JPH0454894B2 - - Google Patents

Info

Publication number
JPH0454894B2
JPH0454894B2 JP11775985A JP11775985A JPH0454894B2 JP H0454894 B2 JPH0454894 B2 JP H0454894B2 JP 11775985 A JP11775985 A JP 11775985A JP 11775985 A JP11775985 A JP 11775985A JP H0454894 B2 JPH0454894 B2 JP H0454894B2
Authority
JP
Japan
Prior art keywords
conduit
flow tube
flow
inlet
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11775985A
Other languages
Japanese (ja)
Other versions
JPS61275620A (en
Inventor
Hiroshi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OBARA KIKI KOGYO KK
Original Assignee
OBARA KIKI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OBARA KIKI KOGYO KK filed Critical OBARA KIKI KOGYO KK
Priority to JP11775985A priority Critical patent/JPS61275620A/en
Publication of JPS61275620A publication Critical patent/JPS61275620A/en
Publication of JPH0454894B2 publication Critical patent/JPH0454894B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8481Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having loop-shaped measuring conduits, e.g. the measuring conduits form a loop with a crossing point
    • G01F1/8486Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having loop-shaped measuring conduits, e.g. the measuring conduits form a loop with a crossing point with multiple measuring conduits

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 (1) 産業上の利用分野 本願発明はコリオリ力を利用した質量流量計に
関する。
[Detailed Description of the Invention] (1) Industrial Application Field The present invention relates to a mass flowmeter using Coriolis force.

(2) 従来技術 流管を流れる流体流に対して振動を与えると、
流体流の流れの向きと、振動軸とに対して直角方
向にコリオリ力が発生し、このコリオリ力は振動
周波数と、流体の質量流量に比例することが知ら
れている。例えば米国特許第3355944号明細書
(日本国対応、特公昭43−26009号公報)、米国特
許第4127028号明細書(日本国対応、特開昭54−
4168号公報)、米国特許第4187724号明細書(日本
国対応、特開昭54−52570号公報)等の質量流量
計はコリオリ力を測定することにより質量流量を
求めるものである。
(2) Prior art When vibration is applied to a fluid flow flowing through a flow tube,
It is known that a Coriolis force is generated in a direction perpendicular to the direction of the fluid flow and the vibration axis, and that the Coriolis force is proportional to the vibration frequency and the mass flow rate of the fluid. For example, U.S. Patent No. 3355944 (corresponding to Japan, Japanese Patent Publication No. 43-26009), U.S. Patent No. 4127028 (corresponding to Japan, Japanese Patent Publication No. 1987-26009),
Mass flowmeters such as those disclosed in US Pat. No. 4,187,724 (Japanese version, JP-A-54-52570) determine the mass flow rate by measuring the Coriolis force.

上記特公昭43−26009号公報に開示されている
ものは、同一軸線位置にある流入口および流出口
を有する部材と、中間区画部分および前記流入口
の軸線と同心である軸線を具えた真直な端を有す
る曲がつた入口区画部分および前記流出口の軸線
と同心である軸線を具えた真直な端を有する曲が
つた出口区画部分を具えてなつた180度以下の曲
がりを持つた流通通路を有する前記流入口および
流出口間の連結導管と、該導管の端と前記部材と
連結するための可撓装置と、前記導管の端および
前記部材間にコリオリの力の偶力を得るように前
記流通通路に対して相対的に前記導管を動かす装
置とを含む質量流量計である。この質量流量計
は、コリオリ力の偶力を利用するため導管ををU
字形状にしたものであるが、偶力の検出感度を高
めるためにはコリオリ偶力の腕長さを大きくする
必要がある。しかし導管は流入口、流出口と可撓
装置を介して接続しているため導管内の流体も外
部振動の影響を受け易く、S/N比の高い質量流
量信号を検出することが困難である。
The device disclosed in the above-mentioned Japanese Patent Publication No. 43-26009 is a member having an inlet and an outlet located on the same axis, an intermediate section and a straight member having an axis concentric with the axis of the inlet. a flow passageway having a curved bend of less than 180 degrees, comprising a curved inlet compartment portion having an end and a curved outlet compartment portion having a straight end having an axis concentric with the axis of the outlet; a connecting conduit between the inlet and the outlet having a flexible device for connecting the end of the conduit with the member; and a device for moving the conduit relative to a flow passageway. This mass flow meter utilizes the Coriolis force couple to
However, in order to increase the detection sensitivity of the Coriolis couple, it is necessary to increase the arm length of the Coriolis couple. However, since the conduit is connected to the inlet and outlet via a flexible device, the fluid inside the conduit is also susceptible to external vibrations, making it difficult to detect mass flow signals with a high S/N ratio. .

