JPH0454684B2 - - Google Patents

Info

Publication number
JPH0454684B2
JPH0454684B2 JP57182719A JP18271982A JPH0454684B2 JP H0454684 B2 JPH0454684 B2 JP H0454684B2 JP 57182719 A JP57182719 A JP 57182719A JP 18271982 A JP18271982 A JP 18271982A JP H0454684 B2 JPH0454684 B2 JP H0454684B2
Authority
JP
Japan
Prior art keywords
synthetic rubber
polymerization
water
polymer solution
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57182719A
Other languages
Japanese (ja)
Other versions
JPS5974101A (en
Inventor
Kenya Makino
Toshio Nakamura
Yoshitaka Matsuo
Yukio Kawakita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP18271982A priority Critical patent/JPS5974101A/en
Publication of JPS5974101A publication Critical patent/JPS5974101A/en
Publication of JPH0454684B2 publication Critical patent/JPH0454684B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、触媒残渣の少ない合成ゴムの製造方
法に関する。遷移金属化合物と有機アルミニウム
化合物を主成分とする触媒、いわゆるチーグラー
系触媒を用いて合成ゴムを生成させ、スチームス
トリツピングにより脱溶媒し、ポリマーをを回収
することにより合成ゴムを製造することは広く行
われている。この製造方法において、重合後のポ
リマーは、スチームストリツピング工程において
水と接触するので、水に可溶な触媒残渣の一部は
水に移行するが、合成ゴム中には通常相当量の触
媒残渣がみとめられる。 遷移金属触媒残渣が多いと合成ゴムの着色の原
因となり、またゴムの老化を促進することが知ら
れている。残存ハロゲン、特に塩素が多いと、合
成ゴムが接触して使用される装置、器具などの金
属材料、特に鉄、鉄合金、アルミニウムなどを腐
食する原因となると考えられている。 本発明者らは、触媒残渣の少ない合成ゴムの製
造方法について鋭意研究を行つた結果、チーグラ
ー系触媒による重合直後、重合停止剤として特定
の化合物を使用すると、重合停止剤としての本来
の作用、すなわち重合の進行の停止と、ポリマー
の分子量増加の防止(ゲル発生の防止)が行われ
ると同時に得られた合成ゴム中の触媒残渣が著し
く低減できることを見い出し、本発明を完成する
に到つた。 本発明は遷移金属化合物と有機アルミニウム化
合物を主成分とする重合触媒を用いて合成ゴムを
生成させ、スチームストリツピングにより脱溶媒
し、ポリマーを回収する合成ゴムの製造方法にお
いて、重合停止剤としてポリエチレングリコール
のアルキルエステル誘導体、環状エステル化合物
およびペンタエリスリトールテトラエステルから
選ばれた少なくとも1種の化合物を使用して重合
を停止させた後、重合体溶液1部に対して0.05〜
4部の水を加え重合体溶液を乳化させ、その後、
更に重合体溶液1部に対して0.2〜2.0部の水を加
え転相、分離した重合体溶液をスチームストリツ
ピングにより脱溶媒させることを特徴とする合成
ゴムの製造方法を特徴とするものである。とくに
本発明は合成ゴム中の微量成分により変質をうけ
易い材料、たとえば金属などに使用するゴム製品
の原料に適した非腐蝕性合成ゴムの製造方法にか
んする。 合成ゴムの重合触媒に用いる遷移金属化合物に
は、例えばニツケル、コバルト、バナジウム、ニ
オビウム、ランタンなどの化合物が知られてい
る。有機アルミニウム化合物には、例えばトリア
ルキルアルミニウム、ジアルキルアルミニウムモ
ノクロリド、アルキルアルミニウムセスキクロリ
ド、アルキルアルミニウムジクロリドなどが知ら
れている。 合成ゴムとしては、ポリブタジエン、ポリイソ
プレン、エチレン−プロピレン系合成ゴム(エチ
レン−α−オレフイン共重合体、エチレン−プロ
ピレンゴムEPMおよびエチレン−プロピレン−
ジエンゴムEPDM)などが知られており、これ
らは通常スチームストリツピングにより脱溶媒
し、ポリマーを回収している。 エチレン−プロピレン系合成ゴムの場合、脂肪
族炭化水素、芳香族炭化水素あるいはハロゲン化
炭化水素を反応媒体とし、遷移金属、たとえばと
くにオキシ三塩化バナジウムや四塩化バナジウム
及びこれらのアルコール(炭素数1−12)変性物
の如き可溶性バナジウム化合物と有機金属化合
物、たとえばエチルアルミニウムセスキクロリ
ド、ジエチルアルミニウムモノクロリド、エチル
アルミニウムジクロリド、トリアルキルアルミニ
ウムおよびこれらの有機アルミニウム化合物の混
合物の如き有機アルミニウム化合物の組合せ触媒
を用い、重合温度−30〜90℃好ましくは10〜60
℃、重合圧力0ないし20KgG/cm2の条件での重合
により製造される。α−オレフインとしてはプロ
ピレンが最適であるが、1−ブテン、1−ペンテ
ン、1−ヘキセンなどであつてもよい。非共役ジ
エン成分は5−エチリデン−2−ノルボルネン、
5−イソプロペニル−2−ノルボルネン、5−プ
ロペニル−2−ノルボルネンのような5−アルキ
リデン−2−ノルボルネン、ジシクロペンタジエ
ン、1,4−ヘキサジエンなどが挙げられる。通
常共重合体中のエチレンとα−オレフインの比率
は90/10〜30/70(重量比)好ましくは85/15〜
40/60(重量比)である。ジエン成分は0.1ないし
8モル%程度である。 重合が所定の重合体濃度に達したら、重合反応
液に本発明で特定する重合停止剤を添加し、撹拌
し、重合を停止する。ポリエチレングリコールの
アルキルエステル誘導体は
