JPH0454699B2 - - Google Patents

Info

Publication number
JPH0454699B2
JPH0454699B2 JP58200737A JP20073783A JPH0454699B2 JP H0454699 B2 JPH0454699 B2 JP H0454699B2 JP 58200737 A JP58200737 A JP 58200737A JP 20073783 A JP20073783 A JP 20073783A JP H0454699 B2 JPH0454699 B2 JP H0454699B2
Authority
JP
Japan
Prior art keywords
particle size
powder
bulk density
powdered
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58200737A
Other languages
Japanese (ja)
Other versions
JPS6094459A (en
Inventor
Yoshinori Akana
Masato Karaiwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP20073783A priority Critical patent/JPS6094459A/en
Publication of JPS6094459A publication Critical patent/JPS6094459A/en
Publication of JPH0454699B2 publication Critical patent/JPH0454699B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は粉末成形、とくに回転成形に好適な粉
末状ポリエチレン組成物に関するものであり、成
形時の離型性に優れ、内面肌が著しく平滑で脱泡
不良もなく、かつ機械的強度にも優れた成形品を
与える原料粉末組成物を提供するものである。 回転成形に代表される粉末成形においては、何
らかの方法で得られる粉末状熱可塑性樹脂を用い
るが、用いる粉末の粒径、粒度分布、粒子形状に
よつては成形性、とくに細孔部充填性や平滑性に
劣るという問題があつた。また、たとえば特開昭
57−38839において述べられている如く、懸濁重
合法によつて直接得られた粉末ポリエチレンで
は、離型性が悪いという欠点がある。これらの課
題に対し、特開昭56−41213においては、特定
の性状を有する粉末を使用することを提案し、
特開昭57−38839においては、懸濁法で得られる
粉末ポリエチレンに特定の融点範囲を有する飽和
脂肪酸等の滑剤を混合分散した組成物を使用する
ことを提案し、特開昭58−84719においては特
定の球状粉末ポリエチレンに機械粉砕した粉砕ポ
リエチレンを混合して使用することを提案してい
る。これらの提案においては、用いる粉体の製造
法に制限があり、またについては、使用する滑
剤の融点に上限があり、使用できるものが限られ
るという欠点がある。 本発明者らは、粉末成形、とくに回転成形にお
いて所定の粉末性状を示す滑剤の所定量が混合分
散された粉末状ポリエチレン組成物を用いること
により、上記の如き欠点もなく、懸濁重合若しく
は気相重合による粉末樹脂のみならず、ペレツト
等を機械粉砕した粉体樹脂のいずれにも適用で
き、成形時の離型性に優れ、内面肌が著しく平滑
で脱泡不良もなく、機械的強度にも優れ成形品を
与えることを見い出し、本発明を完成させること
ができた。 すなわち本発明は、粉末状ポリエチレン(A)100
重量部に、嵩密度が0.35ないし0.85g/cm3、平均
粒径5ないし500μでかつ16メツシユの篩を通過
する粉末状の脂肪酸金属塩(B)0.02ないし1.0重量
部が混合分散されていることを特徴とする粉末状
ポリエチレン組成物を要旨とするものである。 以下、本発明を詳細に説明する。 本発明の組成物を構成する粉末状ポリエチレン
(A)はポリエチレン、とくに低密度および中密度の
ポリエチレンが好んで用いられる。これらのポリ
エチレンには、エチレン単独重合物のほかにエチ
レンとα−オレフイン、例えばプロピレン、1−
ブテン、イソブテン、1−ペンテン、4−メチル
−1−ペンタン、1−ヘキセン、1−オクテン、
1−デセン等との共重合物も含まれる。このうち
低密度ポリエチレンの一つの例は、通常高圧ラジ
カル重合によつて得られるもので、密度は約0.91
ないし約0.93g/cm3である。また低密度から中密
度領域のポリエチレンは通常チーグラー型触媒を
用いて溶液重合法、懸濁重合法又は気相重合法に
よつて得られ、密度は通常約0.91ないし約0.95
g/cm3程度のものである。これらの中低密度ポリ
エチレンの中では、後述の理由により懸濁重合や
気相重合によつて得られるものが好ましく、密度
0.920ないし0.950のものがとくに好ましい。 上記のポリエチレンは、前述の如く何らかの方
法で粉末状にすればよく、各種重合法で得られた
樹脂ペレツトを機械的に粉砕したもの、冷凍粉砕
したものに更に懸濁重合もしくは気相重合等によ
つて直接製造したものを用いることができる。し
かし、機械的に粉砕した粉末状ポリエチレンは、
一般に嵩密度は低く、安息角は高く、粒度分布が
広く、粒子形状も不ぞろいであることが多いの
で、懸濁重合等によつて直接製造した粉末状ポリ
エチレンを用いるものが好ましい。更にこれらの
中でも該粉末状の形状が球状又は楕円体状あるい
はこれらに近い形状であつて、糸状物やヒゲ状物
を本質的に含んでいないことが回転成形品の表面
肌、とくに細部を平滑に仕上げる上で好ましい。
また粉末成形、とくに回転成形に適した樹脂の性
状として、嵩密度が通常0.3ないし0.6g/cm3、好
ましくは0.4ないし0.5g/cm3、平均粒子径(50%
粒子径)が通常150ないし400μであり、粒子径
が/150ないし400μの範囲にあるものが全体の70
重量%以上を占めるものが好ましい。また回転成
形において、粉体の流動性を増し、充分な細部成
形性を確保するためには、安息角は通常25゜ない
し45゜、好ましくは30゜ないし40゜である。また、本
発明のポリエチレンとしては、メルトフローレー
ト〔MFR:190℃、2.16Kg荷重〕は通常1ないし
20g/10分、好ましくは2ないし10g/分のもの
が好適に使用される。 次に粉末状の脂肪酸金属塩(B)について説明す
る。本発明に使用する脂肪酸金属塩としては、例
えばステアリン酸カルシウム、ステアリン酸マグ
ネシウム、ステアリン酸リチウム、ステアリン酸
ストロンチウム、ステアリン酸バリウム、ステア
リン酸亜鉛、ステアリン酸アルミニウム、ラウリ
ン酸バリウム、ラウリン酸カルシウム、ラウリン
酸亜鉛、12−ヒドロキシステアリン酸カルシウム
などを挙げることができる。これらの中では、後
述の理由によりステアリン酸カルシウム、ステア
リン酸マグネシウム、ステアリン酸リチウム、ス
テアリン酸ナトリウムを用いるのが好ましい。な
お上記脂肪酸金属塩は各単独で用いることもでき
るし、二種以上を単に混合したもの、あるいは溶
融混合したものを用いてもよい。更にこれらの脂
肪酸金属塩には遊離脂肪酸等を実質的に含まない
ことが好ましいが、本発明の効果を害さない範囲
内で微量程度含まれていてもよい。また脂肪酸金
属塩としては融点(JIS K0064に準拠)が130℃