これに対して特開昭54−52570号公報開示のも
のにおいては、U字形導管を支持部材に片持レバ
ー式にビーム状に取付けることにより外部振動の
影響を軽減させる試みがなされ、更に上記U字形
導管と実質的に等しい固有振動数をもつ往復動部
材をU字形導管と同様に支持部部材に片持レバー
式に固着して音叉原理に基づいた駆動を行い固有
振動数以外の外部振動に対して鈍感にする試みが
なされている。更に特開昭54−4168号公報開示の
ものにおいては、U字形導管の支持部材に対する
流入口、流出口側の固着部間の間隔に対してU字
形導管の平行路間の間隔を大きくしてコリオリ偶
力の検出感度の増加を計つている。
On the other hand, in the method disclosed in JP-A-54-52570, an attempt was made to reduce the influence of external vibrations by attaching a U-shaped conduit to a support member in a cantilevered manner in the form of a beam. A reciprocating member having a natural frequency substantially equal to that of the U-shaped conduit is fixed to the support member in a cantilever manner in the same way as the U-shaped conduit, and is driven based on the tuning fork principle to prevent external vibrations other than the natural frequency. Efforts are being made to desensitize people to this. Furthermore, in the method disclosed in JP-A No. 54-4168, the distance between the parallel paths of the U-shaped conduit is made larger than the distance between the fixed portions on the inlet and outlet sides of the U-shaped conduit with respect to the support member. We aim to increase the detection sensitivity of Coriolis couples.

(3) 発明が解決しようとする問題点 上述の従来例はコリオリ力をS/N比を高く検
出する手段の一つとしてすべてU字形導管を採用
している。上記従来例において、支持部材に対す
るU字形導管の流入口と流出口とを結んだ駆動軸
を第1軸とし、導管の中立軸即ちコリオリ偶力の
軸を第2軸とする場合、駆動エネルギが小さくて
足りかつ高感度のコリオリ信号を検出するように
するためには、第1軸並びに第2軸の検出部にお
けるモーメントの腕を大きくすることが基本的要
件となる。この要件を充たすことは必然的に導管
の長大化をまねく。更にU字形導管の静止面が当
該導管がひき出される主流管即ち配管と平行とな
るので、配管系において生ずる剛性の小さい方
向、即ち配管と直角方向の振動の影響を受け易
く、これがコリオリの力の検出信号に雑音として
加算される問題点がある。換言すれば、従来例に
おいては効果的に高感度の流量計を具現するため
には流量計本体が長大化し、大きい取付面積を要
し、外部振動の影響を少なくするためには取付場
所や姿勢等を考慮しなければならない等の不便が
あつた。
(3) Problems to be Solved by the Invention The above-mentioned conventional examples all employ a U-shaped conduit as a means for detecting Coriolis force with a high S/N ratio. In the above conventional example, when the drive shaft connecting the inlet and outlet of the U-shaped conduit with respect to the support member is the first axis, and the neutral axis of the conduit, that is, the axis of the Coriolis couple, is the second axis, the drive energy is In order to detect a sufficiently small Coriolis signal with high sensitivity, it is a basic requirement to increase the moment arms in the detection sections of the first axis and the second axis. Meeting this requirement inevitably leads to an increase in the length of the conduit. Furthermore, since the stationary surface of the U-shaped conduit is parallel to the main pipe from which the conduit is drawn out, that is, the piping, it is susceptible to vibrations that occur in the piping system in a direction of low rigidity, that is, in a direction perpendicular to the piping, and this is caused by the Coriolis force. There is a problem that the detection signal is added as noise. In other words, in conventional examples, in order to effectively realize a highly sensitive flowmeter, the flowmeter body becomes long and requires a large installation area, and in order to reduce the influence of external vibrations, the installation location and posture must be adjusted. There were inconveniences such as having to take into account the following.

