JPH0455150B2 - - Google Patents

Info

Publication number
JPH0455150B2
JPH0455150B2 JP4745786A JP4745786A JPH0455150B2 JP H0455150 B2 JPH0455150 B2 JP H0455150B2 JP 4745786 A JP4745786 A JP 4745786A JP 4745786 A JP4745786 A JP 4745786A JP H0455150 B2 JPH0455150 B2 JP H0455150B2
Authority
JP
Japan
Prior art keywords
weight
fireproof
glaze
steel frame
fireproof board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4745786A
Other languages
Japanese (ja)
Other versions
JPS62207782A (en
Inventor
Yoshihiro Terashi
Katsushi Usami
Hirotsuyo Takizawa
Mitsuo Nakajima
Tadashi Fujisaki
Teruo Origasa
Kyoshi Ikura
Toshio Ooyama
Kazutaka Ookawara
Yoshitaka Amano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP4745786A priority Critical patent/JPS62207782A/en
Publication of JPS62207782A publication Critical patent/JPS62207782A/en
Publication of JPH0455150B2 publication Critical patent/JPH0455150B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Building Environments (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、高層の建築物において柱、粱に用い
る鉄骨を火災から守るための耐火被覆に関する。 (従来の技術) 高層建築物は大部分のものが鉄骨を柱、粱とし
て組み立て、その表面を化粧板で覆つて行く、い
わゆる鉄骨造(S造)になつているが、このよう
な建築物が火災に遭遇すると鉄材は1000℃以上に
なるという焼損してしまうために鉄骨の表面は耐
火で被覆する必要がある。 このような耐火被覆作業は、これまで耐火材を
作業員が鉄骨の所定の厚さまで塗り付けて行く
か、耐火材をノズルの先端から放出して鉄骨に吹
き付けて行く方式が採用されてきた。 (発明が解決しようとする問題点) 上述のような耐火被覆作業は耐火材が粉状であ
るために塗り付けや吹き付け作業中に多量の耐火
材が空間に飛散したり、落下したものは床の上に
かなりの厚さで積層されていた。 そこで、作業員が耐火材を吸い込まないように
するために防塵マスクを着けて災害を防止した
り、吹き付け作業をロボツト化することによつて
そのような悪環境から作業員を守る方策が種々検
封されてきた。 しかし、本質的に粉状の耐火材を鉄骨に吹き付
けるという作業内容に変わりがないために、耐火
材の空中飛散と床上へ集積された耐火材の清掃作
業の改良は完全に達成されていなかつた。 (問題点を解決するための手段) 本発明は、上記のような鉄骨への耐火材吹き付
けと全く無しようとするもので、セメント20〜65
重量%及び骨材80〜35重量%よりなる混合物の総
量100重量%に対し、生コークス4.5〜14重量%、
鱗片状マイカ4.5〜9重量%、硼砂5〜15重量%、
釉薬5〜30重量%及び有機発泡性接着剤20〜45重
量%が配合された配合物で成形した耐火板を鉄骨
の外形に合わせた矩形状に加工し、該矩形状耐火
板を鉄骨の周辺に配設して相互間を固着すること
で鉄骨の耐火被覆を施行し、清潔にして迅速な作
業状態を導入しようとするものである。 (作用) 上記配合物において、セメントは結合材として
高強度化に寄与するほか、火災加熱を受けた際に
耐火材として作用する。そして、特にセメントと
してアルミナセメントを使用すると、流し込み成
形体の均一、微細な発泡化が増進され、可撓性が
あり強度の高い耐火板が得られ、そしてその耐火
性が上昇する。さらに生コークス(ピツチコーク
ス)は250℃以上の非酸化性雰囲気において、耐
火性で高温強度の高いメソフエース結晶構造の炭
素質物を生成し、配合物組織中へ浸透して、本発
明に係る耐火板を耐火性で高強度のものとする働
きがある。 鱗片状マイカは本来その厚さ方向には伝熱性が
低いものであるため、耐火板面外部より急激な加
熱を受けても、耐火板面に沿つて層状に配列され
た鱗片状マイカがその熱を耐火板内部へ多くは伝
熱せず、耐火板内部を保護するものである。硼砂
の添加は、硼砂が5あるいは10水和物を形成して
多物の結晶を保有していることから、温度が100
℃以上になるとその結晶水の放出による、吸熱反
応と放出水とにより耐火板の燃焼を阻止し、さら
に高温度上昇時にはアルミナ、珪石、石灰、鱗片
状マイカ等の無機質成分と反応してガ配合物を生
成し、結合剤あるいは高熱遮断材を形成する。 骨材として石灰石を用いると、昇温環境下にお
かれた場合、熱分解してCO2ガスを発生し、気泡
内のO2含有率を低下させるので耐火板中に残留
して難燃性向上に寄与するとともに生コークスが
メソフエースとなるのを助長する。 有機発泡性接着材としては、イソシアネート
系、ウレタン系、エポキシ系のものなどが用いら
れ、耐火板を多孔質軽量化する役割を果たす。こ
れらは該耐火板製造時及び通常温度において、各
配合組成物成分相互の接着、形状保持剤として、
さらに製品の可撓化剤して作用する。さらに発泡
剤として例えばポリシロサン系の自己発泡性のも
のを用いてもよい。 釉薬としては、1種類のものを使用するのでは
なく、比較的高熔融点のもの、普通熔融点のもの
及び低熔融点のものというように、数種の熔融点
のものを組み合わせ使用することが好ましい。低
熔融点のものとして例えば、PbO−B2O3系、
B2O3−PbO−Tl2O系、NaO−P2O5系、P2O5
PbO系、NaO−P2O5−SiO2系のものあるいはゼ
ーケル錐組成の各種融点のもの等のものを選択、
使用することができる。 この低熔融点釉薬は、耐火板が火災等により加
熱された際に、まず前記硼砂100〜200℃ではその
結晶水を放出して耐火(防火)作用を発揮した
後、200℃以上になつたときに耐火作用を果たす
ことになるものである。なお、他の配合成分の中
にも釉薬として作用させることのできるものもあ
り、例えば硼砂は無水物が740℃付近で熔融して
ガラスとなるのでその温度での耐火釉薬として作
用させることができる。 普通熔融点、高熔融点の釉薬としては、周知の
ほうろう釉薬、陶磁器釉薬等の中から適宜に選
択、使用すればよい。 釉薬の使用は、各種熔融点の釉薬粉末、例え
ば、400、600、800、℃のものを用意し、これら
を同時に建材用配合物中に混和して行う。この場
合、外部から加熱に対しては、例えば400℃程度
の加熱に対して熔融点400℃の釉薬が熔融してガ
ラス膜を形成し、600℃程度の加熱に対しては熔
融点600℃の釉薬によりガラス膜を形成すること
によつて、外熱から内部を保護する。 このため、該耐火板は外部高温熱から鉄骨を保
護する効果が非常に大きく、火災等により加熱さ
れたときに耐火板内に釉薬の加熱、熔融によりガ
ラス層を形成して外界から加熱をシヤツトアウト
する作用をするので、耐火、断熱性の優れた耐火
板を提供することができる。 また、上記配合物に適当量の水を添加、混練し
て成形した耐火板は鋸引き、切断加工が可能であ
ることから、建築現場にこの耐火板を搬入し、鉄
骨の形状に合わせて随時適当な形に耐火板を切削
加工する。 加工した耐火板を各々鉄骨に取り付けてから接
着剤、釘等の固着手段で耐火板を互いに接合して
一体化する。 (実施例) 第1図、第2図には本発明による被覆方法を柱
に適用する場合を示し、第3図、第4図、第5図
