JPH0455041A - Multi-nozzle for producing rapidly cooled thin strip - Google Patents

Multi-nozzle for producing rapidly cooled thin strip

Info

Publication number
JPH0455041A
JPH0455041A JP16277490A JP16277490A JPH0455041A JP H0455041 A JPH0455041 A JP H0455041A JP 16277490 A JP16277490 A JP 16277490A JP 16277490 A JP16277490 A JP 16277490A JP H0455041 A JPH0455041 A JP H0455041A
Authority
JP
Japan
Prior art keywords
nozzle
hole
nozzle hole
molten steel
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16277490A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamane
浩志 山根
Kane Miyake
三宅 苞
Masao Yukimoto
正雄 行本
Michiharu Ozawa
小沢 三千晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16277490A priority Critical patent/JPH0455041A/en
Publication of JPH0455041A publication Critical patent/JPH0455041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To decrease the transverse deviation of the thickness of a metallic thin strip by determining the number of the nozzle holes according to the nozzle hole diameter of the multi-nozzle for continuously supplying a molten metal at the time of producing the metallic thin strip by continuously supplying the molten metal and rapidly solidifying the molten metal. CONSTITUTION:If the multi-nozzle is eroded and the hole diameter of a part of the nozzles begins to expand, the nozzle hole of the nozzle of the part corresponding thereto is closed. Further, the height of a molten steel head on this nozzle hole decreases and the surface tension of the molten steel in the outlet of the nozzle hole exceeds the static pressure of the molten steel to close the nozzle hole when the flow rate of the molten metal from the nozzle hole expanded by the erosion increases. Such an initial diameter of the nozzle hole and number of holes as to maintain the head height at which the static pressure of the molten steel exceeding the surface tension is obtd. in the outlet of the nozzle holes are provided. The uniform and stable pouring in the transverse direction is executed in this way and the deviation of the thickness in the transverse direction is decreased.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、双ロール法による象冷Fiill’!F製造
装置において、双ロール間に溶湯を注湯するための多孔
ノズル、特に溶湯によるノズル孔の溶損によるトラブル
の少ない多孔ノズルに関するものである。
[Detailed Description of the Invention] <Industrial Field of Application> The present invention is directed to an elephant cooling Fill'! The present invention relates to a porous nozzle for pouring molten metal between twin rolls in an F manufacturing apparatus, and particularly to a porous nozzle that causes fewer troubles due to erosion of the nozzle hole by the molten metal.

〈従来の技術〉 双ロールによる急冷薄帯製造装置において、ロール幅方
向へ均一に溶融金属を注湯するため、広幅の多孔ノズル
から双ロール間に注湯する方法が従来から採用されてい
る(第3図参照)、また、広幅のスリットノズルも提案
されているが、熱変形しやすくまた製作も困難であり、
多孔ノズルの方が有利である。
<Prior art> In a twin-roll quenched ribbon manufacturing device, in order to uniformly pour molten metal in the width direction of the rolls, a method has traditionally been adopted in which molten metal is poured between the twin rolls from a wide porous nozzle ( (See Fig. 3) Wide slit nozzles have also been proposed, but they tend to deform due to heat and are difficult to manufacture.
Multi-hole nozzles are advantageous.

ロール幅方向での注湯量分布によって鋳造される薄帯に
板厚偏差が生しるが、特開昭54−10.1718号や
特開昭58−16759号公報において、ノズルの孔径
、孔ピッチを調整することによって、板厚偏差を低減す
る技術が提示されている。しかしながら、大量の注湯(
IL/チャージ以上)を行うと、耐火物製ノズルのf’
8 tMによってノズル径のバラツキが生じ、注湯流量
が不均一となる。さらには、他に比べて流量の減少した
ノズル孔では閉塞が生じ注湯流量の不均一は増長される
という問題がある。
Thickness deviations occur in the cast ribbon due to the pouring amount distribution in the width direction of the roll. A technique has been proposed to reduce plate thickness deviation by adjusting the . However, a large amount of hot water (
IL/charge or higher), f' of the refractory nozzle
8 tM causes variations in the nozzle diameter and the pouring flow rate becomes non-uniform. Furthermore, there is a problem in that nozzle holes whose flow rate is reduced compared to other nozzle holes are clogged, which increases the non-uniformity of the pouring flow rate.