(4) 問題解決の手段 本願発明は上述の問題点の解決を計るためにな
されたもので、コリオリ力を発生させる導管をコ
イルばね状として、主流管(配管)を取囲むよう
に同軸方向に挿入する構造を採用し、流体は流管
を支切板などの遮断手段で遮断し、遮断された流
体流を導管を介して流通させるようにして、本体
の小形化を計つている。更にコリオリ力の発生及
び検出は、上記導管において行うものであるが導
管の駆動動方向は流管軸方向となる構造となる。
このために、流管が当該流管の横方向を受け易い
ことから当該流管が当該振動を受けたとしても、
その振動が流量形の導管の振動に与える影響は十
分小さいものとなる。
(4) Means for solving the problem The present invention was made in order to solve the above-mentioned problem, and the conduit that generates the Coriolis force is made into a coil spring shape and is arranged coaxially so as to surround the main pipe (piping). By adopting an insertion structure, the flow tube is blocked by a blocking means such as a branch plate, and the blocked fluid flow is allowed to flow through the conduit, thereby reducing the size of the main body. Furthermore, although the Coriolis force is generated and detected in the conduit, the driving direction of the conduit is in the axial direction of the flow tube.
For this reason, even if the flow tube receives the vibration because the flow tube is easily affected in the lateral direction of the flow tube,
The influence of this vibration on the vibration of the flow type conduit is sufficiently small.

(5) 実施例 第1図に本願発明の一実施例の流量計本体部を
示す。イ図は平面図、ロ図は側面図、ハ図は流れ
方向にみた正面図である。
(5) Embodiment FIG. 1 shows the main body of a flowmeter according to an embodiment of the present invention. Figure A is a plan view, Figure B is a side view, and Figure C is a front view viewed in the flow direction.