The present invention relates to a method for producing synthetic rubber with less catalyst residue. Synthetic rubber can be produced by producing synthetic rubber using a catalyst containing a transition metal compound and an organoaluminum compound as the main components, a so-called Ziegler catalyst, removing the solvent by steam stripping, and recovering the polymer. It is widely practiced. In this production method, the polymer after polymerization comes into contact with water during the steam stripping process, so some of the water-soluble catalyst residue is transferred to water, but a considerable amount of catalyst is usually present in the synthetic rubber. Residues are visible. It is known that a large amount of transition metal catalyst residue causes discoloration of synthetic rubber and accelerates rubber aging. It is believed that a large amount of residual halogen, especially chlorine, causes corrosion of metal materials such as equipment and instruments that synthetic rubber comes into contact with, particularly iron, iron alloys, and aluminum. The present inventors have conducted intensive research on a method for producing synthetic rubber with less catalyst residue, and have found that when a specific compound is used as a polymerization terminator immediately after polymerization using a Ziegler catalyst, it does not perform its original function as a polymerization terminator. That is, the inventors have discovered that the catalyst residue in the obtained synthetic rubber can be significantly reduced by stopping the progress of polymerization and preventing the increase in the molecular weight of the polymer (preventing gel formation), and have completed the present invention. The present invention is used as a polymerization terminator in a synthetic rubber production method in which synthetic rubber is produced using a polymerization catalyst mainly composed of a transition metal compound and an organoaluminum compound, and the polymer is recovered by removing the solvent by steam stripping. After stopping the polymerization using at least one compound selected from alkyl ester derivatives of polyethylene glycol, cyclic ester compounds, and pentaerythritol tetraester, the amount of 0.05 to 1% per part of the polymer solution is
Add 4 parts of water to emulsify the polymer solution, then
Furthermore, the process for producing synthetic rubber is characterized by adding 0.2 to 2.0 parts of water to 1 part of the polymer solution, inverting the phase, and desolventizing the separated polymer solution by steam stripping. be. In particular, the present invention relates to a method for producing non-corrosive synthetic rubber suitable as a raw material for rubber products used in materials such as metals, which are susceptible to deterioration due to trace components in synthetic rubber. Known transition metal compounds used as polymerization catalysts for synthetic rubber include, for example, nickel, cobalt, vanadium, niobium, and lanthanum. Known organic aluminum compounds include, for example, trialkylaluminum, dialkylaluminum monochloride, alkylaluminum sesquichloride, alkylaluminum dichloride, and the like. Synthetic rubbers include polybutadiene, polyisoprene, ethylene-propylene synthetic rubber (ethylene-α-olefin copolymer, ethylene-propylene rubber EPM, and ethylene-propylene rubber).