を超えるものを使用する。 更に本発明で使用する粉末状の脂肪酸金属塩(B)
は嵩密度(JIS K6721に準して測定)が0.30ない
し0.85g/cm3であることが必要であり、好ましく
は0.40ないし0.85g/cm3、更に好ましくは0.40な
いし0.70g/cm3であり、また平均粒径が5ないし
500μの粉末状であることが必要であり、好まし
くは10ないし500μである。ここで平均粒径とは
(JIS Z8801)のふるいを使用したふるい残分試
験方法((JIS K0069)による累積分布曲線から
求めた累積分布の50%の径、すなわち50%粒径を
指す。嵩密度が0.30g/cm3より小さいと、回転成
形中に粉末状ポリエチレン組成物中に空気が巻き
込まれやすくなり、その結果成形中の溶融内面層
に多くの気泡を含み、脱泡しにくくなり、これが
原因となつて樹脂粉末の溶融速度が遅くなり、成
形品の内面肌の平滑性を著しく損うこととなる。
また嵩密度の上限0.85g/cm3は後で述べる方法に
よつて得られる平均粒径が上述の必須範囲にある
粉末状脂肪酸金属塩(B)の上限値が0.85g/cm3であ
ることに基づく。更に平均粒径500μよりも大き
い場合は、該脂肪酸金属塩等の粒子のため成形品
の内面肌が平滑でなくなるので、上記範囲は必須
である。また平均粒径が5μ未満のものは、嵩密
度の下限を下廻るようになるとともに、一般に製
造コストもかさむようになり、不利である。 また粉末の脂肪酸金属塩(B)は16メツシユの篩
(Tyler標準篩)を通過するものであることが必
要であり、とくに好ましくは32メツシユの篩を通
過するものである。16メツシユの篩を通過しない
ものが含まれていると、たとえ嵩密度や平均粒径
が前記の必須範囲に含まれていても、成形品の内
面肌の平滑性を損うようになる。なお以下におい
て、使用する粉末状脂肪酸金属塩(B)が全部通過す
る最も孔の細い篩のメツシユNo.を「粒度」と呼ぶ
こととする。 粉末状脂肪酸金属塩(B)の粉末状ポリエチレン(A)
に対する配合割合は、(A)が100重量部に対し(B)が
0.02ないし1.0重量部であり、好ましくは0.05ない
し0.5重量部、更に好ましくは0.07ないし0.3重量
部である。(B)の配合割合が0.02重量部よりも少な
いと、成形品が金型から離型しないという問題が
生じ、また1.0重量部よりも多いと、成形品内面
肌の平滑さが失われたり、成形品強度を損ねるよ
うになるので、上記範囲にあることが必要であ
る。なお、本発明の組成物には、本発明の効果を
損わない限り、通常ポリエチレンに配合される各
種安定剤、抗酸化剤、紫外線吸収剤、帯電防止
剤、別種の滑剤、可塑剤、顔料、充填剤、補強
剤、難燃剤、離型剤などの各種添加剤を配合する
ことができる。 粉末状ポリエチレン(A)と粉末状脂肪酸金属塩(B)
を混合して本発明の組成物を製造するには、通常
タンブラーやリボンブレンダーあるいはヘンシエ
ルミキサー等を用いる。混合時の組成物の温度
は、樹脂又は滑剤が融解しない温度で行ない、通
常0ないし100℃、とくに好ましくは10ないし70
℃である。 本発明の粉末状ポリエチレン組成物は粉末成
形、とくに回転成形に好適である。粉末成形は一
般に成形品に応じためす型に樹脂粉末を入れて外
観より加熱することにより、内部の樹脂粉末を金
型面に沿つて焼結して一体融合物を作つたのち、
金型外部より冷却して金型から成形品を取出すも
のである。粉末成形には金型の動き方、加熱方法
等により、エンゲル法(静置法)、ハヤシプ
ロセス、ハイスラー法などの一軸回転法、二
軸回転法、ロツクンロール法(回転動揺法)な
どがあり、このほかに加熱基体を回転させなが
ら粉体を被覆するパウダーコーテイングも含まれ
る。本発明の組成物は上記のいずれの成形法にも
好適であるが、とくに、、、などの回転
成形法に好適である。 ここで本発明の組成物に用いる粉末状脂肪酸金
属塩(B)の製造法について説明する。本発明に用い
られる粉末状脂肪酸金属塩(B)は前述の如く所定の
平均粒径等を有するとともに、0.30ないし0.85
g/cm3の如く比較的高い嵩密度を有するものでな
ければならない。このような金属塩(B)は金属石け
んの一つの製造法である溶融法(乾式法あるいは
直接法とも呼ばれる方法)で製造される脂肪酸金
属塩を機械的に粉砕したものが一般的に該当す
る。この方法は、金属の酸化物や水酸化物、ある
いは炭酸塩と脂肪酸あるいは脂肪酸エステルを直
接加熱反応せしめて製造する方法であり、冷却固
化した反応物の粉砕品は通常本発明で使用するこ
とのできる程度の嵩密度を有する。一方、他の金
属石けんの製造法である複分解法(複分解沈澱法
あるいは湿式法とも呼ばれる方法)で製造される
粉末状脂肪酸金属塩は、一般に嵩密度が0.3以下
であり、そのままでは本発明に使用することがで
きない。嵩密度の低い脂肪酸金属塩の粉末から
は、次のような方法で嵩密度の高い粉末をえるこ
とができる。 第一の方法は、該脂肪酸金属塩粉末をその融点
以下の温度にて加圧圧縮したのち、必要に応じて
機械的に粉砕するものである。融点以下の温度で
あれば、加圧圧縮によつて脂肪酸金属塩粉末が融
解しない限りできるだけ高温の方が望ましい。ま
た圧縮圧は温度にもよるが、同じく脂肪酸金属塩
粉末が融解しない限り高圧を用いることが望まし
い。圧縮は種々の方法が採用でき、具体的には、
原料粉末を一定の型の中に入れて、プレスにて
圧縮する方法、二つの回転するロール間に原料
粉末を導き圧縮する方法あるいはシリンダーの
中に粉末を入れてピストンで圧縮する方法などを
挙げることができる。これらの中ではの方法に
よるが比較例容易にしかも大量に嵩密度ムラの少
ない粉末を得ることができるの点で好ましい。こ
のようにして得られた圧縮物を必要に応じて機械
的に粉砕し、本発明で使用するのに必要な平均粒
径等を有する粉末とする。機械的手段としては、
フエザーミル、ボールミル、クラツシヤーさらに
人為的手段としては、乳鉢ですりつぶすなどがあ
る。 第二の方法は、嵩密度の低い粉末状脂肪酸金属
塩を好ましくは不活性ガス雰囲気のもとで、圧力
下もしくは圧力をかけないまま融点以上に加熱溶
融し、次いで冷却固化させたのち、塊状脂肪酸金
属塩を上記第一の方法と同様の機械的手段等によ
つて粉末とするものである。 第三の方法は、該嵩密度の低い脂肪酸金属塩粉
末にポリオレフインワツクス又は飽和脂肪酸のグ
リセライド(油脂)を添加し、ポリオレフインワ
ツクス又は飽和脂肪酸のグリセライドの融点以上
に加熱混合し、ペースト状混合物を冷却固化す
る。添加量は溶融混合物がペースト状になるに充
分な程度でよい。こうして得られる塊状物を上記
第一の方法と同様の機械的手段等によつて粉末と
するものである。この方法で使用するポリオレフ
インワツクスとしては、例えばエチレン、プロピ
レン、1−ブテン、1−ヘキセン、4−メチル−
1−ペンテン、1−デセンなどのα−オレフイン
の単独重合体又は2種以上のα−オレフインの共
重合体であつて、極限粘度(デカリン溶媒中で
135℃にて測定したもの)が通常0.04〜0.5dl/g
の範囲にあるものである。また飽和脂肪酸グリセ
ライドとしては、例えばステアリン酸やパルミチ
ン酸のトリグリセリドを挙げることができる。ま
た上記加熱諸条件は、上記混合物がペースト状を
示す程度になるように選べばよい。 本発明の粉末状ポリエチレン組成物を用いるこ
とによつて、粉末成形、とくに回転成形において