には粱に適用する場合を各々示している。 図において1は柱、粱の鉄骨、2は耐火板、3
は捨板、4はピースであり、5は丸釘、6は接着
剤等の固着部材を示す。耐火板2は、アルミナセ
メント2000Kg、石灰岩粉砕物400Kg、生コークス
(軟化点約430℃、固定炭素88.8%、揮発分10.7
%、灰分0.5%)25Kg、鱗片状雲母25Kg、硼砂
(10水和物)90Kg、イソシアネート系発泡性接着
剤(水溶性ウレタンプレポリマー)250Kgとから
なる粉末混合物に水250Kgを添加混合して得られ
た餅状のものを、24時間、室温で乾燥し、長さ
1.8m、幅0.9m、厚さ40mmの板状に成形される。 このパネルの物理特性は以下のとおりである。 抗折強度:22.5Kg/cm2、 圧縮強度:28.4Kg/cm2、 カサ比重:1.09、 また、耐火、断熱特性は次のように確認され
た。即ち、以上のごとくして厚さ50mmのパネルを
制作し、第6図図示のごとく表面部から裏面にか
けて、深さ(厚さ)15mmの位置(第1地点)、深
さ32.5mmの位置(第2地点)、及び裏面(第3地
点)に、それぞれ温度センサーを配設したものに
対し、その表面部に火災を当てて、耐火、断熱性
を測定した結果は第7図に示す通りである。図
中、線1は第1地点、線2は第2地点、線3は第
3地点の時間−温度曲線であり、線Pはパネル表
面温度曲線、線Jは日本工業規格(JIS)に定め
られたパネルの耐火試験加熱温度曲線である。 このグラフから、2時間加熱で加熱面が1010℃
程度になつても、その反対側付近の第3地点にお
ける本発明による耐火板の温度は150℃と殆んど
上昇せず、建築基準法施工令第107条規定におけ
る柱、粱の平均、最高温度の350、450℃以下のい
ずれをも満足しており、耐火断熱性が非常に優れ
ていることが判る。 上記施工令第107条規定は柱、粱についての耐
火性能の一般的目安とされているが、この性能を
満たす耐火被覆板としては、従来から石綿珪酸カ
ルシウム系が用いられており、この場合の板厚は
次表の様になつている。
(Industrial Application Field) The present invention relates to a fire-resistant coating for protecting steel frames used for columns and pillars in high-rise buildings from fire. (Conventional technology) Most high-rise buildings are constructed of steel frames as pillars and walls, and the surface is covered with decorative boards, which is the so-called steel frame construction (S construction). If a fire were to occur, the steel material would be exposed to temperatures of over 1,000 degrees Celsius and would burn out, so the surface of the steel frame must be coated with fireproof material. Until now, this kind of fireproof coating work has been carried out either by having workers apply the refractory material to the steel frame to a predetermined thickness, or by ejecting the refractory material from the tip of a nozzle and spraying it onto the steel frame. (Problems to be Solved by the Invention) In the above-mentioned fireproof covering work, since the fireproofing material is in powder form, a large amount of the fireproofing material is scattered into the space during the painting or spraying work, and fallen materials are scattered on the floor. It was laminated to a considerable thickness on top. Therefore, various measures have been investigated to protect workers from such adverse environments, such as wearing dust masks to prevent workers from inhaling refractory materials and using robots to perform spraying work. It's been sealed. However, since the work involved essentially spraying powdered refractory material onto steel frames, improvements in the cleaning process for the airborne refractory materials and the refractory materials accumulated on the floor have not been completely achieved. . (Means for Solving the Problems) The present invention aims to completely eliminate the above-mentioned spraying of refractory material onto steel frames, and
4.5-14% by weight of raw coke, based on 100% by weight of the total mixture consisting of 80-35% by weight of aggregate and 80-35% by weight of raw coke;
scaly mica 4.5-9% by weight, borax 5-15% by weight,
A fireproof plate made of a compound containing 5 to 30% by weight of glaze and 20 to 45% by weight of an organic foam adhesive is processed into a rectangular shape that matches the external shape of the steel frame, and the rectangular fireproof plate is placed around the steel frame. The aim is to provide a fireproof coating to the steel frame by placing them between the two and securing them together, thereby creating a cleaner and faster working environment. (Function) In the above compound, cement not only contributes to high strength as a binder but also acts as a fireproof material when heated by fire. In particular, when alumina cement is used as the cement, uniform