Diene rubber (EPDM) etc. are known, and these are usually removed by steam stripping to remove the solvent and recover the polymer. In the case of ethylene-propylene synthetic rubber, aliphatic hydrocarbons, aromatic hydrocarbons or halogenated hydrocarbons are used as the reaction medium, and transition metals such as vanadium oxytrichloride and vanadium tetrachloride and their alcohols (carbon number 1- 12) Using a combination catalyst of a soluble vanadium compound such as a modified compound and an organometallic compound such as an organoaluminium compound such as ethylaluminum sesquichloride, diethylaluminum monochloride, ethylaluminum dichloride, trialkylaluminum and mixtures of these organoaluminum compounds. , polymerization temperature -30~90℃ preferably 10~60℃
It is produced by polymerization at a temperature of 0.degree. C. and a polymerization pressure of 0 to 20 kg/ cm.sup.2 . Propylene is most suitable as the α-olefin, but 1-butene, 1-pentene, 1-hexene, etc. may also be used. The non-conjugated diene component is 5-ethylidene-2-norbornene,
Examples include 5-alkylidene-2-norbornene such as 5-isopropenyl-2-norbornene and 5-propenyl-2-norbornene, dicyclopentadiene, and 1,4-hexadiene. Usually the ratio of ethylene and α-olefin in the copolymer is 90/10 to 30/70 (weight ratio), preferably 85/15 to
The weight ratio is 40/60. The diene component is about 0.1 to 8 mol%. When the polymerization reaches a predetermined polymer concentration, a polymerization terminator specified in the present invention is added to the polymerization reaction solution, and the mixture is stirred to stop the polymerization. Alkyl ester derivatives of polyethylene glycol

【式】基(式中RはC1〜C20の アルキル基、nは3〜200の整数)を有するもの
であり、その例としてポリオキシエチレンモノア
ルキレート、テトラオレフイン酸ポリオキシエチ
レンソルビツト、ポリオキシエチレンソルビタン
トリアルキレート、ポリオキシエチレンジアルキ
レートなどを挙げることができるがこのうち特に
テトラオレイン酸ポリオキシエチレンソルビツト
が好ましい。 環状エステル化合物としてはブチロラクトン、
γ−バレロラクトン、γ−カプリロラクトン、γ
−ノナラクトン、γ−ステアロラクトン、β−プ
ロピオラクトン、δ−バレロラクトン、δ−カプ