成形時の離形性に優れ、内面肌が著しく平滑で脱
泡不良もなし、機械的強度に優れた回転成形品が
得られるようになつた。 以下、本発明を実施例によつて具体的に説明す
る。 実施例 1 チーグラー触媒を用いて懸濁重合で製造された
粉末ポリエチレン(A)(密度0.943g/cm3、メルト
インデツクス4.5g/10分)の100重量部に対し、
ステアリン酸カルシウム(三共有機合成(株)製、嵩
密度0.22g/c.c.、粒度200メツシユ、複分解法)
を円型落し蓋金型(直径20cm)に入れプレス成形
機を用いて室温で加圧(150Kg/cm2)に圧縮させ
て固めた後、ボールミルを用いて粉砕して得られ
た嵩密度0.46g/c.c.の粉末ステアリン酸カルシウ
ム(粒度100mesh、平均粒径50μ)0.15重量部を
滑剤として添加し、ヘンシエルミキサーを用いて
室温で3分間混合した。得られた粉末ポリエチレ
ン組成物の4Kgを鋼板製金型(タテ30cm×ヨコ30
cm×深さ40cm)内に仕込み二軸回転成形機にセツ
トしてプロパンガスバーナーで金型外部から10分
間加熱し、次いで5分間の自然放冷、2分間の水
冷を行つた後、成形を終了した。得られた成型品
の離型性、脱泡状態および内面肌の状態を観察し
た。また観察しにくい成型品内部の小さな泡の製
品物性に及ぼす悪影響をみるため成型品から試験
片をASTM4号ダンベルで打抜き引張試験を行つ
て破断までの伸びを調べた。 結果を表1に示した(以下の実施例、比較例も
同じ)。 実施例 2 実施例1において、チーグラー触媒を用いて懸
濁重合で製造された粉末ポリエチレン(B)(密度
0.935g/cm3、イルトインデツクス4.0g/10分)
を用いる以外は、全く実施例1と同じ条件で回転
成形を行つた。 比較例 1 実施例1において、滑剤として、ステアリン酸
カルシウム(三共有機合成(株)製、嵩密度0.22g/
c.c.、粒度200メツシユ、複分解法)を円型落し蓋
金型(直径20cm)に入れプレス成形機を用いて室
温で加圧(30Kg/cm2)圧縮させて固めた後、粉砕
して得られた嵩比重0.34g/c.c.の粉末(粒度
200mesh、平均粒径10μ)を用いる以外は全く、
実施例1と同じ条件下で回転成形をおこなつた。 実施例 3 実施例1において、滑剤として、ステアリン酸
カルシウム(三共有機合成(株)製、嵩密度0.22g/
c.c.、粒度200メツシユ、複分解法)を円型落し蓋
金型(直径20cm)に入れてプレス成形機を用いて
温度100℃で加圧(150Kg/cm2)圧縮させて固めた
後、粉砕して得られた嵩密度0.50g/c.c.の粉末
(粒度80mesh、平均粒径80μ)を用いる以外は実
施例1と同じ条件下で回転成形をおこなつた。 実施例 4 実施例1において、滑剤として、ステアリン酸
カルシウム(三共有機合成(株)製、嵩密度0.22g/
c.c.、複分解法)を円型落し蓋金型(直径4cm)に
入れてプレス成形機を用いて温度100℃で加圧
(150Kg/cm2)、圧縮させて固めた後、粉砕して得
られた嵩密度0.63g/c.c.の粉末(粒度80mesh、
平均粒径100μ)を用いる以外は、実施例1と同
じ条件下で回転成形をおこなつた。 実施例 5 実施例1において、滑剤として、ステアリン酸
カルシウム(三共有機合成(株)製、嵩密度0.22g/
c.c.、複分解法)を200℃以上で一度溶融させた後、
冷却固化させて出来た塊状物をボールミルを用い
て粉砕して得られた嵩密度0.75g/c.c.の粉末(粒
度100mesh、平均粒径50μ)を用いる以外は実施
例1と同じ条件下で回転成形をおこなつた。 実施例 6 実施例1において、滑剤として、直接法で製造
されたステアリン酸カルシウム(日本油脂(株)製、
嵩密度0.60g/c.c.、粒度16mesh、平均粒径500μ)
をそのまま用いる以外は実施例1と同じ条件下で
回転成形を行つた。 実施例 7 実施例1において、滑剤として、直接法で製造
されたステアリン酸カルシウム(日本油脂(株)製、
嵩密度0.42g/c.c.、粒度200mesh、平均粒径10μ)
をそのまま用いる以外は実施例1と同じ条件下で
回転成形を行つた。 実施例 8 実施例1において、滑剤として、ステアリン酸
カルシウム(三共有機合成(株)製、嵩密度0.22g/
c.c.、複分解法)に少量のステアリン酸トリグリセ
ライドをバインダーとして添加し嵩密度0.40g/
c.c.の粉末(粒度32mesh、平均粒径100μ)を得、
これを用いる以外は、実施例1と同じ条件下で回
転成形をおこなつた。 比較例 2 実施例1において、滑剤として、複分解法ステ
アリン酸カルシウム(三共有機合成(株)製、嵩密度
0.22g/c.c.、粒度200メツシユ)をそのまま粉末
ポリエチレンに添加し片を用いて混合する以外は
実施例1と同じ条件下で回転成型をおこなつた。 比較例 3 実施例1において、ステアリン酸カルシウム
(三共有機合成(株)製、嵩密度0.22g/c.c.)を円型
落し蓋(直径20cm)に入れてプレス成形機を用い
て100℃で加圧(150Kg/cm2)、圧縮させて固めた
後、粉砕して得られた嵩密度0.75g/c.c.の粉末で
平均粒径800μ(粒度14mesh)のものを滑剤として
用いる以外は実施例1と同じ条件下で回転成形を
おこなつた。 比較例 4 実施例1において、滑剤を何ら添加しないで、
粉末ポリエチレンをそのまま回転成形する以外は
実施例1と同じ条件で回転成形をおこなつた。 実施例 9 実施例1において、ステアリン酸ナトリウム
(日本油脂(株)製、嵩密度0.34g/c.c.)を融解後、
冷却固化した塊状物を粉砕して得られた嵩密度
0.47g/c.c.(粒度100mesh、平均粒径50μ)を滑
剤として用いる以外は実施例1と同じ条件下で回
転成形をおこなつた。 比較例 5 実施例1において、滑剤として、ステアリン酸
ナトリウム(日本油脂(株)製、嵩密度0.32g/c.c.)
をそのまま用いる以外は実施例1と同じ条件下で
回転成形をおこなつた。 実施例 10 実施例2において、ステアリン酸リチウム(日
本油脂(株)製、嵩密度0.21g/c.c.、複分解法)を融
解させた後、冷却固化した塊状物を粉砕して得ら
れた嵩密度0.51g/c.c.の粉末(粒度80mesh、平
均粒径80μ)を滑剤として用いる以外は実施例2
と同じ条件下で回転成形をおこなつた。 比較例 6 実施例2において、滑剤として、複分解法ステ
アリン酸リチウム(日本油脂(株)製、嵩密度0.21
g/c.c.)をそのまま用いる以外は実施例2と同じ
条件下で回転成形をおこなつた。 実施例 11 実施例2において、ステアリン酸マグネシウム
(日本油脂(株)製、嵩密度0.17g/c.c.、複分解法)
を融解後、冷却固化した塊状物を粉砕して得られ
た嵩密度0.54g/c.c.の粉末(粒度100mesh、平均
粒径50μ)を滑剤として用いる以外は実施例2と
同じ条件で回転成形をおこなつた。 比較例 7 実施例2において、滑剤として、複分解法ステ
アリン酸マグネシウム(日本油脂(株)製、嵩密度
0.17g/c.c.)をそのまま用いる以外は実施例2と
同じ条件下で回転成形を行つた。 比較例 8 実施例2において、滑剤を何ら添加しないで、
粉末ポリエチレンをそのまま回転成形する以外は
実施例2と同じ条件で回転成形をおこなつた。
