオン
重合触媒としては、三フツ化ホウ素、三フツ化ホ
ウ素、エーテル錯体、三フツ化ホウ素アミン錯体
他のルイス酸の他に、紫外線、X線、電子線等に
よる重合手段が採用できる。紫外線重合時のカチ
オン重合触媒としては、例えば、芳香族ジアゾニ
ウム塩、芳香族ハロニウム塩、芳香族オニウム塩
等が挙げられる。カチオン重合触媒の使用量は通
常0.01〜15wt%の範囲が好適であり、重合温度は
−80〜250℃好ましくは0℃〜200℃で行なわれ
る。 以上、述べてきた様に本発明のビシクロオルソ
エステル化合物は、ビニル基とビシクロ基の双方
を一分子内に有する化合物である。従つて、ビニ
ル基のラジカル重合とビシクロ基のカチオン開環
異性化重合の両方を行ない得る。しかも、ビニル
基とビシクロ基との間にアルキレン基が存在する
ために、従来公知のビシクロ化合物よりも、ラジ
カル重合によつて生成した重合体中のビシクロ基
の開環異性化率が約半分も少なく、より純粋な重
合体を得る事ができる。更に、その重合時に架橋
による不溶化が起こらない等の特徴を有してい
る。 従つて、本発明のビシクロオルソエステル化合
物は、より純粋で可溶性であり、かつ保存安定性
に優れたビシクロ基を側鎖に有する重合体を得る
に最も適したモノマーであり、フオトレジスト等
の工業的用途の原材料として、特に有用な材料と
なる。又、ビシクロ基の開環異性化重合に於ける
非収縮性を利用する事により、種々の工業的用途
例えば、封止材料、成型材料、注型材料、接着剤
及び塗料等にも応用する事ができる。 本発明を更に具体的に説明するために以下参考
例、実施例及び比較例を挙げるが、本発明はこれ
らの実施例に限定されるものではない。 実施例 1 200c.c.滴下ロート及び還流冷却器を取り付けた
300c.c.二口フラスコ中にカリウム−t−ブトキシ
ド22.4g(0.20mol)と乾燥テトラヒドロフラン
150c.c.を取り、撹拌下カリウム−t−ブトキシド
を溶解した。次に1−(1−ブロモプロピル)−4
−エチル−2,6,7−トリオキサビシクロ
〔2,2,2〕オクタン49g(0.185mol)を乾燥
テトラヒドロフラン50c.c.に溶解した溶液を滴下ロ
ートより、約1時間かけて滴下した。滴下終了後
加熱を開始し、テトラヒドロフランの還流を行な
つた。5時間後、還流を止め放冷した。冷却後、
反応液は濾過し、濾液を濃縮した。続いて減圧蒸
留を行ない73〜90℃/0.65mmHgの留分を取り、
更に減圧蒸留を繰り返す事により67.8℃/0.70mm
Hgの留分3.11gを得た。収率は9.1%であつた。
この様にして得られた生成物の種々の測定値は次
の通りであつた。 (1) 沸点 67.8℃/0.70mmHg (2) 赤外吸収スペクトル(その結果は第1図とし
て添付する。) 1645cm-1(CH2=CH−) 1060、1000、
[Formula] and the presence of a double bond (-C=C-) can be confirmed. Several absorption bands originating from the former appear between 1100 and 900 cm -1 , and absorption bands originating from the latter appear between 1600 and 900 cm -1.
One appears at 1680cm -1 . (2) 1 H− nuclear magnetic resonance absorption spectrum ( 1 H−
NMR) measurement When measured in deuterated chloroform solvent with tetramethylsilane as the standard, δ (ppm) = 3.8 to 4.1
A singlet absorption peak derived from the six methylene hydrogens in the bicyclo group appears at the position. or,
A multiplet absorption peak originating from hydrogen in the double bond structure appears at a position of δ (ppm) = 4.7 to 6.5. Furthermore, the absorption peak derived from the alkylene hydrogen between the double bond and the bicyclo group is, for example, n
When = 1, a double line appears at δ (ppm) = 2.3 to 2.6. (3) Mass spectrometry (MS) Molecular weight can be confirmed by using electron impact method (EI method) and electrolytic desorption method (FD method) as mass spectrometry. When the molecular weight of the compound is M, the molecular ion peak is at the position m/e=M + ,
Alternatively, a pseudomolecular ion peak is observed at the (M±1) + position. (4) Elemental analysis This can be confirmed by comparing the analysis results of carbon and hydrogen with the theoretical values calculated from the above general formula (1). The bicycloorthoester compound of the present invention can be confirmed by the various measuring methods described above. The method for producing the bicycloorthoester compound represented by the general formula (1) is not particularly limited, and any method may be employed. Examples of generally industrially suitable methods are as follows. That is, general formula (5) (However, R 1 is a hydrogen atom or an alkyl group, R 2 is a hydrogen atom, an alkyl group, or a hydroxyalkyl group, and n is an integer of 1 to 4.) By carrying out the following steps, a bicycloorthoester compound represented by the above general formula (1) can be produced. The reaction formula is shown in the above formula (5), where R 1 is a hydrogen atom,
The compound where n=1 is shown below. In the dehydrobromation reaction, any known dehydrogenating agent may be used without any restriction. Suitably used dehydroborizing agents include alkali metal alkoxides. Among others, potassium-t-
Potassium alkoxides such as butoxide and potassium-isopropoxide are preferred. The charging ratio of the bicyclo compound represented by the general formula (5) and the dehydrogenating agent is preferably equimolar, or the dehydrobromating agent is preferably used in an excess of about 1.5 times by mole at most. The dehydrobromination reaction of the bicyclo compound represented by the general formula (5) may be carried out by dissolving it in an appropriate solvent such as tetrahydrofuran. The temperature of the above reaction may range from room temperature to the boiling point of the solvent, preferably from 50°C to the boiling point of the solvent. After the dehydrobromination reaction, the generated salt is separated,