図において流体は矢印の方向に流れるものとす
る。流管1内に支切板2が流れを遮断するように
固着されている。遮断された流体流は支切板2の
上流側および下流側の流管壁に各々開口する流入
口4と、流出口5とをもつた導管3により導通さ
れる。導管3は可撓性をもつており、流管の外周
を図示の如く1ピツチ半以上、コイルばね状に取
囲んでいる。導管の流入口4と流出口5と対する
対称軸を構成する流管直径上のZZ′上の点には
A,A′とEとがある。この場合点AとA′とを結
ぶ線AA′は点A,A′近傍の導管軸に対して所定
のピツチ角だけづれており、E点は流入口4、流
出口5の中間点となる。導管のA,A′近傍には
導管軸に直交する方向に所定振幅、所定周波数で
吸引と反撥とを繰返す電磁方式等の図示しない駆
動手段が各々装着されている。第1図に流体が矢
印方向に流れ導管がA,A′近傍において駆動さ
れる場合の動作を説明する。流体は導管の流入口
4をスパイラル状に導通して流出口5から流出す
る。導管の中央点Eは流管1に対して変動せず、
導管の駆動部においては各々流入口4、流出口5
を軸として互いに反対方向に捩られる。このこと
により、導管3内の流体にはコリオリの力が作用
する。コリオリの力は軸まわりの回転ベクトルと
導管内の質量流量のベクトルとのベクトル積の向
きのベクトルとして作用するので、ハ図におい
て、直径Y側では反撥方向、Y′側では吸引方向
の力が生ずる。この力は駆動ベクトルとのベクト
ル和としてあらわれるため、質量流量成分を分離
抽出しなければならない。分離抽出の方法として
は、ハ図Y側の導管の相対変位が静止状態におけ
る位置に対して生ずる変化とY′側の同様の変化
との時間遅れとして検出するか、流入口4と流出
口5との近傍における捩りトルクの変化の差とし
て検出できる。尚コリオリの力を時間遅れとして
検出するとき変位または速度で検出すると最も高
感度に検出できる。流入口4とA点及び流出口5
とA′点との各々の中間点B及びC′を考慮し、
夫々これらと対応する点B′及びCに検出器を装
着した方がよく、捩りトルクとして検出する場合
は各々流入口、流出口近傍がよい。
In the figure, fluid is assumed to flow in the direction of the arrow. A dividing plate 2 is fixed in the flow tube 1 so as to block the flow. The blocked fluid flow is conducted through a conduit 3 having an inlet 4 and an outlet 5 opening in the upstream and downstream walls of the dividing plate 2, respectively. The conduit 3 is flexible and surrounds the outer periphery of the flow tube by more than one and a half pitches as shown in the figure in the form of a coiled spring. There are points A, A' and E on ZZ' on the diameter of the flow tube which constitute the axis of symmetry for the inlet 4 and outlet 5 of the conduit. In this case, the line AA' connecting points A and A' is offset by a predetermined pitch angle with respect to the conduit axis near points A and A', and point E is the midpoint between the inlet 4 and the outlet 5. In the vicinity of A and A' of the conduit, drive means (not shown), such as an electromagnetic type, which repeats attraction and repulsion at a predetermined amplitude and frequency in a direction perpendicular to the conduit axis are respectively installed. The operation when the fluid flows in the direction of the arrow in FIG. 1 and the conduit is driven near A and A' will be explained. The fluid flows spirally through the inlet 4 of the conduit and exits from the outlet 5. The center point E of the conduit does not vary with respect to the flow tube 1;
In the drive section of the conduit, there are an inlet 4 and an outlet 5, respectively.
are twisted in opposite directions about the axis. This causes a Coriolis force to act on the fluid within the conduit 3. Coriolis force acts as a vector in the direction of the product of the rotation vector around the axis and the mass flow vector in the conduit, so in diagram C, the force is in the repulsion direction on the diameter Y side, and in the suction direction on the Y' side. arise. Since this force appears as a vector sum with the drive vector, the mass flow rate component must be separated and extracted. As a method of separation and extraction, the relative displacement of the conduit on the Y side in Figure C is detected as a time delay between the change that occurs with respect to the position in the static state and the same change on the Y' side, or the inlet 4 and the outlet 5 It can be detected as the difference in the change in torsional torque in the vicinity of Note that when detecting the Coriolis force as a time delay, detecting it as a displacement or velocity provides the highest sensitivity. Inlet 4, point A and outlet 5
Considering the intermediate points B and C′ between and point A′,
It is better to install detectors at points B' and C corresponding to these, respectively, and when detecting torsional torque, it is better to install detectors near the inlet and outlet, respectively.

なお、流体が存在しない場合のZ軸まわりの慣
性モーメントをI0とするとZ軸まわりの固有振動
数は f0=α√0 となる。ここでα,Kは定数である。もし密度ρ
の流体が導管内に充満すると固有振動数はβ0を定
数とすると となる。即ち導管の振動を固有振動数で自励発振
させる場合には、自励発振周波数は密度の関数と
なり、質量流量のみならず密度も計測でき、密度
の影響を除去した流量を計測することができる。
Note that if the moment of inertia around the Z-axis in the absence of fluid is I 0 , the natural frequency around the Z-axis is f 0 = α√ 0 . Here, α and K are constants. If density ρ
When the conduit is filled with fluid, the natural frequency is β with 0 as a constant. becomes. In other words, when the vibration of the conduit is caused to self-oscillate at its natural frequency, the self-oscillation frequency becomes a function of density, so it is possible to measure not only the mass flow rate but also the density, and the flow rate can be measured with the influence of density removed. .