and fine foaming of the cast molded product is promoted, a flexible and strong fireproof board is obtained, and its fire resistance is increased. Furthermore, raw coke (pitch coke) produces a carbonaceous material with a mesophase crystal structure that is fire resistant and has high high temperature strength in a non-oxidizing atmosphere at a temperature of 250°C or higher, and this material penetrates into the composition of the compound to form the fireproof plate of the present invention. It has the function of being fire-resistant and high-strength. Since scaly mica inherently has low heat conductivity in the thickness direction, even if it is rapidly heated from outside the refractory plate surface, the scaly mica arranged in layers along the refractory plate surface will absorb the heat. Most of the heat does not transfer to the inside of the fireproof board, and it protects the inside of the fireproof board. Borax is added when the temperature is 100°C because borax forms penta- or decahydrates and has polycrystals.
When the temperature exceeds ℃, the endothermic reaction and released water prevent the fireproof board from burning, and when the temperature rises to a high temperature, it reacts with inorganic components such as alumina, silica, lime, and scaly mica, causing moth compounding. to form a binder or high heat barrier. When limestone is used as aggregate, when placed in an environment with elevated temperatures, it thermally decomposes and generates CO 2 gas, reducing the O 2 content in the bubbles and remaining in the fireproof board, making it flame retardant. It contributes to the improvement of raw coke and helps the raw coke to become mesophase. Isocyanate-based, urethane-based, and epoxy-based adhesives are used as the organic foam adhesive, and serve to make the fireproof board porous and lightweight. These act as adhesives and shape-retaining agents between the components of the blended composition during the manufacture of the fireproof board and at normal temperatures.
It also acts as a flexibilizing agent for the product. Further, as a foaming agent, for example, a self-foaming foaming agent such as polysilosane may be used. Instead of using one type of glaze, use a combination of several types of glazes, such as those with a relatively high melting point, those with a normal melting point, and those with a low melting point. is preferred. For example, PbO−B 2 O 3 type,
B 2 O 3 −PbO−Tl 2 O system, NaO−P 2 O 5 system, P 2 O 5
Select PbO-based, NaO-P 2 O 5 -SiO 2- based products, or products with various melting points of Seekel conical composition.
can be used. This low melting point glaze exhibits a fireproofing effect by releasing its crystal water at 100 to 200 degrees Celsius when the fireproof plate is heated due to a fire, etc. Sometimes it has a fireproofing effect. Note that some of the other ingredients can also act as a glaze; for example, borax melts at around 740°C to form glass, so it can act as a fire-resistant glaze at that temperature. . The glaze with a normal melting point or a high melting point may be appropriately selected and used from well-known enamel glazes, ceramic glazes, and the like. The glaze is used by preparing glaze powders with various melting points, for example, 400, 600, 800°C, and mixing them into the building material formulation at the same time. In this case, when heated from the outside, for example, a glaze with a melting point of 400°C will melt and form a glass film when heated to about 400°C, and a glaze with a melting point of 600°C will melt when heated to about 600°C. By forming a glass film with glaze, the interior is