Subsequently, the reaction solution is concentrated and distilled under reduced pressure to obtain a mixture of the bicycloorthoester compound of the present invention and the bicyclo compound produced by the side reaction. Further, by rectifying this mixture, the bicycloorthoester compound represented by the general formula (1) of the present invention is isolated. The bicycloorthoester compound represented by the general formula (1) of the present invention is a compound having both a bicyclo group and a vinyl group, and an alkylene group between both groups. Bicycloorthoester compound (1) of the present invention
performs addition polymerization of vinyl groups using a radical polymerization initiator, has few side reactions such as ring-opening isomerization of bicyclo groups in both bulk and solution polymerization methods, and is soluble in various solvents and stored. Provides a polymer with good stability. Examples of the radical polymerization initiator include organic peroxides such as t-butyl hydroperoxide, di-t-butyl peroxide, dicumyl peroxide, and benzoyl peroxide, azobisisobityronitrile, and azobiscyclohexane. Asobis-based initiators such as carbonitrile are preferably used. In addition, the amount of initiator used is 0.1 per bicycloorthoester compound (1).
It may be used in the range of ~20 mol %, and generally, the larger the amount of initiator, the higher the polymerization rate and the lower the ring-opening isomerization rate. Furthermore, polymerization is performed from 0℃ to 200℃ from reduced pressure to increased pressure.
Although the reaction can be carried out under any conditions up to 100° C., it is preferably carried out at a temperature of 50 to 150° C. under pressure near normal pressure. As the solvent used in the above solution polymerization, any known organic solvent can be used without any restriction as long as it is inert to the bicycloorthoester compound (1), but specific examples include benzene, toluene, etc. , xylene, chlorobenzene, dioxane, tetrahydrofuran, dimethylformamide, diethylacetamide and the like are preferably used. The polymer produced by radical polymerization of the bicycloorthoester compound of the present invention and having a bicyclo group in the side chain is in the form of a white powder and is soluble in chloroform, methylene chloride, acetone, tetrahydrofuran, dioxane, and the like. Further, it was found from the infrared absorption spectrum of the above polymer that the ring-opening isomerization rate of the bicyclo group was only 3% or less. In the case of the following bicyclo compound (7) which has a structure similar to the bicycloorthoester compound of the present invention and is a known compound (However, R is an alkyl group.) The ring-opening isomerization rate accompanying radical polymerization reaches about 6%. An increase in the ring-opening isomerization rate not only causes a loss of bicyclo groups, but also causes insolubilization due to crosslinking of the polymer, which significantly deteriorates the subsequent operability of the resulting polymer. Therefore, it is clear that the bicycloorthoester compound (1) of the present invention is a compound that is greatly improved in the above points over known compounds. However, the value of the ring-opening isomerization rate shown here is a value determined by the following method. In other words, when a bicyclo compound undergoes ring-opening isomerization, it produces an ester, so the following two model compounds were selected. These were mixed at a predetermined ratio, a calibration curve was prepared using the absorbance of the ester on the infrared absorption spectrum of the mixture, and the calculation was made from this calibration curve. Moreover, the bicycloorthoester compound (1) of the present invention