〈発明が解決しようとする課題〉 本発明は、急冷薄帯の大量の鋳造を行う場合、多孔ノズ
ルの溶…の大きいノズル孔からの溶湯流量が増加し、溶
損の小さいノズル孔からの溶湯流量が減少し、ノズル詰
まりが発生し板厚偏差または急、冷薄帯に開孔が生しる
という問題を解決するための象冷薄帯製造用多孔ノズル
を提供するためになされたものである。
<Problems to be Solved by the Invention> The present invention aims at increasing the flow rate of molten metal from the nozzle hole with large melting loss in a multi-hole nozzle when casting a large quantity of quenched ribbon, and reducing the flow rate of molten metal from the nozzle hole with small melting loss. This was done in order to provide a multi-hole nozzle for producing cold ribbon to solve the problem of reduced flow rate, nozzle clogging, plate thickness deviation or sudden holes in the cold ribbon. be.

〈課題を解決するだめの手段〉 本発明は、■一対の冷却ロールと該ロール端面に当接し
て配置された端面押え部材とで形成する鋳造空間に、溶
融金属を連続的に供給し急冷凝固させて金属薄帯を製造
する際の溶融金属を連続的に供給する多孔ノズルにおい
て、該多孔ノズルのノズル孔径に応じてノズル孔数を定
めることを特徴とする急冷薄帯製造用多孔ノズルで、か
つ■前項■記載の多孔ノズルにおいて、ノズルの溶損速
度:U(m/s)、ノズル流量係数:C、ノズル孔数:
N(個)、ノズル孔径: D (m) 、注湯時間:T
(s)、注湯速度:Q(kg/s)とした時、N (D
+ 2 UT)”” 〈4Q/πC(8ρσ)−1/!    −・・−−−
−fil上記fl1式を満足させるノズル径りとノズル
孔数Nを定めたことを特徴とする2冷薄帯製造用多孔ノ
ズルである。
<Means for Solving the Problems> The present invention consists of: (i) continuous supply of molten metal to a casting space formed by a pair of cooling rolls and an end face pressing member disposed in contact with the end faces of the rolls; A porous nozzle for producing quenched ribbon, characterized in that the number of nozzle holes is determined according to the nozzle hole diameter of the porous nozzle, in which the molten metal is continuously supplied when manufacturing a metal ribbon. and ■ In the multi-hole nozzle described in the previous section ■, nozzle erosion rate: U (m/s), nozzle flow coefficient: C, and number of nozzle holes:
N (pieces), nozzle hole diameter: D (m), pouring time: T
(s), pouring speed: Q (kg/s), N (D
+ 2 UT)"" 〈4Q/πC(8ρσ)-1/! −・・−−−
-fil This is a multi-hole nozzle for producing a 2-cold ribbon, characterized in that the nozzle diameter and the number N of nozzle holes are determined to satisfy the fl1 formula above.

ただし、ρ;溶鋼密度(kg/ボ)、 σ;溶鋼表面張力(N/m)。However, ρ: Molten steel density (kg/bo), σ: Molten steel surface tension (N/m).

〈作 用〉 多孔ノズルが溶損し、一部のノズルの孔径が拡大し始め
ると、これに対応して他部のノズルのノズル孔が閉塞す
ることを実験によって確認した。
<Function> It has been confirmed through experiments that when the multi-hole nozzles are eroded and the pore diameter of some nozzles begins to expand, the nozzle holes of other nozzles become clogged in response.