protected from external heat. For this reason, the fireproof board has a very large effect in protecting the steel frame from external high-temperature heat, and when heated due to a fire, etc., the glaze is heated and melted to form a glass layer inside the fireproof board, shutting out the heat from the outside world. Therefore, it is possible to provide a fireproof board with excellent fire resistance and heat insulation properties. In addition, the fireproof board made by adding an appropriate amount of water to the above compound and kneading it can be sawed and cut, so the fireproof board can be delivered to the construction site and shaped as needed to match the shape of the steel frame. Cut the fireproof board into an appropriate shape. After each processed fireproof board is attached to a steel frame, the fireproof boards are joined to each other using adhesive, nails, or other fixing means to integrate the fireproof boards. (Example) Fig. 1 and Fig. 2 show the case where the coating method according to the present invention is applied to a pillar, and Fig. 3, Fig. 4, and Fig. 5 show the case where it is applied to a rice cake. . In the figure, 1 is a pillar, a steel frame, 2 is a fireproof plate, and 3
4 is a piece, 5 is a round nail, and 6 is a fixing member such as adhesive. Fireproof board 2 consists of 2000 kg of alumina cement, 400 kg of crushed limestone, and raw coke (softening point approximately 430°C, fixed carbon 88.8%, volatile content 10.7
%, ash content 0.5%), 25 kg of scaly mica, 90 kg of borax (decahydrate), and 250 kg of isocyanate foaming adhesive (water-soluble urethane prepolymer). The resulting mochi-like material is dried at room temperature for 24 hours, and the length
It is formed into a plate shape of 1.8m, width 0.9m, and thickness 40mm. The physical properties of this panel are as follows. Bending strength: 22.5Kg/cm 2 Compressive strength: 28.4Kg/cm 2 Bulk specific gravity: 1.09 Fire resistance and heat insulation properties were confirmed as follows. That is, a panel with a thickness of 50 mm was produced as described above, and as shown in Fig. 6, from the front side to the back side, the depth (thickness) was 15 mm (first point) and 32.5 mm (first point). Figure 7 shows the results of measuring fire resistance and heat insulation by exposing the front surface of a device with temperature sensors installed at the second point) and back side (third point) to a fire. be. In the figure, line 1 is the time-temperature curve at the first point, line 2 at the second point, line 3 at the third point, line P is the panel surface temperature curve, and line J is defined by the Japanese Industrial Standards (JIS). This is the heating temperature curve for the fire resistance test of the panel. From this graph, the heating surface reaches 1010℃ after 2 hours of heating.
However, the temperature of the fireproof board according to the present invention at the third point near the opposite side hardly rose to 150°C, which is higher than the average and maximum temperature of the pillars and casings as stipulated in Article 107 of the Construction Order of the Building Standards Law. It satisfies both the temperature requirements of 350°C and 450°C, indicating that it has extremely excellent fire resistance and insulation properties. The provisions of Article 107 of the Construction Order mentioned above are considered to be a general guideline for the fire resistance performance of pillars and pillars, but asbestos calcium silicate based fire resistant covering boards have traditionally been used to meet this performance. The plate thickness is as shown in the table below.