can be easily copolymerized with other vinyl group-containing compounds. As the above vinyl group-containing compound,
Generally known ethylenically unsaturated compounds can be used without any restrictions, but specific examples include acrylonitrile, vinyl acetate, maleic anhydride, styrene, methyl acrylate, ethyl acrylate,
Examples include methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate. Furthermore, the bicycloorthoester compound of the present invention
In (1), a cationic ring-opening isomerization polymerization of a bicyclo group can be carried out using a cationic polymerization catalyst. As the cationic polymerization catalyst, in addition to Lewis acids such as boron trifluoride, boron trifluoride, ether complexes, boron trifluoride amine complexes, polymerization means using ultraviolet rays, X-rays, electron beams, etc. can be employed. Examples of cationic polymerization catalysts for ultraviolet polymerization include aromatic diazonium salts, aromatic halonium salts, aromatic onium salts, and the like. The amount of the cationic polymerization catalyst used is usually 0.01 to 15 wt%, and the polymerization temperature is -80 to 250°C, preferably 0 to 200°C. As described above, the bicycloorthoester compound of the present invention is a compound having both a vinyl group and a bicyclo group in one molecule. Therefore, both radical polymerization of vinyl groups and cationic ring-opening isomerization polymerization of bicyclo groups can be carried out. Moreover, because an alkylene group exists between the vinyl group and the bicyclo group, the ring-opening isomerization rate of the bicyclo group in the polymer produced by radical polymerization is about half that of conventionally known bicyclo compounds. It is possible to obtain a purer polymer with less amount. Furthermore, it has the characteristic that insolubilization due to crosslinking does not occur during polymerization. Therefore, the bicycloorthoester compound of the present invention is the most suitable monomer for obtaining a polymer having a bicyclo group in the side chain, which is purer, soluble, and has excellent storage stability, and is suitable for industrial applications such as photoresists. It is a particularly useful material as a raw material for various purposes. In addition, by utilizing the non-shrinkage property in ring-opening isomerization polymerization of bicyclo groups, it can be applied to various industrial applications such as sealing materials, molding materials, casting materials, adhesives, and paints. I can do it. Reference Examples, Examples, and Comparative Examples are given below to further specifically explain the present invention, but the present invention is not limited to these Examples. Example 1 A 200c.c. dropping funnel and reflux condenser were installed.
22.4 g (0.20 mol) of potassium t-butoxide and dry tetrahydrofuran in a 300 c.c. two-necked flask.
150 c.c. was taken and potassium t-butoxide was dissolved under stirring. Then 1-(1-bromopropyl)-4
A solution of 49 g (0.185 mol) of -ethyl-2,6,7-trioxabicyclo[2,2,2]octane dissolved in 50 c.c. of dry tetrahydrofuran was added dropwise from the dropping funnel over about 1 hour. After the dropwise addition was completed, heating was started to reflux the tetrahydrofuran. After 5 hours, the reflux was stopped and the mixture was allowed to cool. After cooling,
The reaction solution was filtered, and the filtrate was concentrated. Next, perform vacuum distillation to obtain a fraction of 73-90℃/0.65mmHg.
67.8℃/0.70mm by further repeating vacuum distillation
3.11 g of Hg fraction was obtained. The yield was 9.1%.
Various measurements of the product thus obtained were as follows. (1) Boiling point 67.8℃/0.70mmHg (2) Infrared absorption spectrum (results are attached as Figure 1) 1645cm -1 (CH 2 =CH-) 1060, 1000,