一方、さらに深く観察することによって、溶損により拡
大したノズル孔からの溶湯流量が増大すると、そのノズ
ル孔上の溶鋼ヘッド高さが減少して、ノズル孔出口での
溶鋼の表面張力が溶鋼静圧を上回りノズル孔の閉塞が起
こるという知見を得た。
On the other hand, deeper observation shows that when the flow rate of molten metal increases from the nozzle hole enlarged due to melting damage, the height of the molten steel head above the nozzle hole decreases, and the surface tension of the molten steel at the nozzle hole exit decreases. It was discovered that the pressure exceeds the limit and the nozzle hole becomes clogged.

したがって、ノズル孔の閉塞防止のためには、注湯時間
内においてノズル孔の溶…が生じても、ノズル孔出口に
おいて表面張力を上回る溶鋼静圧が得られるヘッド高さ
を保持できるような初期ノズル孔径、孔数を設けること
が必要不可欠である。
Therefore, in order to prevent the nozzle hole from clogging, even if the nozzle hole melts during the pouring time, the initial height of the head can be maintained so that the static pressure of molten steel that exceeds the surface tension at the nozzle hole exit can be maintained. It is essential to provide the nozzle hole diameter and number of holes.

ここで、ノズル孔の溶損速度をU(m/S)、初期ノズ
ル孔径をD’(m)、ノズル孔数をN(個)、注湯速度
をQ(kg/s)、溶鋼流速をV(m/S)、溶鋼密度
をρ(kg /m3)、注湯時間をT(s)とすると、 ρ・N・ (D+2UT)”・−・V−Q (一定)(
1)。
Here, the erosion rate of the nozzle hole is U (m/S), the initial nozzle hole diameter is D' (m), the number of nozzle holes is N (pieces), the pouring speed is Q (kg/s), and the molten steel flow rate is V (m/S), the molten steel density is ρ (kg/m3), and the pouring time is T (s), then ρ・N・(D+2UT)”・−・V−Q (constant)(
1).

また、ベルヌイの定理より、流量係数をCとして、 V = CJT「「−−−・ (2)。Also, from Bernoulli's theorem, if the flow coefficient is C, V = CJT ``---・(2).

ここでHはノズル孔上の溶鋼ヘッド高さ(m)、gは重
力加速度(m/s”)である。
Here, H is the height of the molten steel head above the nozzle hole (m), and g is the gravitational acceleration (m/s'').

一方、ノズル孔出口では溶鋼静圧が溶鋼表面張力を上回
っていることが閉塞しないために必要であるから、つぎ
の不等式が成り立つ。
On the other hand, since it is necessary for the static pressure of the molten steel to exceed the surface tension of the molten steel at the exit of the nozzle hole in order to prevent blockage, the following inequality holds true.

ここで、σは溶鋼の表面張力(N/m)、(1)、(2
)、(3)式より全注湯時間をTt(s)としてつぎの
(り式が成り立つ。
Here, σ is the surface tension of molten steel (N/m), (1), (2
), From equation (3), the following equation holds true, assuming that the total pouring time is Tt(s).

N (D+2UT! )”’ π  C 本fl1式を満足するようなノズル径りとノズル孔数N
を設けた多孔ノズルを使用することによって、安定した
均一な注湯が行えノズル孔の閉塞を防止することができ
る。
N (D+2UT! )”' π C Nozzle diameter and number of nozzle holes N that satisfy this fl1 formula
By using a multi-hole nozzle, stable and uniform pouring can be performed and the nozzle holes can be prevented from clogging.

〈実施例〉 本発明に係る多孔ノズルの効果を確認するために、フユ
ーズドシリカ製の多孔ノズルを使用し、以下の条件で急
冷薄帯製造を行った。
<Example> In order to confirm the effect of the porous nozzle according to the present invention, a quenched ribbon was produced using a porous nozzle made of fused silica under the following conditions.

注湯速度:4kg/s、 注湯時間:10分、 注  湯  材:5US304、 注  湯  幅:400a。Pouring speed: 4kg/s, Pouring time: 10 minutes, Note: Hot water material: 5US304, Note: Hot water width: 400a.