The present invention relates to a powdered polyethylene composition suitable for powder molding, particularly rotational molding, which has excellent mold releasability during molding, has an extremely smooth inner surface, has no defoaming defects, and has excellent mechanical strength. The object of the present invention is to provide a raw material powder composition that provides a molded article. In powder molding, typified by rotary molding, a powdered thermoplastic resin obtained by some method is used, but depending on the particle size, particle size distribution, and particle shape of the powder used, moldability, especially pore filling properties, etc. There was a problem with poor smoothness. Also, for example,
57-38839, powdered polyethylene directly obtained by suspension polymerization has the disadvantage of poor mold release properties. To address these issues, JP-A-56-41213 proposed the use of powder with specific properties,
In JP-A No. 57-38839, we proposed the use of a composition in which a lubricant such as a saturated fatty acid having a specific melting point range is mixed and dispersed in powdered polyethylene obtained by a suspension method, and in JP-A No. 58-84719, proposed the use of a mixture of mechanically pulverized pulverized polyethylene with a specific spherical powdered polyethylene. These proposals have the disadvantage that there are restrictions on the manufacturing method of the powder used, and that there is an upper limit on the melting point of the lubricant used, which limits what can be used. The present inventors have found that by using a powdered polyethylene composition in which a predetermined amount of a lubricant exhibiting predetermined powder properties is mixed and dispersed in powder molding, particularly rotational molding, the above-mentioned drawbacks can be avoided and suspension polymerization or gas It can be applied not only to powdered resins produced by phase polymerization, but also to powdered resins obtained by mechanically crushing pellets, etc. It has excellent mold release properties during molding, has an extremely smooth inner surface, does not have defoaming defects, and has excellent mechanical strength. The present invention was completed based on the discovery that the method also provides an excellent molded product. That is, the present invention provides powdered polyethylene (A) 100
0.02 to 1.0 part by weight of a powdered fatty acid metal salt (B) having a bulk density of 0.35 to 0.85 g/cm 3 , an average particle size of 5 to 500 μ, and passing through a 16-mesh sieve is mixed and dispersed in the weight part. The gist of this invention is a powdered polyethylene composition characterized by the following. The present invention will be explained in detail below. Powdered polyethylene constituting the composition of the present invention
(A) is preferably polyethylene, especially low density and medium density polyethylene. In addition to ethylene homopolymers, these polyethylenes contain ethylene and α-olefins such as propylene, 1-
Butene, isobutene, 1-pentene, 4-methyl-1-pentane, 1-hexene, 1-octene,
Also included are copolymers with 1-decene and the like. One example of low-density polyethylene is one usually obtained by high-pressure radical polymerization, and has a density of about 0.91.