【式】 (3) 1H−核磁気共鳴吸収スペクトル(その結果
は第2図として添付する。) 測定溶媒:重クロロホルム 標準:テトラメチルシラン
[Formula] (3) 1 H-Nuclear Magnetic Resonance Absorption Spectrum (The results are attached as Figure 2) Measurement solvent: Deuterochloroform Standard: Tetramethylsilane

【表】 (4) 質量分析(FD法) m/e=184(M+[Table] (4) Mass spectrometry (FD method) m/e=184 (M + )

【表】 以上の種々の測定結果より、前記生成物は構造
式が で示される1−アリル−4−エチル−2,6,7
−トリオキサビシクロ〔2,2,2〕オクタンで
ある事が確認できた。 実施例 2 200c.c.滴下ロート及び還流冷却器を取り付けた
300c.c.二口フラスコ中に、カリウム−t−ブトキ
シド18g(0.161mol)と乾燥テトラヒドロフラ
ン150c.c.を取り、撹拌下、カリウム−t−ブトキ
シドを溶解した。次に1−(1−プロモプロピル)
−4−メチル−2,6,7−トリオキサビシクロ
〔2,2,2〕オクタン38g(0.151mol)を乾燥
テトラヒドロフラン50c.c.に溶解した溶液を滴下ロ
ートより滴下した。その後は実施例1と同様の操
作を行ない、下式に示される1−アリル−4−メ
チル−2,6,7−トリオキサビシクロ〔2,
2,2〕オクタンを収率5.5%で得た。 上記ビシクロ化合物の確認は、前述した如き測
定方法により行なつた。即ち、赤外吸収スペクト
ル、1H−核磁気共鳴吸収スペクトル(その結果
は、第3図として添付する。)よりビシクロ基の
存在が確認され、又、質量分析よりm/e=170
(M+)の分子イオンピークが確認された。又、元
素分析の結果は表−3に示したとおりであつた。
[Table] From the above various measurement results, the structural formula of the product is 1-allyl-4-ethyl-2,6,7 represented by
- It was confirmed that it was trioxabicyclo[2,2,2]octane. Example 2 200c.c. Adding funnel and reflux condenser installed
18 g (0.161 mol) of potassium t-butoxide and 150 cc of dry tetrahydrofuran were placed in a 300 c.c. two-necked flask, and the potassium t-butoxide was dissolved under stirring. Then 1-(1-bromopropyl)
A solution of 38 g (0.151 mol) of -4-methyl-2,6,7-trioxabicyclo[2,2,2]octane dissolved in 50 c.c. of dry tetrahydrofuran was added dropwise from the dropping funnel. Thereafter, the same operation as in Example 1 was carried out, and 1-allyl-4-methyl-2,6,7-trioxabicyclo[2,
2,2]octane was obtained in a yield of 5.5%. The above-mentioned bicyclo compound was confirmed by the measuring method described above. That is, the presence of a bicyclo group was confirmed by the infrared absorption spectrum and the 1 H-nuclear magnetic resonance absorption spectrum (the results are attached as Figure 3), and the mass spectrometry revealed that m/e = 170.
A molecular ion peak of (M + ) was confirmed. In addition, the results of elemental analysis were as shown in Table 3.

【表】 実施例 3、4 原料として、1−(1−ブロモプロピル)−2,
6,7−トリオキサビシクロ〔2,2,2〕オク
タン及び1−(1−ブロモプロピル)−4−ビドロ
キシメチル−2,6,7−トリオキサビシクロ
〔2,2,2〕オクタンを用いた以外は、全て実
施例1と同様の操作を行ない、表−4の生成物を
合成した。収率はそれぞれ15.1%、12%であつ
た。生成物の確認は、前述した如き種々の測定方
法により行なつた。即ち、赤外吸収スペクトル及
1H−核磁気共鳴吸収スペクトルよりビシクロ
基の存在が確認され、又、質量分析及び元素分析
の結果は表−4に示したとおりである。
[Table] Examples 3 and 4 As raw materials, 1-(1-bromopropyl)-2,
Except for using 6,7-trioxabicyclo[2,2,2]octane and 1-(1-bromopropyl)-4-hydroxymethyl-2,6,7-trioxabicyclo[2,2,2]octane All operations were performed in the same manner as in Example 1, and the products shown in Table 4 were synthesized. The yields were 15.1% and 12%, respectively. The product was confirmed by various measuring methods as described above. That is, the presence of a bicyclo group was confirmed by infrared absorption spectrum and 1 H-nuclear magnetic resonance absorption spectrum, and the results of mass spectrometry and elemental analysis are shown in Table 4.