実験の結果、溶損速度は0.25m/分であったが、そ
の実験結果を第1図に示す、ここで出湯孔率とは10分
注湯時に閉塞せずに出湯していたノズル孔数の初期孔数
に対する割合である。
As a result of the experiment, the erosion rate was 0.25 m/min, and the experimental results are shown in Figure 1. Here, the exit porosity refers to the nozzle hole that exited without being blocked during 10 minutes of pouring. It is the ratio of the number of holes to the initial number of holes.

図から明らかなように、本発明に係る関係式を満足させ
るようなノズル孔径とノズル孔数にすることによってノ
ズル孔の閉塞を減少することができることが明らかにな
った。
As is clear from the figure, it has become clear that clogging of the nozzle holes can be reduced by setting the nozzle hole diameter and number of nozzle holes such that the relational expression according to the present invention is satisfied.

ノズル孔径、孔数の異なる多孔ノズルで注湯を行い、ロ
ール径550mφ、ロール周速2.1m/sの双ロール
により鋳造した平均板厚5001の急冷薄帯の板厚偏差
を第2図に示す0本発明に係る関係式を満足する6mφ
・16孔数の多孔ノズルを使用することによって、板厚
偏差は低減されることが明らかになった。
Fig. 2 shows the thickness deviation of a quenched ribbon with an average thickness of 5001 mm, which was cast using twin rolls with a roll diameter of 550 mφ and a peripheral speed of 2.1 m/s, after pouring with multi-hole nozzles with different nozzle hole diameters and numbers of holes. 6mφ that satisfies the relational expression according to the present invention shown in FIG.
- It was revealed that plate thickness deviation was reduced by using a multi-hole nozzle with 16 holes.

〈発明の効果〉 ノズル内溶湯のヘッド高さを保持できるような初期ノズ
ル孔径・孔数をもった本発明に係る急冷薄帯製造用多孔
ノズルによって幅方向に均一な注湯が安定して行えるよ
うになり、板厚の板幅方向偏差が低減される。
<Effects of the Invention> Uniform pouring in the width direction can be stably performed by the multi-hole nozzle for producing a quenched ribbon according to the present invention, which has an initial nozzle hole diameter and number of holes that can maintain the head height of the molten metal in the nozzle. As a result, the deviation of the plate thickness in the plate width direction is reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、多孔ノズル形状と出湯孔率との関係を示す特
性図、第2図は、多孔ノズル形状と板厚偏差との関係を
示す特性図、第3図は、多孔ノズルによる溶融金属の鋳
造状況を示す斜視図である。 1・・・多孔ノズル、   2・・・ノズル上溶鋼溜ま
り、3・・・ノズル孔、   4・・・注湯流、5・・
・ノズル詰まり、 6・・・冷却ロール、7・・・急冷
薄帯、    8・・・端面押え部材。
Figure 1 is a characteristic diagram showing the relationship between porous nozzle shape and tapping porosity, Figure 2 is a characteristic diagram showing the relationship between porous nozzle shape and sheet thickness deviation, and Figure 3 is a characteristic diagram showing the relationship between porous nozzle shape and plate thickness deviation. FIG. 3 is a perspective view showing the casting situation. 1... Porous nozzle, 2... Molten steel pool on the nozzle, 3... Nozzle hole, 4... Molten pouring flow, 5...
- Nozzle clogging, 6...Cooling roll, 7...Quiet-quenched ribbon, 8...End face pressing member.

Claims (1)