ロラクトン、ε−カプロラクトン、クマリンなど
を挙げることができる。 ペンタエリスリトールテトラエステルとしては
ペンタエリスリトールテトラアセテート、ペンタ
エリスリトールテトラオクタノエート、ペンタエ
リスリトールテトラステアレート、ペンタエリス
リトールジアセチルジステアレート、ペンタエリ
スリトールモノアセチルトリオクタノエートなど
を挙げることができる。 これらの化合物の添加量は重合体に対して0.01
ないし5重量%好ましくは0.1ないし1重量%で
ある。 本発明の重合停止剤を加えた後は常法に従つて
スチームストリツピングにより脱溶剤が行なわれ
るが、この後処理において、重合体の分子量が増
大することもなく、触媒残渣の低い重合体が得ら
れる。 更に好ましい態様としては重合停止剤を加えた
後重合体溶液1部に対し0.05ないし0.4部の水、
好ましくは0.1〜0.3部の水を加え充分撹拌し乳化
させる。水には、界面活性剤として例えばポリオ
キシエチレンアルキルエーテル型、ポリエチレン
アルキルフエノールエーテル型、ソルビタンエス
テル型又はポリオキシエチレンソルビタンエステ
ル型、ポリプロピレングリコールの非イオン界面
活性剤を水に対し0.005〜0.3重量%好ましくは
0.01〜0.1重量%添加しておく方が好ましい。か
くして重合体溶液を乳化させた後更に重合体溶液
1部に対し、0.2〜2.0部の水を加え、充分撹拌
し、転相した後静置し重合体溶液と水を分離す
る。この様にして得られた重合体溶液を常法に従
つてスチームストリツプすることにより分子量が
増大することなく、触媒残渣のより少ない重合体
が得られる。 本発明を具体的に実施例で説明する。 参考例 1 5の連続重合器にn−ヘキサン3/hr、オ
キシ三塩化バナジウム2.0ミリモル/hr、エチル
アルミニウムセスキクロリド9.1ミリモル/hr、
5−エチリデン−2−ノルボルネン26g/hr、エ
チレン300g/hr、プロピレン860g/hrを連続的
に送入し、重合器の気相部の水素が20%を保つ様
に水素を送入する。液滞留時間が40分となる様35
℃、7.5KgG/cm2の条件で反応させた。排出液中
のエチレン共重合体の濃度は98g/であつた。
この共重合体液にn≒5のポリオキシエチレンモ
ノステアレート(日本油脂(株)製商品名ノニオンS
−2)を共重合体溶液1に対し0.5g添加し10
分間撹拌したのち、スチームストリツピングして
共重合体を析出させ乾燥後、そのムーニー粘度及
び残留バナジウムと塩素を螢光X線により測定し
た。残存アルミニウム量はポリマー7gを
Na2CO30.2gと共に白金ルツボ中に灰化させ、水
と希塩酸に溶解し、メスフラスコで所定量に希釈
後原子吸光法により測定した。結果を表1にまと
めた。 参考字例 2〜13 参考例1と同様にポリオキシエチレンモノステ
アレートの代りにテトラオレイン酸ポリオキシエ
チレンソルビツト(花王アトラス社製レオドール
430(n≒5)、440(n≒7)、460(n≒10))ポリ
オキシエチレンソルビタントリステアレート(花
王アトラス社製トウイーン65、n≒7)、ポリオ
キシエチレンジステアレート(日本油脂製ノニオ
ンDS−60HN、n≒190)、ε−カプロラクトン、
γ−ブチロラクトン、δ−バレロラクトン、γ−
ノナラクトン、ペンタニリスリトールテトラアセ
テート、ベンタエリスリトールテトラエステル
(日本油脂製、ユニスターH4812R)、ペンタエリ
スリトールテトラステアレート(日本油脂製ユニ
スターH476)について実施した。結果を表に
示す。 実施例 1 参考例1の記載の方法で得たエチレン共重合体
溶液1にテトラオレイン酸ポリオキシエチレン
ソルビツト(花王アトラス社製レオドール440)
を0.5g加え10分間撹拌の後、水を200ml加え20分
間撹拌し共重合体溶液を乳化させる。その後水を
800ml加え、10分間撹拌した後静置し、水とエチ
レン共重合体溶液を分離した。エチレン共重合体
溶液をスチームストリツプして共重合体を析出さ
せた。乾燥後、ムーニー粘度及び残留バナジウム
と塩素およびアルミニウム量を参考例1と同様に
測定した。結果を表1に示す。 実施例 2 実施例1のテトラオレフイン酸ポリオキシエチ
レンソルビツトの代りにε−カプロラクトンを
0.5g加え、10分間撹拌の後、ポリプロピレング
リコール(分子量400)を0.08重量%溶解させた
水を200ml加え、20分間撹拌し、共重合体溶液を
乳化させた。その後水800mlを加え実施例1と同