and about 0.93 g/cm 3 . Polyethylene in the low to medium density range is usually obtained by solution polymerization, suspension polymerization, or gas phase polymerization using a Ziegler type catalyst, and the density is usually about 0.91 to about 0.95.
It is about g/ cm3 . Among these medium- and low-density polyethylenes, those obtained by suspension polymerization or gas phase polymerization are preferable for the reasons described later.
Particularly preferred is 0.920 to 0.950. The above-mentioned polyethylene may be made into powder form by any method as described above, and resin pellets obtained by various polymerization methods may be mechanically pulverized, freeze-pulverized, and further processed by suspension polymerization, gas phase polymerization, etc. Therefore, directly produced products can be used. However, mechanically crushed powdered polyethylene
Generally, the bulk density is low, the angle of repose is high, the particle size distribution is wide, and the particle shape is often irregular, so it is preferable to use powdered polyethylene directly produced by suspension polymerization or the like. Furthermore, among these, the powder has a spherical or ellipsoidal shape or a shape close to these, and essentially does not contain filaments or whiskers, which makes the surface of the rotary molded product smooth, especially the details. It is preferable for finishing.
In addition, the properties of the resin suitable for powder molding, especially rotational molding, include a bulk density of usually 0.3 to 0.6 g/cm 3 , preferably 0.4 to 0.5 g/cm 3 , and an average particle diameter (50%
Particle size) is usually 150 to 400 μ, and 70 of the total particles are in the range of /150 to 400 μ.
Preferably, it accounts for at least % by weight. In rotary molding, the angle of repose is usually 25° to 45°, preferably 30° to 40°, in order to increase the fluidity of the powder and ensure sufficient detail moldability. In addition, the polyethylene of the present invention usually has a melt flow rate [MFR: 190°C, 2.16 kg load] of 1 to 1.
20 g/10 min, preferably 2 to 10 g/min is suitably used. Next, the powdered fatty acid metal salt (B) will be explained. Examples of fatty acid metal salts used in the present invention include calcium stearate, magnesium stearate, lithium stearate, strontium stearate, barium stearate, zinc stearate, aluminum stearate, barium laurate, calcium laurate, zinc laurate, Examples include calcium 12-hydroxystearate. Among these, calcium stearate, magnesium stearate, lithium stearate, and sodium stearate are preferably used for the reasons described later. The fatty acid metal salts mentioned above can be used alone, or simply a mixture of two or more kinds, or a mixture of two or more kinds can be used. Furthermore, it is preferable that these fatty acid metal salts do not substantially contain free fatty acids, but they may contain trace amounts within a range that does not impair the effects of the present invention. In addition, as a fatty acid metal salt, the melting point (according to JIS K0064) is 130℃.
Use more than . Furthermore, powdered fatty acid metal salt (B) used in the present invention
It is necessary that the bulk density (measured according to JIS K6721) is 0.30 to 0.85 g/cm 3 , preferably 0.40 to 0.85 g/cm 3 , more preferably 0.40 to 0.70 g/cm 3 . , and the average particle size is 5 or more.
It is necessary that the powder is 500μ, preferably 10 to 500μ. The average particle size here refers to the diameter of 50% of the cumulative distribution obtained from the cumulative distribution curve according to the sieve residue test method (JIS K0069) using a sieve of (JIS Z8801), that is, the 50% particle size. If the density is less than 0.30 g/cm 3 , air is likely to be entangled in the powdered polyethylene composition during rotational molding, and as a result, the molten inner layer during molding will contain many air bubbles, making it difficult to defoam. This causes a slow melting rate of the resin powder, which significantly impairs the smoothness of the inner surface of the molded product.
The upper limit of the bulk density is 0.85 g/cm 3 because the upper limit of the powdered fatty acid metal salt (B) whose average particle size is within the above-mentioned essential range obtained by the method described later is 0.85 g/cm 3 . based on. Further, if the average particle size is larger than 500 μm, the inner surface of the molded product will not be smooth due to particles of the fatty acid metal salt, so the above range is essential. Furthermore, particles having an average particle diameter of less than 5 μm are disadvantageous because the bulk density falls below the lower limit and the manufacturing cost generally increases. Further, the powdered fatty acid metal salt (B) must pass through a 16-mesh sieve (Tyler standard sieve), particularly preferably through a 32-mesh sieve. If particles that do not pass through a 16-mesh sieve are included, the smoothness of the inner surface of the molded product will be impaired, even if the bulk density and average particle size are within the above-mentioned essential ranges. In the following, the mesh number of the sieve with the narrowest pores through which all the powdered fatty acid metal salt (B) used will pass will be referred to as "particle size." Powdered polyethylene (A) of powdered fatty acid metal salt (B)
The blending ratio is 100 parts by weight of (A) to 100 parts by weight of (B).