【表】 参考例1及び比較例1 実施例1で製造した1−アリル−4−エチル−
2,6,7−トリオキサビシクロ〔2,2,2〕
オクタン0.5111gをアンプル中に取り、更にジ−
t−ブチルパーオキシド40.6mg(10mol%対ビシ
クロ化合物)を加えた。このアンプルは、ドライ
アイス−メタノール中で冷却しながら真空ポンプ
で減圧し、封管した。次に、この封管したアンプ
ルを120℃オイルバス中で24時間重合を行なつた。
その後アンプルを破り、内容物を約1c.c.の塩化メ
チレンに溶解した後、ヘキサン中に沈澱させた。
沈澱した重合体は、濾過乾燥する事により白色粉
末として得られ、重合率は53.8%であつた。この
重合体の赤外吸収スペクトルを測定した結果1720
cm-1にエステルの吸収が微少に観測され、そのエ
ステルの吸収の吸光度の値は前述した検量線よ
り、開環異性化率2.4%に相当した。 比較例として、1−ビニル−4−エチル−2,
6,7−トリオキシサビシクロ〔2,2,2〕オ
クタンを用いて、上記と同様にしてジ−t−ブチ
ルパーオキシドを10mol%加えて120℃で24時間
重合を行なつた。その結果、白色粉末状重合体を
得、その開環異性化率は5.2%であつた。 又、参考例1で製造した重合体は、室温及び室
内湿度下で2ヶ月後でも溶解性に何ら変化が見ら
れず、赤外吸収スペクトルに於けるビシクロ基の
吸収についても変化が観測されなかつた。 比較例 2 下記式で示される1−エチル−4−メタクリロ
イルオキシメチル−2,6,7−トリオキサビシ
クロ〔2,2,2〕オクタン約0.5gをアンプル
中に取り、次に表−5に示した如き開始剤及び溶
媒を添加した。続いて、アンプルをドライアイス
−メタール中で冷却しながら封管した。封管後、
アンプルはオイルバス中で表−5に示した如き条
件下で重合を行なつた。結果も表−5に併記し
た。
[Table] Reference Example 1 and Comparative Example 1 1-allyl-4-ethyl- produced in Example 1
2,6,7-trioxabicyclo[2,2,2]
Take 0.5111g of octane in an ampoule and add
40.6 mg of t-butyl peroxide (10 mol % vs. bicyclo compound) was added. The ampoule was cooled in dry ice-methanol, the pressure was reduced using a vacuum pump, and the tube was sealed. Next, this sealed ampoule was polymerized in a 120°C oil bath for 24 hours.
The ampoule was then broken and the contents dissolved in about 1 c.c. of methylene chloride and then precipitated into hexane.
The precipitated polymer was obtained as a white powder by filtration and drying, and the polymerization rate was 53.8%. The result of measuring the infrared absorption spectrum of this polymer was 1720
A slight absorption of the ester was observed at cm -1 , and the absorbance value of the ester absorption corresponded to a ring-opening isomerization rate of 2.4% from the above-mentioned calibration curve. As a comparative example, 1-vinyl-4-ethyl-2,
Using 6,7-trioxysabicyclo[2,2,2]octane, 10 mol% of di-t-butyl peroxide was added and polymerization was carried out at 120°C for 24 hours in the same manner as above. As a result, a white powdery polymer was obtained, and its ring-opening isomerization rate was 5.2%. In addition, the polymer produced in Reference Example 1 showed no change in solubility even after two months at room temperature and indoor humidity, and no change was observed in the absorption of bicyclo groups in the infrared absorption spectrum. Ta. Comparative Example 2 Approximately 0.5 g of 1-ethyl-4-methacryloyloxymethyl-2,6,7-trioxabicyclo[2,2,2]octane represented by the following formula was placed in an ampoule, and then the Initiator and solvent as indicated were added. Subsequently, the ampoule was sealed while cooling in dry ice-metal. After sealing the tube,
The ampoules were polymerized in an oil bath under the conditions shown in Table 5. The results are also listed in Table-5.

【表】 又、No.3で生成した可溶性重合体は、室温及び
室内湿度下、1ヶ月後に不溶化した。 参考例 2 実施例2、3及び4で製造した本発明のビシク
ロ化合物を、参考例1と同様にしてアンプル中に
取り、ジ−t−ブチルパーオキシド10mol%を加
え、ドライアイスメタノール中で冷却下、減圧に
しながら封管を行なつた。次に、この封管したア
ンプルをオイルバス中で120℃、24時間重合を行
なつた。重合後の処理は、参考例1と同様に行な
つた。得られた重合体は白色粉末状であり、その
開環異性化率は表−6に示した通りであつた。
[Table] Furthermore, the soluble polymer produced in No. 3 became insolubilized after one month at room temperature and indoor humidity. Reference Example 2 The bicyclo compounds of the present invention produced in Examples 2, 3, and 4 were taken into an ampoule in the same manner as in Reference Example 1, 10 mol% of di-t-butyl peroxide was added, and the mixture was cooled in dry ice methanol. The tube was sealed under reduced pressure. Next, this sealed ampoule was polymerized in an oil bath at 120°C for 24 hours. The treatment after polymerization was carried out in the same manner as in Reference Example 1. The obtained polymer was in the form of a white powder, and its ring-opening isomerization rate was as shown in Table 6.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、実施例1で得られたビシ
クロ化合物の赤外吸収スペクトル及び1H−核磁
気共鳴吸収スペクトルを示す。第3図は、実施例
2で得られたビシクロ化合物の1H−核磁気共鳴
吸収スペクトルを示す。
1 and 2 show the infrared absorption spectrum and 1 H-nuclear magnetic resonance absorption spectrum of the bicyclo compound obtained in Example 1. FIG. 3 shows the 1 H-nuclear magnetic resonance absorption spectrum of the bicyclo compound obtained in Example 2.