様に処理した。結果を表に示す。 実施例 3 実施例2のポリプロピレングリコールの代り
に、ポリエチレングリコールノニルフエニールエ
ーテル(第一工業製薬(株)ノイゲンEA−80)を
0.04重量%溶解させた水200mlを用いて乳化させ、
実施例2と同様に処理した。結果を表に示す。 比較例 1 参考例1のポリオキシニチレンモノステアレー
トの代りに水を用いて重合を停止させた。参考例
1と同様に処理し、ムーニー粘度、残留バナジウ
ム量、残留塩素量および残留アルミニウム量を測
定した。 実施例と比べ、ムーニー粘度が増大し残留触媒
量が多いことがわかる。 比較例 2〜7 参考例1のポリオキシエチレンモノステアレー
トの代りにグリセロールトリステアレート、エチ
レングリコールジアセテート、ペンタエリスリト
ールジエステル(日本油脂製ユニスター
H476D)、ペンタエリスリトールトリエステル
(日本油脂製ユニスターH470T)、エポオキシ化
大豆油、プロピレングリコール(分子量400)を
用いて実施した。ムーニー粘度の増大は防げるが
触媒残渣は実施例と比べ著しく高い。 比較例 8 実施例3のε−カプロラクトンの代りにグリセ
ロールトリステアレートを用いて実施例3と同様
に実施した。結果を表に示す。転相法の併用に
もかかわらず触媒残渣は実施例と比べ著しく高
い。 参考例 14 5の連続重合器にn−ヘキサン3/hrオキ
シ三塩化バナジウム1.16mM/hr、エチレンアル
ミニウムセスキクロリド17.4mM/hr、ジシクロ
ペンタジエン58g/hr、エチレン290g/hr、プ
ロピレン880g/hrを連続的に送入し、重合器の
気相部の水素が25%を保つ様に水素を送入する。
液滞留時間が40分となる様27℃8KgG/cm2の条件
で反応させた。排出液中のエチレン共重合体の濃
度は95g/であつた。 この共重合体1に対しペンタエリスリトール
テトラエステル(日本油脂製ユニスター
H4812R)を0.5g添加し実施例1と同様に処理
し、触媒残渣の少ない共重合体を得た。結果を表
2に示す。 参考例 15 参考例14と同様と同様の条件で重合し、共重合
体1に対しテトラオレフイン酸ポリオキシエチ
レンソルビツト(花王アトラス社製レオドール
440)を0.5g添加し、参考例14と同様に処理し、
触媒残渣の少ない共重合体を得た。結果を表2に
示す。 比較例 9 参考例14のペンタエリスリトールテトラエステ
ルの代りにペンタエリスリトールジエステル(日
本油脂ユニスターH476D)を用いた。結果を表
2に示す。 比較例 10 参考例14のペンタエリスリトールテトラエステ
ルの代りに水を200ml添加した。結果を表2に示
す。 表2より触媒残渣の多いポリマーは熱安定性が
悪く鉄を腐食することが判る。
[Formula] group (in the formula, R is a C 1 to C 20 alkyl group, n is an integer of 3 to 200), examples of which include polyoxyethylene monoalkylate, polyoxyethylene sorbitate tetraolefinate, etc. Among these, polyoxyethylene sorbitate tetraoleate is particularly preferred. Butyrolactone as a cyclic ester compound,
γ-valerolactone, γ-caprylolactone, γ
-nonalactone, γ-stearolactone, β-propiolactone, δ-valerolactone, δ-caprolactone, ε-caprolactone, coumarin, and the like. Examples of the pentaerythritol tetraester include pentaerythritol tetraacetate, pentaerythritol tetraoctanoate, pentaerythritol tetrastearate, pentaerythritol diacetyl distearate, and pentaerythritol monoacetyl trioctanoate. The amount of these compounds added is 0.01 to the polymer.