【表】 上表と本発明による被覆板の性能を比較してみ
ると、1時間では板厚15mm、2時間では32.5mm及
び3時間では推定値であるが50mmといずれの場合
にも10〜5mmの範囲で薄い板材を採用可能である
ことが判る。このことは高層もしくは超高層の建
物の場合には大きなコスト差となつて現れてくる
ものである。 耐火板2は規定寸法の平板を建築現場に持ち込
んで鋸等によつて適用する鉄骨1の形状に合わせ
て複数の矩形状として切削加工したもので、これ
を各図に示すように必要に応じて用いる捨板3、
ピース4の補助部材を用いながら鉄骨面に取り付
けて行くものである。 次いで、耐火板2の相互間を接合して一体にす
るが、本発明による耐火板は上述のように切削が
できると共に釘を打ち込むこともできるので、丸
釘等を用いて普通の木材のように簡単に作業する
ことができる。 また、本発明による耐火板の配合物は粉体を水
で混練し、各耐火板の間に付着させて圧接発泡さ
せるだけで簡単に一体化させることができる。 さらに、建築現場で平板から所定の矩形状に切
削加工する際に生じる削屑を集めてセメント用の
軽量骨材として再利用可能であり、極めて経済的
である。 (効果) 本発明による耐火被覆方法では上述のような配
合物で形成した耐火材を採用しているので、耐火
板は、耐火性に優れており、さらに軽量で曲げ強
度が高く、可撓性にも優れている。 このため、板厚の薄い被覆板を採用することで
低コストで済み、地震時にも柱、粱の変形に容易
に追随し耐火層にクラツクを生ずることがない。 さらに、耐火板は鋸引き、釘打ち及び切断加工
ができるので、施工が容易であり、しかも作業現
場は切削の飛散もなく木工程度の汚れと清掃で充
分である。 従つて、その耐火被覆作業は簡単に短い工期で
安全に実施できる効果を奏するものである。
[Table] Comparing the above table and the performance of the coated plate according to the present invention, the plate thickness is 15 mm for 1 hour, 32.5 mm for 2 hours, and 50 mm (estimated value) for 3 hours. It can be seen that it is possible to use a thin plate material within the range of 5 mm. This results in a large cost difference in the case of high-rise or super-high-rise buildings. The fireproof board 2 is a flat plate of specified dimensions that is brought to the construction site and cut into multiple rectangular shapes using a saw or the like to match the shape of the steel frame 1 to be applied. Waste board 3 used for
It is attached to the steel frame surface using the auxiliary member of piece 4. Next, the fireproof boards 2 are joined together to form an integral piece, but since the fireproof board according to the present invention can be cut as described above and can also be driven with nails, it can be cut like ordinary wood using round nails. can be easily worked on. Further, the composition of the fireproof board according to the present invention can be easily integrated by simply kneading the powder with water, adhering the mixture between each fireproof board, and foaming them under pressure. Furthermore, it is possible to collect the swarf generated when cutting a flat plate into a predetermined rectangular shape at a construction site and reuse it as a lightweight aggregate for cement, which is extremely economical. (Effects) Since the fireproof coating method according to the present invention uses a fireproof material made of the above-mentioned compound, the fireproof board has excellent fire resistance, is lightweight, has high bending strength, and is flexible. It is also excellent. Therefore, by using a thin covering plate, costs can be reduced, and even in the event of an earthquake, the deformation of the pillars and casings will be easily followed and no cracks will occur in the fireproof layer. Furthermore, since the fireproof board can be sawed, nailed, and cut, it is easy to install, and the work site is free from scattering of cuttings, and cleaning is sufficient during the woodworking process. Therefore, the fireproof coating work can be carried out easily and safely in a short period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明による耐火被覆方法を
柱に適用する例を示し、第3〜5図は同じく粱に
適用する場合の施工図である。また、第6図、第
7図は、本発明に用いる耐火板ま耐火断熱特性を
示すための温度センサーの配置図及びその試験結
果を示す実験データである。 第1〜第3図において、1は鉄骨、2は耐火
板、3は捨板、4はピース、5は丸釘、6は接着
剤、7は床を示している。
FIGS. 1 and 2 show an example in which the fireproof coating method according to the present invention is applied to a column, and FIGS. 3 to 5 are construction drawings in which the method is similarly applied to a column. Moreover, FIGS. 6 and 7 are a layout diagram of a temperature sensor for showing the fireproof insulation properties of the fireproof plate used in the present invention, and experimental data showing the test results thereof. In Figures 1 to 3, 1 is a steel frame, 2 is a fireproof board, 3 is a scrap board, 4 is a piece, 5 is a round nail, 6 is an adhesive, and 7 is a floor.