第2図は、第1図における導管と同一形状の2
つの導管を、流入口および流出口が各々流管軸に
平行して半ピツチを隔てて並列流れになるように
配設した他の実施例をしめす。イ図は本体部の斜
視図、ロ図は該流管の流れ方向からみた正面図、
ハ図は本体部上方からみた説明図である。尚第1
図と同一の番号は同一の構造要素をしめす。第2
図における導管31は上に述べた第1図の導管3
に並列となるように付加したもので、流入口41
および流出口51は流管1の中心軸ZZ′に対して
導管3の流入口4及び流出口5と各々同位相に流
管1の壁に開口している。支切板2により遮断さ
れた流体は導管3,31内をスパイラル状の並列
流として流出する。各々の導管は1.5ピツチ以
上で流管1を取囲んでいる。
Figure 2 shows two pipes with the same shape as the conduit in Figure 1.
2 shows another embodiment in which the two conduits are arranged with inlets and outlets each parallel to the flow tube axis and separated by a half-pitch for parallel flow. Figure A is a perspective view of the main body, Figure B is a front view of the flow tube as seen from the flow direction.
Figure C is an explanatory view seen from above the main body. Furthermore, the first
The same numbers as in the figures indicate the same structural elements. Second
Conduit 31 in the figure is conduit 3 of FIG. 1 described above.
It is added so that it is parallel to the inlet 41.
The outlet 51 opens in the wall of the flow tube 1 in the same phase as the inlet 4 and the outlet 5 of the conduit 3 with respect to the central axis ZZ' of the flow tube 1. The fluid blocked by the dividing plate 2 flows out in the conduits 3 and 31 as spiral parallel flows. Each conduit surrounds the flow tube 1 by at least 1.5 pitches.

これら導管の中央部を各々A,A′とし、該A,
A′を互いに近接するような運動を与えると導管
は各々の開口部を軸として反対の向きに捩られ
る。今中間点A,A′から導管流入口に対する中
間点を各々B,B′とし、また流出口に対する中
間点を各々C,C′とすると、導管内の流体流れ、
即ちコリオリの力を創成する流れベクトルは点
B,B′と点C,C′とで各々反対の向きとなる。コ
リオリの力は流れベクトルと回転ベクトルとのベ
クトル積で与えられるのでB,B′点は互いに離
間する方向、C,C′は近接する方向を向いてい
る。またA,A′点を離間する方向に運動すると、
B,B′,C,C′は上記の運動と反対に各々近接、
離間する。この近接、離間の量は、コリオリの力
に比例するので、A,A′点の近接、離間の駆動
周波数が一定であれば流体の質量流量に比例す
る。近接、離間の検出は光、電気、磁気的な手段
に基づき、B,B′およびC,C′の位置に配設する
ことにより、検出要素が静止時の基準位置を通過
する時間差のB,B′およびC,C′の時間偏差を測
定することにより求めることができる。尚上述の
場合、駆動部であり中間点であるA,A′に対し
て固着軸である導管開口部4,41及び5,51
迄の腕の長さが長くなり駆動エネルギは小さくで
きる利点はあるが、検出位置に対する導管固着側
におけるコリオリの力は上記コリオリの力に対し
て反対の向きとなるので信号を減ずることとな
り、S/N比の低下をまねく。これを除くために
は、A,A′の流管軸対称位置l,mを静止時の
位置において固着する方がよい。また導管の駆動
において導管の流管固着部分に応力が集中するの
で、この部分で破損事故が起こり易く、これを防
ぐため、並列導管の流管壁固着点近傍、即ち流入
側導管4,41の場合ではPおよびQ点を、流出
側導管5,51近傍ではRおよびS点を互いに固
着するのがよい。
The central parts of these conduits are designated A and A', respectively, and the A,
When A' are moved toward each other, the conduits are twisted in opposite directions about their respective openings. Now, assuming that the intermediate points from intermediate points A and A' to the conduit inlet are B and B', respectively, and the intermediate points from the outlet to C and C', respectively, the fluid flow in the conduit,
That is, the flow vectors that create the Coriolis force are in opposite directions at points B and B' and points C and C'. Since the Coriolis force is given by the vector product of the flow vector and the rotation vector, points B and B' point in a direction away from each other, and points C and C' point in a direction close to each other. Also, if you move in the direction of separating points A and A',
B, B', C, C' are each close to each other, opposite to the above motion,
Separate. Since the amount of this approach and separation is proportional to the Coriolis force, if the driving frequency of the approach and separation of points A and A' is constant, it is proportional to the mass flow rate of the fluid. Detection of proximity and separation is based on optical, electrical, and magnetic means, and by arranging them at positions B, B' and C, C', the time difference B, when the detection element passes the reference position when it is stationary, is determined by It can be determined by measuring the time deviation of B', C, and C'. In the above case, the conduit openings 4, 41 and 5, 51, which are fixed axes, are connected to A and A', which are drive parts and intermediate points.
Although there is an advantage that the arm length is longer and the driving energy can be reduced, the Coriolis force on the side where the conduit is fixed relative to the detection position is in the opposite direction to the above Coriolis force, which reduces the signal. /N ratio decreases. In order to eliminate this, it is better to fix the axially symmetrical positions l and m of the flow tubes A and A' at their resting positions. In addition, when the conduits are driven, stress concentrates on the part of the conduit where the flow pipe is fixed, so damage accidents are likely to occur in this part.To prevent this, it is necessary to In some cases, points P and Q are preferably fixed to each other, and points R and S are preferably fixed to each other in the vicinity of the outflow conduits 5 and 51.