The amount is from 0.1 to 1% by weight, preferably from 0.1 to 1% by weight. After adding the polymerization terminator of the present invention, the solvent is removed by steam stripping according to a conventional method, but in this post-treatment, the molecular weight of the polymer does not increase and the polymer with low catalyst residue is produced. is obtained. In a more preferred embodiment, after adding the polymerization terminator, 0.05 to 0.4 parts of water is added to 1 part of the polymer solution;
Preferably, 0.1 to 0.3 parts of water is added and thoroughly stirred to emulsify. In the water, a nonionic surfactant such as polyoxyethylene alkyl ether type, polyethylene alkyl phenol ether type, sorbitan ester type, polyoxyethylene sorbitan ester type, or polypropylene glycol is added in an amount of 0.005 to 0.3% by weight based on the water. Preferably
It is preferable to add 0.01 to 0.1% by weight. After the polymer solution has been emulsified in this manner, 0.2 to 2.0 parts of water is added to 1 part of the polymer solution, thoroughly stirred, phase inverted, and left to stand to separate the polymer solution and water. By steam-stripping the polymer solution thus obtained according to a conventional method, a polymer with less catalyst residue can be obtained without increasing the molecular weight. The present invention will be specifically explained with reference to Examples. Reference Example 1 In a continuous polymerization vessel of 5, n-hexane 3/hr, vanadium oxytrichloride 2.0 mmol/hr, ethylaluminum sesquichloride 9.1 mmol/hr,
26 g/hr of 5-ethylidene-2-norbornene, 300 g/hr of ethylene, and 860 g/hr of propylene were continuously fed, and hydrogen was fed so that the hydrogen content in the gas phase of the polymerization reactor was maintained at 20%. The liquid residence time is 40 minutes35
The reaction was carried out at a temperature of 7.5 kgG/cm 2 . The concentration of ethylene copolymer in the effluent was 98 g/.
This copolymer liquid was added to polyoxyethylene monostearate with n≒5 (trade name: Nonion S, manufactured by NOF Corporation).
-2) was added in an amount of 0.5g per 1 part of the copolymer solution.
After stirring for a minute, the copolymer was precipitated by steam stripping, and after drying, its Mooney viscosity and residual vanadium and chlorine were measured using fluorescent X-rays. The amount of remaining aluminum is 7g of polymer.
It was incinerated in a platinum crucible with 0.2 g of Na 2 CO 3 , dissolved in water and diluted hydrochloric acid, diluted to a predetermined amount in a volumetric flask, and then measured by atomic absorption spectrometry. The results are summarized in Table 1. Reference character examples 2 to 13 Similar to Reference Example 1, polyoxyethylene sorbitate tetraoleate (Rheodol manufactured by Kao Atlas Co., Ltd.) was used instead of polyoxyethylene monostearate.
430 (n≒5), 440 (n≒7), 460 (n≒10)) polyoxyethylene sorbitan tristearate (Kao Atlas Tween 65, n≒7), polyoxyethylene distearate (NOF manufactured by Nonion DS-60HN, n≒190), ε-caprolactone,
γ-butyrolactone, δ-valerolactone, γ-
The tests were conducted on nonalactone, pentanyrythritol tetraacetate, bentaerythritol tetraester (Unistar H4812R, manufactured by NOF Corporation), and pentaerythritol tetrastearate (Unistar H476, manufactured by NOF Corporation). The results are shown in the table. Example 1 Polyoxyethylene sorbitate tetraoleate (Rheodol 440 manufactured by Kao Atlas Co., Ltd.) was added to the ethylene copolymer solution 1 obtained by the method described in Reference Example 1.
Add 0.5g of and stir for 10 minutes, then add 200ml of water and stir for 20 minutes to emulsify the copolymer solution. then water
800 ml was added, stirred for 10 minutes, and then allowed to stand to separate water and the ethylene copolymer solution. The ethylene copolymer solution was steam-stripped to precipitate the copolymer. After drying, the Mooney viscosity and the amounts of residual vanadium, chlorine, and aluminum were measured in the same manner as in Reference Example 1. The results are shown in Table 1. Example 2 ε-caprolactone was used in place of the tetraolefinic acid polyoxyethylene sorbitol in Example 1.