The amount is 0.02 to 1.0 parts by weight, preferably 0.05 to 0.5 parts by weight, and more preferably 0.07 to 0.3 parts by weight. If the blending ratio of (B) is less than 0.02 part by weight, there will be a problem that the molded product will not release from the mold, and if it is more than 1.0 part by weight, the smoothness of the inner surface of the molded product will be lost, Since the strength of the molded product will be impaired, it is necessary that it be within the above range. The composition of the present invention may contain various stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, other types of lubricants, plasticizers, and pigments that are usually added to polyethylene, as long as they do not impair the effects of the present invention. , fillers, reinforcing agents, flame retardants, mold release agents, and other various additives can be added. Powdered polyethylene (A) and powdered fatty acid metal salt (B)
A tumbler, ribbon blender, Henschel mixer, or the like is usually used to mix the ingredients to produce the composition of the present invention. The temperature of the composition during mixing is such that the resin or lubricant does not melt, usually 0 to 100°C, particularly preferably 10 to 70°C.
It is ℃. The powdered polyethylene composition of the present invention is suitable for powder molding, particularly rotational molding. Powder molding generally involves placing resin powder in a test mold according to the molded product and heating it from the outside to sinter the resin powder inside along the mold surface to create an integral fusion product.
The molded product is cooled from the outside of the mold and removed from the mold. Powder molding methods include the Engel method (static method), Hayashi process, uniaxial rotation method such as the Heisler method, biaxial rotation method, and rock'n roll method (rotation oscillation method), depending on the way the mold moves and the heating method. In addition to this, it also includes powder coating, in which powder is coated while rotating a heated substrate. The composition of the present invention is suitable for any of the above-mentioned molding methods, but is particularly suitable for rotational molding methods such as . Here, a method for producing the powdered fatty acid metal salt (B) used in the composition of the present invention will be explained. The powdered fatty acid metal salt (B) used in the present invention has a predetermined average particle size, etc., as described above, and has a particle diameter of 0.30 to 0.85.
It must have a relatively high bulk density, such as g/cm 3 . Such metal salts (B) are generally those obtained by mechanically crushing fatty acid metal salts produced by the melting method (also called dry method or direct method), which is one of the manufacturing methods for metal soaps. . This method is a method of producing metal oxides, hydroxides, or carbonates by direct heating reaction with fatty acids or fatty acid esters, and the pulverized product of the reactant, which has been cooled and solidified, is usually used in the present invention. The bulk density is as high as possible. On the other hand, powdered fatty acid metal salts produced by the metathesis method (also called metathesis precipitation method or wet method), which is another method for producing metal soaps, generally have a bulk density of 0.3 or less, and can be used as is in the present invention. Can not do it. Powder with high bulk density can be obtained from powder of fatty acid metal salt with low bulk density by the following method. The first method is to pressurize and compress the fatty acid metal salt powder at a temperature below its melting point, and then mechanically crush the powder, if necessary. As long as the temperature is below the melting point, the temperature is preferably as high as possible unless the fatty acid metal salt powder is melted by pressure compression. Although the compression pressure depends on the temperature, it is also desirable to use high pressure unless the fatty acid metal salt powder is melted. Various methods can be used for compression, specifically:
Methods include putting the raw powder into a certain mold and compressing it with a press, leading the raw powder between two rotating rolls and compressing it, or putting the powder into a cylinder and compressing it with a piston. be able to. Among these, although it depends on the method, the comparative example is preferable because powder with less uneven bulk density can be obtained easily and in large quantities. The compressed product thus obtained is mechanically pulverized as required to obtain a powder having an average particle size necessary for use in the present invention. As a mechanical means,
Feather mills, ball mills, crushers, and artificial methods include grinding in a mortar. The second method involves heating and melting a powdered fatty acid metal salt with a low bulk density to a temperature above its melting point under pressure or without applying pressure, preferably under an inert gas atmosphere, then cooling and solidifying it, and then melting it into a lump. The fatty acid metal salt is powdered by mechanical means similar to the first method described above. The third method is to add polyolefin wax or saturated fatty acid glyceride (oil) to the fatty acid metal salt powder with low bulk density, and heat and mix to a temperature higher than the melting point of the polyolefin wax or saturated fatty acid glyceride to form a paste mixture. Cool and solidify. The amount added may be sufficient to make the molten mixture paste-like. The thus obtained lumps are powdered by the same mechanical means as in the first method described above. Polyolefin waxes used in this method include, for example, ethylene, propylene, 1-butene, 1-hexene, 4-methyl-
It is a homopolymer of α-olefin such as 1-pentene and 1-decene or a copolymer of two or more α-olefins, and has an intrinsic viscosity (in decalin solvent).
(measured at 135℃) is usually 0.04 to 0.5 dl/g
It is within the range of Examples of saturated fatty acid glycerides include triglycerides of stearic acid and palmitic acid. Further, the heating conditions may be selected so that the mixture exhibits a paste-like state. By using the powdered polyethylene composition of the present invention, powder molding, especially rotary molding, has excellent mold release properties during molding, the inner surface is extremely smooth, there is no defoaming defect, and rotary molding has excellent mechanical strength. Molded products can now be obtained. Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 For 100 parts by weight of powdered polyethylene (A) (density 0.943 g/cm 3 , melt index 4.5 g/10 min) produced by suspension polymerization using a Ziegler catalyst,
Calcium stearate (manufactured by Sankyoki Gosei Co., Ltd., bulk density 0.22 g/cc, particle size 200 mesh, double decomposition method)
was placed in a circular drop-lid mold (diameter 20cm) and compressed under pressure (150Kg/cm 2 ) at room temperature using a press molding machine to solidify it, and then crushed using a ball mill to obtain a bulk density of 0.46g. 0.15 parts by weight of powdered calcium stearate (particle size: 100 mesh, average particle size: 50 μm) was added as a lubricant and mixed for 3 minutes at room temperature using a Henschel mixer. 4 kg of the obtained powdered polyethylene composition was placed in a steel plate mold (vertical 30cm x horizontal 30cm).