Claims (1)

【特許請求の範囲】 1 セメント20〜65重量%及び骨材80〜35重量%
よりなる混合物の総量100重量%に対し、生コー
クス4.5〜14重量%、鱗片状マイカ4.5〜9重量
%、硼砂5〜15重量%、釉薬5〜30重量%及び有
機発泡性接着剤20〜45重量%が配合された配合物
で成形した耐火板を鉄骨の外形に合わせた矩形状
に加工し、該矩形状耐火板を鉄骨の周辺に配設し
て相互間を固着する鉄骨の耐火被覆方法。 2 固着が、セメント20〜65重量%及び骨材80〜
35重量%よりなる混合物の総量100重量%に対し、
生コークス4.5〜14重量%、鱗片状マイカ4.5〜9
重量%、硼砂5〜15重量%、釉薬5〜30重量%及
び有機発泡性接着剤20〜45重量%が配合された配
合物よりなる接着剤によりなされることを特徴と
する特許請求の範囲第1項記載の鉄骨の耐火被覆
方法。
[Claims] 1. 20-65% by weight of cement and 80-35% by weight of aggregate.
4.5-14% by weight of raw coke, 4.5-9% by weight of scaly mica, 5-15% by weight of borax, 5-30% by weight of glaze, and 20-45% by weight of organic foam adhesive based on the total amount of 100% by weight of the mixture consisting of: A fireproof coating method for a steel frame, in which a fireproof plate formed from a compound with a weight percentage of . 2. Adhesion is 20~65% by weight of cement and 80~80% of aggregate.
For a total of 100% by weight of a mixture consisting of 35% by weight,
Raw coke 4.5-14% by weight, scaly mica 4.5-9
% by weight, 5 to 15% by weight of borax, 5 to 30% by weight of glaze, and 20 to 45% by weight of an organic foam adhesive. The fireproof covering method for a steel frame according to item 1.
JP4745786A 1986-03-06 1986-03-06 Refractory coating for steel frame Granted JPS62207782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4745786A JPS62207782A (en) 1986-03-06 1986-03-06 Refractory coating for steel frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4745786A JPS62207782A (en) 1986-03-06 1986-03-06 Refractory coating for steel frame