第3図および第4図は各々上記第2図における
本願発明の他の実施例である。第3図において導
管3の流入口4は流管1の水平方向の直径壁近傍
で開口し、流管1を1.5周して、流管1軸に関
して流入口4と対称壁面に流出口5を開口する。
流入口4と流出口5とは支切板2により遮断さ
れ、流管内の流れは導管を3を介して流通する。
導管31は導管3と同一形状であり、流入口4
1、流出口51は導管の中間ループに対して対称
的に配置されており、ループ間距離を小さくして
いる。尚導管ループの中間部BAC,B′A′C′部の
長さは流管1の反対側に位置するループ部分より
も僅かに長大にしてある。駆動手段は第1,2図
同様に、導管の流入口、流出口に関して中間位置
A,A′に図示しない電磁的手段等で駆動される。
検出手段は導管ループB,B′及びC,C′において
第2図同様に図示しない検出手段により検出され
る。また導管3,31間を必要に応じて連結手段
によりP,Q,P′,Q′,R,S,R′,S′,R″,
S″の位置で結合する。結合する理由は上記第2
図における場合と同様S/Nの改善及び導管の疲
労補強のためである。
3 and 4 show other embodiments of the present invention shown in FIG. 2, respectively. In FIG. 3, the inlet 4 of the conduit 3 opens near the horizontal diameter wall of the flow tube 1, goes around the flow tube 1 for 1.5 times, and has an outlet on the wall surface symmetrical to the inlet 4 with respect to the flow tube 1 axis. Open 5.
The inlet 4 and the outlet 5 are separated by a dividing plate 2, and the flow within the flow tube flows through the conduit 3.
The conduit 31 has the same shape as the conduit 3, and the inlet 4
1. The outlet 51 is arranged symmetrically with respect to the middle loop of the conduit, reducing the distance between the loops. The length of the intermediate portions BAC, B'A'C' of the conduit loop is slightly longer than the loop portion located on the opposite side of the flow tube 1. As in FIGS. 1 and 2, the driving means is driven by electromagnetic means (not shown) to intermediate positions A and A' with respect to the inlet and outlet of the conduit.
The detection means is detected in the conduit loops B, B' and C, C' by detection means (not shown) as in FIG. In addition, P, Q, P', Q', R, S, R', S', R'',
Join at the S'' position.The reason for joining is the second above.
As in the case shown in the figure, this is to improve the S/N ratio and reinforce the fatigue of the conduit.

第4図は流入口4、流出口5をもち流管1をほ
ぼ一周するループ状の導管3と、該導管3にくら
べて同形状の導管31とを並列に配設したもの
で、支切板2は第3図同様に流入口4,41と流
出口5,51とを各々支切るもので、導管の中間
部A,A′で図示しない駆動手段により所定周波
数、所定振幅の正弦駆動する導管のB,B′,C,
C′部で第2図の場合と同様に図示しない検出手段
によりコリオリの力の大きさを検出する。
Figure 4 shows a loop-shaped conduit 3 having an inlet 4 and an outlet 5 that goes around the flow tube 1, and a conduit 31 having the same shape as the conduit 3, which are arranged in parallel. The plate 2 separates the inlets 4, 41 and the outlet 5, 51, respectively, as in FIG. 3, and is sine-driven at a predetermined frequency and a predetermined amplitude by a driving means (not shown) at the intermediate portions A, A' of the conduit. Conduit B, B', C,
At section C', the magnitude of the Coriolis force is detected by a detection means (not shown) as in the case of FIG.