cm x depth of 40 cm), set it in a two-shaft rotary molding machine, heated it from the outside of the mold with a propane gas burner for 10 minutes, then allowed it to cool naturally for 5 minutes, cooled it in water for 2 minutes, and then molded it. finished. The releasability, defoaming state, and inner skin state of the obtained molded product were observed. In addition, in order to examine the adverse effect of small bubbles inside the molded product, which are difficult to observe, on the physical properties of the product, a test piece was punched out from the molded product using an ASTM No. 4 dumbbell, and a tensile test was conducted to examine the elongation until breakage. The results are shown in Table 1 (the same applies to the following Examples and Comparative Examples). Example 2 In Example 1, powder polyethylene (B) produced by suspension polymerization using a Ziegler catalyst (density
0.935g/ cm3 , illumination index 4.0g/10 minutes)
Rotational molding was carried out under exactly the same conditions as in Example 1, except that the following was used. Comparative Example 1 In Example 1, calcium stearate (manufactured by Sankyoki Gosei Co., Ltd., bulk density 0.22 g/
cc, particle size 200 mesh, double decomposition method) was placed in a circular drop-lid mold (diameter 20 cm), compressed under pressure (30 kg/cm 2 ) at room temperature using a press molding machine, solidified, and then crushed. Powder with bulk specific gravity 0.34g/cc (particle size
200mesh, average particle size 10μ)
Rotational molding was carried out under the same conditions as in Example 1. Example 3 In Example 1, calcium stearate (manufactured by Sankyoki Gosei Co., Ltd., bulk density 0.22 g/
cc, particle size 200 mesh, double decomposition method) was placed in a circular drop-lid mold (diameter 20cm), compressed using a press molding machine at a temperature of 100℃ (150Kg/cm 2 ) to solidify, and then crushed. Rotational molding was carried out under the same conditions as in Example 1, except that the obtained powder with a bulk density of 0.50 g/cc (particle size: 80 mesh, average particle size: 80 μm) was used. Example 4 In Example 1, calcium stearate (manufactured by Sankyoki Gosei Co., Ltd., bulk density 0.22 g/
cc, double decomposition method) was placed in a circular drop-lid mold (diameter 4 cm), compressed and solidified using a press molding machine at a temperature of 100°C (150 kg/cm 2 ), and then crushed. Powder with bulk density 0.63g/cc (particle size 80mesh,
Rotational molding was carried out under the same conditions as in Example 1, except that an average particle size of 100 μm was used. Example 5 In Example 1, calcium stearate (manufactured by Sankyoki Gosei Co., Ltd., bulk density 0.22 g/
cc, double decomposition method) once melted at 200℃ or higher,
Rotation molding was carried out under the same conditions as in Example 1, except that a powder with a bulk density of 0.75 g/cc (particle size 100 mesh, average particle size 50 μ) was used, which was obtained by crushing the resulting solidified lump using a ball mill. I did this. Example 6 In Example 1, calcium stearate produced by a direct method (manufactured by NOF Corporation,
Bulk density 0.60g/cc, particle size 16mesh, average particle size 500μ)
Rotational molding was carried out under the same conditions as in Example 1, except that the sample was used as it was. Example 7 In Example 1, calcium stearate produced by a direct method (manufactured by NOF Corporation,
Bulk density 0.42g/cc, particle size 200mesh, average particle size 10μ)
Rotational molding was carried out under the same conditions as in Example 1, except that the sample was used as it was. Example 8 In Example 1, calcium stearate (manufactured by Sankyoki Gosei Co., Ltd., bulk density 0.22 g/
cc, double decomposition method) by adding a small amount of stearic acid triglyceride as a binder to obtain a bulk density of 0.40 g/
Obtain cc powder (particle size 32mesh, average particle size 100μ),
Rotational molding was carried out under the same conditions as in Example 1 except that this was used. Comparative Example 2 In Example 1, metathesis method calcium stearate (manufactured by Sankyoki Gosei Co., Ltd., bulk density
Rotational molding was carried out under the same conditions as in Example 1, except that 0.22 g/cc, particle size 200 mesh) was directly added to powdered polyethylene and mixed using a piece. Comparative Example 3 In Example 1, calcium stearate (manufactured by Sankyoki Gosei Co., Ltd., bulk density 0.22 g/cc) was placed in a circular drop lid (diameter 20 cm) and pressurized at 100°C using a press molding machine. 150Kg/cm 2 ), compressed, solidified, and crushed to obtain powder with a bulk density of 0.75g/cc and an average particle size of 800μ (particle size 14mesh) was used as the lubricant, but the same conditions as Example 1 were used. Rotational molding was carried out below. Comparative Example 4 In Example 1, without adding any lubricant,
Rotation molding was carried out under the same conditions as in Example 1, except that the powdered polyethylene was rotomolded as it was. Example 9 In Example 1, after melting sodium stearate (manufactured by NOF Corporation, bulk density 0.34 g/cc),
Bulk density obtained by crushing a cooled and solidified lump
Rotational molding was carried out under the same conditions as in Example 1, except that 0.47 g/cc (particle size: 100 mesh, average particle size: 50 μm) was used as a lubricant. Comparative Example 5 In Example 1, sodium stearate (manufactured by NOF Corporation, bulk density 0.32 g/cc) was used as a lubricant.
Rotational molding was carried out under the same conditions as in Example 1, except that the sample was used as it was. Example 10 In Example 2, a bulk density of 0.51 was obtained by melting lithium stearate (manufactured by NOF Corporation, bulk density 0.21 g/cc, double decomposition method) and then crushing the solidified lump by cooling. Example 2 except that g/cc powder (particle size 80mesh, average particle size 80μ) was used as the lubricant.
Rotational molding was carried out under the same conditions. Comparative Example 6 In Example 2, metathesis method lithium stearate (manufactured by NOF Corporation, bulk density 0.21) was used as the lubricant.