Claims (1)

【特許請求の範囲】 1 一般式 (但し、R1は水素原子又はアルキル基であり、 R2は水素原子、アルキル基又はヒドロキシア
ルキル基であり、 nは1〜4の整数である。) で示されるビシクロオルソエステル化合物。
[Claims] 1. General formula (However, R 1 is a hydrogen atom or an alkyl group, R 2 is a hydrogen atom, an alkyl group, or a hydroxyalkyl group, and n is an integer of 1 to 4.) A bicycloorthoester compound represented by the following.
JP59074895A 1984-04-16 1984-04-16 Bicycloortho ester compound Granted JPS60218393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59074895A JPS60218393A (en) 1984-04-16 1984-04-16 Bicycloortho ester compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59074895A JPS60218393A (en) 1984-04-16 1984-04-16 Bicycloortho ester compound

Publications (2)

Publication Number Publication Date
JPS60218393A JPS60218393A (en) 1985-11-01
JPH0455194B2 true JPH0455194B2 (en) 1992-09-02

Family

ID=13560577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59074895A Granted JPS60218393A (en) 1984-04-16 1984-04-16 Bicycloortho ester compound

Country Status (1)

Country Link
JP (1) JPS60218393A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433182A (en) * 1987-07-30 1989-02-03 Agency Ind Science Techn Sparingly shrinking impregnating agent for porous body and sealing pore of porous body therewith

Also Published As

Publication number Publication date
JPS60218393A (en) 1985-11-01

Similar Documents

Publication Publication Date Title
Hall, Jr et al. Trisubstituted ethylenes containing halo, cyano, and carbomethoxy substituents. New reactive comonomers
Srisiri et al. Influence of Lewis Acids on the Cycloaddition Reactions of Cyano-and Carbomethoxy-Substituted Olefins
JPS5915912B2 (en) Production method of organosilane
US2992269A (en) Manufacture of cycloalkyl esters
JPH0455194B2 (en)
US20240025838A1 (en) Ester compound
US3681438A (en) Preparation of bicyclo (2.2.1) hept-2-en-ylmethyl acrylate
US3349142A (en) Process for the preparation of alkylated di-p-xylylenes
US3340290A (en) 1-cyano-4-hydrocarbylbicyclo[2.1.1] hexanes and process of preparation
JPH0447675B2 (en)
JPH0236204A (en) Production of isobutylene-based polymer having functional terminal
Fukuda et al. Polymerization of vinylketene cyclic acetals
US7388064B2 (en) Stereoregular polymer and monomer thereof and process for production of both
US4997988A (en) Oxa-organic sulfur compounds, their preparation and use
Lee et al. Polymerization of 4-Methylene-1, 3-dioxolane Derivatives
Clever et al. Spontaneous homopolymerization competes with Diels-Alder cycloaddition of 1-aryl-1, 3-butadienes to dienophiles containing a leaving group
CN1307165C (en) 4-methyl-5-formylthiazole preparation method
US4424398A (en) Process for preparation of energetic plasticizers
US4891444A (en) Oxa-organic sulfur compounds, their preparation and use
JP3902849B2 (en) Epoxy resin composition containing bisepoxy-1,5,7,11-tetraoxaspiro [5.5] undecane derivative
US3510474A (en) Reaction of cyanogen azide with selected organic compounds
Lee et al. Synthesis and ring-opening polymerization of 1, 2-disubstituted cyclobutanes
CN117886756A (en) Cationic imidazole acrylate and synthetic method thereof
US4962169A (en) Oxa-organic sulfur compounds, their preparation and use
JPH0149717B2 (en)