(6) 効果 上に述べたごとく、本発明によれば、コリオリ
の力を発生させる導管は流管を取囲む構造となる
ので流管と導管とで構成される流量計本体は小形
となり、取付も容易となる。更に流量計の特性の
面からみた場合にも此種の流量計では、配管の振
動による雑音影響の防止が技術的問題の一つであ
るが本発明では、流量計が配置される主流管(配
管)の振動容易方向に対して、流量計においてコ
リオリの力を検出する方向が直交する構造となつ
ているため配管振動が検出信号に与える影響を削
減できる。
(6) Effects As described above, according to the present invention, the conduit that generates the Coriolis force has a structure that surrounds the flow tube, so the flow meter body composed of the flow tube and the conduit becomes small and easy to install. It also becomes easier. Furthermore, when looking at the characteristics of the flowmeter, one of the technical problems with this type of flowmeter is to prevent noise effects caused by pipe vibration. Since the flowmeter is configured so that the direction in which the Coriolis force is detected is perpendicular to the direction in which the pipe vibrates easily, the influence of pipe vibration on the detection signal can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願発明の原理説明図でイは平面図、
ロは側面図、ハは流れ方向からみた正面図、第2
図、第3図、第4図は夫々他の実施例を示してい
る。 図中の符号1は流管、2は支切板、3,31は
導管、4,41は流入口、5,51は流出口を表
す。
Figure 1 is a diagram explaining the principle of the present invention, and A is a plan view.
B is a side view, C is a front view seen from the flow direction, and
Figures 3 and 4 show other embodiments, respectively. In the figure, reference numeral 1 represents a flow tube, 2 represents a branch plate, 3 and 31 represent conduits, 4 and 41 represent an inlet, and 5 and 51 represent an outlet.

Claims (1)

【特許請求の範囲】 1 流管と、該流管内を流れる流体流を遮断する
遮断手段と、流入口および流出口を各々上記遮断
手段に対して上下流側の流管壁に開口して上記流
管の外周を取囲み上記遮断手段により遮断された
流体流を連通する可撓性の導管からなる本体部
と、上記導管を該導管面と直角方向に振動を与え
る駆動手段と、導管内を流れる流体流が振動によ
つて受けるコリオリ力を検出する検出手段とをそ
なえ、コリオリ力に比例する流体の質量流量を求
めるようにしたことを特徴とする質量流量計。 2 上記遮断手段が上記流管内を実質上斜めに支
切る支切板で構成されることを特徴とする特許請
求の範囲第1項記載の質量流量計。 3 流管を取囲む導管を流管の軸に平行した軸を
もつ1.5ピツチ以上のコイルばね状としたことを
特徴とする特許請求の範囲第1項または第2項記
載の質量流量計。 4 実質上同一形状・寸法の複数の導管は、流入
口、流出口との各々が流管軸に平行して半ピツチ
を隔てかつ当該複数の導管を流れる流体が並列流
となるごとく配設されることを特徴とする特許請
求の範囲第1項ないし第3項のいずれか記載の質
量流量計。 5 流管を取囲む導管の流入口及び流出口が各々
流管軸と平行した流管壁に開口する同一寸法、同
一形状で複数の環状導管を実質上平行して配設し
たことを特徴とする特許請求の範囲第1項または
第2項記載の質量流量計。 6 導管の各々の流入口および流出口から僅かに
隔てた位置で、並列に配設された導管を一体的に
支持する支持部材を設けたことを特徴とする特許
請求の範囲第4項または第5項記載の質量流量
計。 7 導管の各々の流入口側および流出口側で、
夫々並列に配設された導管を一体的に支持する支
持体を設けたことを特徴とする特許請求の範囲第
4項または第5項記載の質量流量計。
[Scope of Claims] 1. A flow tube, a blocking means for blocking a fluid flow flowing in the flow tube, and an inlet and an outlet opening in walls of the flow tube on the upstream and downstream sides with respect to the blocking means, respectively. a main body consisting of a flexible conduit that surrounds the outer periphery of the flow tube and communicates the fluid flow blocked by the blocking means; a drive means that vibrates the conduit in a direction perpendicular to the conduit surface; What is claimed is: 1. A mass flowmeter comprising: detection means for detecting the Coriolis force exerted on a flowing fluid stream due to vibration; and determining a mass flow rate of the fluid proportional to the Coriolis force. 2. The mass flowmeter according to claim 1, wherein the blocking means comprises a dividing plate that substantially obliquely divides the inside of the flow tube. 3. The mass flowmeter according to claim 1 or 2, wherein the conduit surrounding the flow tube is in the shape of a coiled spring of 1.5 pitch or more and has an axis parallel to the axis of the flow tube. 4 A plurality of conduits having substantially the same shape and dimensions are arranged such that the inlet and outlet are parallel to the flow tube axis and separated by a half-pitch, and the fluids flowing through the plurality of conduits flow in parallel. A mass flowmeter according to any one of claims 1 to 3, characterized in that: 5. A plurality of annular conduits of the same size and shape are arranged substantially in parallel, and the inlet and outlet of the conduit surrounding the flow tube are each opened in the flow tube wall parallel to the flow tube axis. A mass flowmeter according to claim 1 or 2. 6. Claim 4 or 4, characterized in that a support member is provided that integrally supports the conduits arranged in parallel at a position slightly separated from the inlet and outlet of each of the conduits. The mass flow meter according to item 5. 7 At each inlet and outlet side of the conduit,
6. The mass flowmeter according to claim 4, further comprising a support that integrally supports the conduits arranged in parallel.
JP11775985A 1985-05-31 1985-05-31 Mass flowmeter Granted JPS61275620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11775985A JPS61275620A (en) 1985-05-31 1985-05-31 Mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11775985A JPS61275620A (en) 1985-05-31 1985-05-31 Mass flowmeter