Rotational molding was carried out under the same conditions as in Example 2, except that g/cc) was used as is. Example 11 In Example 2, magnesium stearate (manufactured by NOF Corporation, bulk density 0.17 g/cc, double decomposition method)
After melting, rotary molding was performed under the same conditions as in Example 2, except that a powder with a bulk density of 0.54 g/cc (particle size 100 mesh, average particle size 50 μ) obtained by crushing the cooled and solidified lump was used as a lubricant. Konatsuta. Comparative Example 7 In Example 2, metathesis method magnesium stearate (manufactured by NOF Corporation, bulk density
Rotational molding was carried out under the same conditions as in Example 2, except that 0.17 g/cc) was used as is. Comparative Example 8 In Example 2, without adding any lubricant,
Rotation molding was carried out under the same conditions as in Example 2, except that the powdered polyethylene was rotomolded as it was.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 粉末状ポリエチレン(A)100重量部に、融点が
130℃を超え、嵩密度が0.35ないし0.85g/cm3
平均粒径が5ないし500μで、かつ、16メツシユ
の篩を通過する粉末状の脂肪酸金属塩(B)0.02ない
し1.0重量部が混合分散されていることを特徴と
する粉末状ポリエチレン組成物。
1 100 parts by weight of powdered polyethylene (A) has a melting point of
Over 130℃, bulk density 0.35 to 0.85g/cm 3 ,
A powdered polyethylene composition characterized in that 0.02 to 1.0 parts by weight of a powdered fatty acid metal salt (B) having an average particle size of 5 to 500 μm and passing through a 16-mesh sieve is mixed and dispersed.
JP20073783A 1983-10-28 1983-10-28 Powdery thermoplastic resin composition Granted JPS6094459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20073783A JPS6094459A (en) 1983-10-28 1983-10-28 Powdery thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20073783A JPS6094459A (en) 1983-10-28 1983-10-28 Powdery thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS6094459A JPS6094459A (en) 1985-05-27
JPH0454699B2 true JPH0454699B2 (en) 1992-09-01

Family

ID=16429333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20073783A Granted JPS6094459A (en) 1983-10-28 1983-10-28 Powdery thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS6094459A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2436740A1 (en) 2003-09-29 2012-04-04 Fujifilm Corporation Ink for inkjet printing, ink set for inkjet printing, inkjet recording material and producing method for inkjet recording material, and inkjet recording method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0719824B1 (en) * 1994-12-28 2001-06-27 Ciba SC Holding AG Low-dust granules of plastic additives
JP4488563B2 (en) * 1999-11-05 2010-06-23 旭化成ケミカルズ株式会社 Reinforced polyamide resin composition with excellent moldability
JP4753487B2 (en) * 2001-03-30 2011-08-24 旭化成ケミカルズ株式会社 Polyamide resin composition
JP4231309B2 (en) * 2003-03-14 2009-02-25 リケンテクノス株式会社 Method for producing sol-like thermoplastic resin composition
JP7251962B2 (en) * 2018-12-14 2023-04-04 旭化成株式会社 Resin composition mainly composed of ethylene-based polymer powder, and molding made of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738839A (en) * 1980-08-20 1982-03-03 Asahi Chem Ind Co Ltd Powdered polyethylene composition
JPS5765752A (en) * 1980-10-08 1982-04-21 Continental Oil Co Manufacture of thermoplastic blend extrusion formation additive composition
JPS58152028A (en) * 1982-03-05 1983-09-09 Toagosei Chem Ind Co Ltd Powdery polymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738839A (en) * 1980-08-20 1982-03-03 Asahi Chem Ind Co Ltd Powdered polyethylene composition
JPS5765752A (en) * 1980-10-08 1982-04-21 Continental Oil Co Manufacture of thermoplastic blend extrusion formation additive composition
JPS58152028A (en) * 1982-03-05 1983-09-09 Toagosei Chem Ind Co Ltd Powdery polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2436740A1 (en) 2003-09-29 2012-04-04 Fujifilm Corporation Ink for inkjet printing, ink set for inkjet printing, inkjet recording material and producing method for inkjet recording material, and inkjet recording method

Also Published As

Publication number Publication date
JPS6094459A (en) 1985-05-27

Similar Documents

Publication Publication Date Title
EP0004651B1 (en) The use of ethylene hydrocarbon copolymers for molding purposes
MXPA04007366A (en) Laser sinter powder with a metal salt and a fatty acid derivative, process for its production, and moldings produced from this laser sinter powder.
JPH0518858B2 (en)
CA1212811A (en) Finishing of rotational molding grade resin
CN104350118B (en) The method preparing flowable amorphous poly alhpa olefin binding agent pellet
KR100545618B1 (en) Particulate Diacetal Composition, Process for Producing the Same, and Polyolefin Resin Composition and Molding
JP6421125B2 (en) Masterbatch, masterbatch group, masterbatch manufacturing method and synthetic resin molded product
JPH0454699B2 (en)
JPS60106807A (en) Ultrahigh molecular weight polyolefin powder
CA2181388A1 (en) Multi-layer particles for rotational molding
DE102007022118A1 (en) Metallocene catalyzed polyolefins in wax formulations and their use for the investment casting / investment casting process
US5179138A (en) Process for producing a vinyl chloride resin composition for powder molding
JPH01156357A (en) Vinyl chloride resin composition for powder molding
JPS6016464B2 (en) Polyolefin resin composition
JPS6090221A (en) Production of vinyl chloride based resin composition for sintering powder
JPH0748561A (en) Heat storage article and production thereof
EP0042768A1 (en) Injection molding and extrusion of ultra-high molecular weight polyethylene
CN109971071A (en) A kind of filter bottle of water purifier shell PP composite material, Preparation method and use
KR101547945B1 (en) Masterbatch for improvement of smoothness and liquidity and film composition using the same
Wencke et al. HDPE@ UHMWPE Powders for Power Bed Fusion Based Additive Manufacturing
EP4071206A1 (en) Coated particles of an oxygenated zinc compound
JP3309763B2 (en) Thermoplastic elastomer powder, powder molding method and molded article
KR20230044485A (en) Powder compositions for lamination processes and prints thereof
JPH03100031A (en) Rubber additive
JPS59150719A (en) Powder molding method of polypropylene