【特許請求の範囲】 1 一対の冷却ロールと該ロール端面に当接して配置さ
れた端面押え部材とで形成する鋳造空間に、溶融金属を
連続的に供給し急冷凝固させて金属薄帯を製造する際の
溶融金属を連続的に供給する多孔ノズルにおいて、 該多孔ノズルのノズル孔径に応じてノズル孔数を定める
ことを特徴とする急冷薄帯製造用多孔ノズル。 2 請求項1記載の多孔ノズルにおいて、ノズルの溶損
速度:U(m/s)、ノズル流量係数:C、ノズル孔数
:N(個)、ノズル孔径:D(m)、注湯時間:T(s
)、注湯速度:Q(kg/s)とした時、 N(D+2UT)^3^/^2 <4Q/πC(8ρσ)^−^1^/^2・・・・・・
( I )上記( I )式を満足させるノズル径Dとノズル
孔数Nを定めたことを特徴とする急冷薄帯製造用多孔ノ
ズル。 ただし、ρ;溶鋼密度(kg/m^3)、 σ;溶鋼表面張力(N/m)。
[Claims] 1. Manufacturing a metal ribbon by continuously supplying molten metal to a casting space formed by a pair of cooling rolls and an end face pressing member disposed in contact with the end faces of the rolls and rapidly solidifying the metal. 1. A porous nozzle for producing quenched ribbon, characterized in that the number of nozzle holes is determined according to the nozzle diameter of the porous nozzle, in a porous nozzle for continuously supplying molten metal. 2. In the multi-hole nozzle according to claim 1, nozzle erosion rate: U (m/s), nozzle flow coefficient: C, number of nozzle holes: N (pieces), nozzle hole diameter: D (m), pouring time: T(s
), pouring speed: Q (kg/s), N(D+2UT)^3^/^2 <4Q/πC(8ρσ)^-^1^/^2...
(I) A multi-hole nozzle for producing a quenched ribbon, characterized in that the nozzle diameter D and the number N of nozzle holes are determined to satisfy the above formula (I). However, ρ: Molten steel density (kg/m^3), σ: Molten steel surface tension (N/m).
JP16277490A 1990-06-22 1990-06-22 Multi-nozzle for producing rapidly cooled thin strip Pending JPH0455041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16277490A JPH0455041A (en) 1990-06-22 1990-06-22 Multi-nozzle for producing rapidly cooled thin strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16277490A JPH0455041A (en) 1990-06-22 1990-06-22 Multi-nozzle for producing rapidly cooled thin strip

Publications (1)

Publication Number Publication Date
JPH0455041A true JPH0455041A (en) 1992-02-21

Family

ID=15760967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16277490A Pending JPH0455041A (en) 1990-06-22 1990-06-22 Multi-nozzle for producing rapidly cooled thin strip

Country Status (1)

Country Link
JP (1) JPH0455041A (en)

Similar Documents

Publication Publication Date Title
JP2591098B2 (en) Twin roll continuous casting machine
US4790368A (en) Method of manufacturing thin metal sheet directly from molten metal and apparatus for manufacturing same
US4678719A (en) Method and apparatus for continuous casting of crystalline strip
JPH0455041A (en) Multi-nozzle for producing rapidly cooled thin strip
CA1241178A (en) Method and apparatus for continuous casting of crystalline strip
JP3553295B2 (en) Molten alloy supply method and long nozzle for supply of amorphous alloy
JPS62270254A (en) Method and apparatus for producing directly metal strip
CN1011867B (en) Method and apparatus for continuous casting of metal band esp. of steel band
JPS61165257A (en) Pouring device in continuous casting device
CA1195086A (en) Method and apparatus for strip casting
JPS609553A (en) Stopping down type continuous casting machine
US5908068A (en) Method of manufacturing a wide metal thin strip
JPH0519167Y2 (en)
CA1281167C (en) Wire casting
JPS60180646A (en) Continuous casting device for thin sheet
JPH0519166Y2 (en)
JPS6316836A (en) Pouring method for molten metal
JPH0712524B2 (en) Method of pouring metal in continuous casting apparatus for thin metal strip
JPH0512059B2 (en)
JP3178987B2 (en) Twin roll thin sheet continuous casting machine
JPS62173057A (en) Molten metal surface controlling method for twin rolls type continuous casting machine
JPH0646598Y2 (en) Immersion nozzle for continuous casting of thin metal strip
JPH0790336B2 (en) Pouring nozzle for metal strip continuous casting machine
JPH0763820B2 (en) Continuous casting method for slabs for thin steel sheets
JPH0545341B2 (en)