Publications (2)

Publication Number Publication Date
JPS62207782A JPS62207782A (en) 1987-09-12
JPH0455150B2 true JPH0455150B2 (en) 1992-09-02

Family

ID=12775680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4745786A Granted JPS62207782A (en) 1986-03-06 1986-03-06 Refractory coating for steel frame

Country Status (1)

Country Link
JP (1) JPS62207782A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2515195B2 (en) * 1991-10-04 1996-07-10 ニチアス株式会社 Calcium silicate refractory coated board and its manufacturing method
JP2515197B2 (en) * 1991-11-01 1996-07-10 ニチアス株式会社 Calcium silicate refractory coated board and its manufacturing method

Also Published As

Publication number Publication date
JPS62207782A (en) 1987-09-12

Similar Documents

Publication Publication Date Title
JP2772354B2 (en) Flame retardant additive composition
CA1295068C (en) Fire-resistant composition
JP5535406B2 (en) Coating material
JPH0455150B2 (en)
JP5528631B2 (en) Laminated body
JPH0815766B2 (en) Fireproof / fireproof coated mat
US8268062B2 (en) Coating and method for producing resistant and insulated pipeline structures
JPH0430306Y2 (en)
JP4069464B2 (en) Foamed fireproof sheet composition and foamed fireproof sheet
JPH02136486A (en) Fireproof safe
KR100344675B1 (en) The sprayed fire-resistive materials
US20220098874A1 (en) Fire resistant cladding material
JPH0688824B2 (en) Inflatable inorganic material
JPH107475A (en) Refractory heat insulating material
JPS59111986A (en) Dressing material fusion-adhered foam lightweight body
JPH0579634B2 (en)
JPH0472786B2 (en)
JPS62128981A (en) Tough, high sound-insulation and fire-resistance construction panel
JP2004035378A (en) Heat expandable refractory material composition
JPS62128980A (en) Pc curtain wall
JPS62123082A (en) Door wall
KR20230082123A (en) Nonflammable Fire-resistant Coating Composition and an Article Manufactured with the Same
KR20230002345U (en) Fire block for reducing harmful gases
KR200344473Y1 (en) Noncombustible panel for construction
JPH0742270A (en) Fireproof covering material for steel frame