After adding 0.5 g and stirring for 10 minutes, 200 ml of water in which 0.08% by weight of polypropylene glycol (molecular weight 400) was dissolved was added and stirred for 20 minutes to emulsify the copolymer solution. Thereafter, 800 ml of water was added and treated in the same manner as in Example 1. The results are shown in the table. Example 3 Polyethylene glycol nonyl phenyl ether (Daiichi Kogyo Seiyaku Co., Ltd. Neugen EA-80) was used instead of the polypropylene glycol in Example 2.
Emulsify using 200ml of water containing 0.04% by weight,
It was treated in the same manner as in Example 2. The results are shown in the table. Comparative Example 1 Water was used instead of polyoxynytylene monostearate in Reference Example 1 to terminate polymerization. It was treated in the same manner as in Reference Example 1, and the Mooney viscosity, residual vanadium amount, residual chlorine amount, and residual aluminum amount were measured. It can be seen that the Mooney viscosity is increased and the amount of residual catalyst is large compared to the example. Comparative Examples 2 to 7 Instead of polyoxyethylene monostearate in Reference Example 1, glycerol tristearate, ethylene glycol diacetate, pentaerythritol diester (Unistar, manufactured by NOF Co., Ltd.)
H476D), pentaerythritol triester (Unistar H470T, NOF Corporation), epoxylated soybean oil, and propylene glycol (molecular weight 400). Although an increase in Mooney viscosity can be prevented, the amount of catalyst residue is significantly higher than in Examples. Comparative Example 8 The same procedure as in Example 3 was carried out using glycerol tristearate instead of ε-caprolactone. The results are shown in the table. Despite the combined use of the phase inversion method, the amount of catalyst residue was significantly higher than in the examples. Reference Example 14 N-hexane 3/hr vanadium oxytrichloride 1.16mM/hr, ethylene aluminum sesquichloride 17.4mM/hr, dicyclopentadiene 58g/hr, ethylene 290g/hr, propylene 880g/hr Hydrogen is continuously fed so that the hydrogen content in the gas phase of the polymerization reactor is maintained at 25%.
The reaction was carried out at 27°C and at 8 kgG/cm 2 so that the liquid residence time was 40 minutes. The concentration of ethylene copolymer in the effluent was 95g/. For this copolymer 1, pentaerythritol tetraester (NOF Unistar Co., Ltd.)
0.5g of H4812R) was added and treated in the same manner as in Example 1 to obtain a copolymer with little catalyst residue. The results are shown in Table 2. Reference Example 15 Polymerization was carried out under the same conditions as in Reference Example 14, and copolymer 1 was treated with polyoxyethylene sorbitate tetraolefinate (Rheodol manufactured by Kao Atlas Co., Ltd.).
440) was added and treated in the same manner as Reference Example 14,
A copolymer with less catalyst residue was obtained. The results are shown in Table 2. Comparative Example 9 Pentaerythritol diester (NOF Unistar H476D) was used instead of pentaerythritol tetraester in Reference Example 14. The results are shown in Table 2. Comparative Example 10 In place of the pentaerythritol tetraester in Reference Example 14, 200 ml of water was added. The results are shown in Table 2. Table 2 shows that polymers with a large amount of catalyst residue have poor thermal stability and corrode iron.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 遷移金属化合物と有機アルミニウム化合物を
主成分とする重合触媒を用いて合成ゴムを生成さ
せ、スチームストリツピングにより脱溶媒し、ポ
リマーを回収する合成ゴムの製造方法において、
重合停止剤としてポレエチレングリコールのアル
キルエステル誘導体、環状エステル化合物および
ペンタエリスリトールテトラエステルから選ばれ
た少なくとも1種の化合物を使用して重合を停止
させた後、重合体溶液1部に対して0.05〜4部の
水を加え重合体溶液を乳化させ、その後、更に重
合体溶液1部に対して0.2〜2.0部の水を加え転
相、分離した重合体溶液をスチームストリツピン
グにより脱溶媒させることを特徴とする合成ゴム
の製造方法。 2 遷移金属化合物が可溶性バナジウム化合物で
ある特許請求の範囲第1項記載の方法。 3 合成ゴムがエチレン−プロピレン系合成ゴム
である特許請求の範囲第1項および第2項記載の
方法。
[Scope of Claims] 1. A method for producing synthetic rubber in which synthetic rubber is produced using a polymerization catalyst containing a transition metal compound and an organoaluminum compound as main components, the solvent is removed by steam stripping, and the polymer is recovered,
After stopping the polymerization using at least one compound selected from alkyl ester derivatives of polyethylene glycol, cyclic ester compounds, and pentaerythritol tetraester as a polymerization terminator, 0.05 to 1 part of the polymer solution is used. Add 4 parts of water to emulsify the polymer solution, then further add 0.2 to 2.0 parts of water to 1 part of the polymer solution to invert the phase, and desolvent the separated polymer solution by steam stripping. A method for producing synthetic rubber characterized by: 2. The method according to claim 1, wherein the transition metal compound is a soluble vanadium compound. 3. The method according to claims 1 and 2, wherein the synthetic rubber is an ethylene-propylene synthetic rubber.