Publications (2)

Publication Number Publication Date
JPS61275620A JPS61275620A (en) 1986-12-05
JPH0454894B2 true JPH0454894B2 (en) 1992-09-01

Family

ID=14719618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11775985A Granted JPS61275620A (en) 1985-05-31 1985-05-31 Mass flowmeter

Country Status (1)

Country Link
JP (1) JPS61275620A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4138840C2 (en) * 1991-11-26 2003-02-06 Abb Patent Gmbh Holder for a pipe to be flowed through in a mass flow meter

Also Published As

Publication number Publication date
JPS61275620A (en) 1986-12-05

Similar Documents

Publication Publication Date Title
EP0210308B1 (en) Mass flowmeter
EP0250706B1 (en) Mass Flow Measuring Device
US4811606A (en) Mass flowmeter
EP1279935A2 (en) Method for decoupling extraneous modes of vibration in a Coriolis mass flowmeter
JP2927307B2 (en) Mass flow meter
US4716771A (en) Symmetrical mass flow meter
AU3003595A (en) Increased sensitivity coriolis effect flowmeter using nodal-proximate sensors
US5090253A (en) Coriolis type fluid flowmeter
JPS6333619A (en) Coriolis mass flow sensor
US5675093A (en) Coriolis mass flow sensor including a single connection and support structure
JPS62238419A (en) Device and method for continuously measuring flow
KR100848769B1 (en) Coriolis flowmeter
JPH0454894B2 (en)
JP2557098B2 (en) Convection inertial force flow meter
CN100451565C (en) Coriolis flow rate meter
JPH0341319A (en) Coriolis mass flowmeter
US20220381599A1 (en) Coriolis flow meter with flow tube including inserts
JPS6227621A (en) Dynamic vibration type weighing equipment for measuring massof passing and flowing substance
JP2992162B2 (en) Coriolis flow meter
JPH11230804A (en) Corioli's flowmeter
JPH0436407Y2 (en)
JPH09133564A (en) Coriolis mass flowmeter
JP2801826B2 (en) Mass flow meter
JPS61283828A (en) Mass flowmeter
JPH0455253B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term