JP18271982A 1982-10-20 1982-10-20 Production of synthetic rubber Granted JPS5974101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18271982A JPS5974101A (en) 1982-10-20 1982-10-20 Production of synthetic rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18271982A JPS5974101A (en) 1982-10-20 1982-10-20 Production of synthetic rubber

Publications (2)

Publication Number Publication Date
JPS5974101A JPS5974101A (en) 1984-04-26
JPH0454684B2 true JPH0454684B2 (en) 1992-09-01

Family

ID=16123240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18271982A Granted JPS5974101A (en) 1982-10-20 1982-10-20 Production of synthetic rubber

Country Status (1)

Country Link
JP (1) JPS5974101A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6188238B2 (en) * 2014-06-27 2017-08-30 ライオン・スペシャリティ・ケミカルズ株式会社 Halogen removing agent and method for producing ethylene-α-olefin copolymer or ethylene-propylene-nonconjugated diene copolymer
CN106883325B (en) * 2015-12-16 2019-05-07 中国石油天然气股份有限公司 EP rubbers polymerization catalyst method for deactivating

Also Published As

Publication number Publication date
JPS5974101A (en) 1984-04-26

Similar Documents

Publication Publication Date Title
KR0147818B1 (en) Recovery of double metal cyanide complex catalyst from a polymer
JPS63303816A (en) Stabilization of vanadium tetrachloride
JPS59226011A (en) Manufacture of cis-1,4-polybutadiene
SU589929A3 (en) Method of preparing rubber-like copolymers
Singha et al. A new method to hydrogenate nitrile rubber in the latex form
JPH0454684B2 (en)
US3853830A (en) Process for preparing polymers of cyclopentene
JPH04220429A (en) High-molecular diphenyldiamine
EP0490672B1 (en) Method of removing catalyst from ethylene-alpha-olefin copolymer
JPH0365367B2 (en)
US3929745A (en) Vanadium organophosphates
JPH0354688B2 (en)
US3901859A (en) Process for preventing discoloration of olefinic polymers containing vanadium catalyst residues
US4117219A (en) Process for producing stabilized polyolefins
US3803113A (en) Purification of olefin polymers
Kawabata et al. Reclamation of vulcanized rubbers by chemical degradation. IX. Oxidative degradation of cis-1, 4-polyisoprene by phenylhydrazine-iron (II) chloride system
JP3473862B2 (en) Isobutylene-based polymer containing carbon-carbon unsaturated group and method for producing the same
US4167619A (en) Purification of propylene polymerization product
Pourahmady et al. Chemical modification of poly (vinyl chloride): improved thermal stability by partial reduction with organoboron reagents
US3499880A (en) Purification of polyolefins using alkanoic acids
JPS6128684B2 (en)
EP0412597A2 (en) Method for removing A1C13-based catalyst residues from polymer mixtures
US3962199A (en) Process for removing vanadium catalyst residues from polymer solutions
JP2745680B2 (en) Alpha-olefin polymer and its composition
JPS6138202B2 (en)