JPH0454579B2 - - Google Patents

Info

Publication number
JPH0454579B2
JPH0454579B2 JP60257647A JP25764785A JPH0454579B2 JP H0454579 B2 JPH0454579 B2 JP H0454579B2 JP 60257647 A JP60257647 A JP 60257647A JP 25764785 A JP25764785 A JP 25764785A JP H0454579 B2 JPH0454579 B2 JP H0454579B2
Authority
JP
Japan
Prior art keywords
outer cylinder
tube
inner body
section
circular cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60257647A
Other languages
Japanese (ja)
Other versions
JPS62118182A (en
Inventor
Shigeaki Matsui
Toshio Atsuta
Eisuke Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP60257647A priority Critical patent/JPS62118182A/en
Publication of JPS62118182A publication Critical patent/JPS62118182A/en
Publication of JPH0454579B2 publication Critical patent/JPH0454579B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 開示技術は、二重管等の内管と外管、或は、円
柱体等の内体と外筒とが軸方向、周方向、或は、
両方向にて密着され、稼働中に相対的なずれが生
じないように緊結するようにした製造の技術の分
野に属する。
[Detailed Description of the Invention] <Industrial Application Field> The disclosed technology is a method in which an inner tube and an outer tube such as a double tube, or an inner body and an outer tube such as a cylindrical body are aligned in an axial direction, a circumferential direction, or teeth,
It belongs to the field of manufacturing technology that is tightly bonded in both directions so that no relative displacement occurs during operation.

<要旨の概要> 而して、この発明は、円形断面の内管等の内体
に対しリング状断面の外管等の外筒が軸方向や周
方向、或は、両方に相対ずれが起らないように拘
束されて緊結され円形断面の緊結重層体を製造す
る方法に関する発明であり、特に、上記円形断面
の内管や柱体等の内体とその外側のリング状断面
の外筒を相対重層し、その際両者に亘るずれ防止
体を予め形成させておき、該外筒に対し、環状加
熱と環状冷却を位相をずらして軸方向に移動させ
て行つて両者を緊結し、ずれ防止体を介して内体
と外筒とが緊結結合するようにした円形断面緊結
重層体の製造方法に係る発明である。
<Summary of the gist> Accordingly, the present invention is directed to a method in which a relative displacement occurs in the axial direction, circumferential direction, or both of an outer tube such as an outer tube having a ring-shaped cross section with respect to an inner body such as an inner tube having a circular cross section. This invention relates to a method for manufacturing a bound layered body having a circular cross section, which is restrained and bound so that it does not occur, and in particular, an inner body such as an inner tube or column body having a circular cross section and an outer cylinder having a ring-shaped cross section outside the inner body. In this case, an annular heating and annular cooling are performed on the outer cylinder by shifting the phase and moving in the axial direction to tightly connect the two and prevent slippage. This invention relates to a method of manufacturing a tightly bound layered body having a circular cross section, in which an inner body and an outer cylinder are tightly connected through a body.

<従来の技術> 周知の如く、化学プラント等の配管には多くの
耐蝕管、耐摩耗管が用いられているが、求められ
る耐熱性、耐圧性、耐蝕性、耐摩耗性等の複数種
の条件を一つの材料で満足し得る単層管は技術的
に未だ開発されておらず、したがつて、実際には
それぞれに機能する内管や外管を重合した二重管
等の構造態様が用いられている。
<Prior art> As is well known, many corrosion-resistant and wear-resistant pipes are used for piping in chemical plants, etc. A single-layer pipe that satisfies these conditions with a single material has not yet been technically developed, and therefore, in reality, structural forms such as a double-walled pipe with an inner pipe and an outer pipe that function individually are required. It is used.

又、製鉄で圧延等に用いられるスリーブ付きの
バツクアツプロール等では内側に心材が柱状に形
成され、その外面に耐摩耗性のスリーブが重層さ
れている構造がとられている。
In addition, back-up rolls with sleeves used for rolling, etc. in steel manufacturing have a structure in which a core material is formed in the shape of a column on the inside, and a wear-resistant sleeve is layered on the outside surface of the core material.

このような二重管やスリーブ付きバツクアツプ
ロール等のリング状断面の内体に対し円形断面の
外筒が一体重層されている円形断面の緊結重層体
においては、技術的な側面、経済的条件、仕様条
件等が複雑に絡み合つて、冶金的に結合される態
様よりも機械的に重層緊結されている構造態様の
方が好ましい場合がある。
In such a double-layered body with a circular cross-section, such as a double pipe or a back-up roll with a sleeve, in which an outer cylinder with a circular cross-section is layered over an inner body with a ring-shaped cross-section, there are technical aspects and economic conditions. , specification conditions, etc. are complicatedly intertwined, and a structural mode in which the components are mechanically bonded in layers may be preferable to a mode in which they are bonded metallurgically.

<発明が解決しようとする課題> そして、このような配管等の重層体にあつては
静定的にセツトされた状態を維持されて稼働に供
される場合もあるが、熱変化の激しい環境条件下
で使用されたり、或は、回転や軸方向移動等を激
しく反復する等の苛酷な条件下で用いられる場合
があり、このような条件下では熱挙動や機械的作
動の為に円形断面の内管や柱体の内体とリング状
断面の外筒とが軸方向や周方向、或は、両方向に
亘つて相対的にずれが起る場合があり、稼働に際
し好ましくない状態、或は、絶対に避けなけばな
らない状態になる場合があり、これに対処する製
造に際して周知の如く、ノツクピン、コツターピ
ン、キー等のずれ防止体の介設技術が用いられて
いるが、これらのいづれの態様の場合も、内体、
外筒の一方、或は、双方の内面や、外部にこれら
のずれ防止体が貫通状態であるような手段が用い
られ、一部が露呈されるようにされており、その
ため、製品の使用中にゆるみが生じがちであり、
又、力学的な構造からみても、或は、熱挙動に対
する物理的条件からも、面の均一さに欠けるとい
う欠点があり、更に、これらのずれ防止体を装着
して、内体と外筒の緊結を図る製造の場合にその
工程が複雑になり、管理がし難いという難点もあ
り、製造上から結果的にコスト高になるという不
利点もあつた。
<Problems to be Solved by the Invention> In the case of such multi-layer bodies such as piping, there are cases in which a statically set state is maintained during operation, but in an environment with severe thermal changes. It may be used under severe conditions such as repeated rotation or axial movement, and under these conditions, due to thermal behavior and mechanical operation, There may be a relative misalignment between the inner body of the inner tube or columnar body and the outer cylinder with a ring-shaped cross section in the axial direction, circumferential direction, or both directions, resulting in an unfavorable state during operation. , there are cases where a situation must be absolutely avoided, and as a well-known technique for manufacturing to deal with this, interposition of slip-preventing bodies such as knock pins, bolt pins, keys, etc. is used, but none of these methods Also, in the case of
A means is used to allow these anti-slip bodies to pass through the inner or outer surface of one or both of the outer cylinders, so that a portion of them is exposed. Looseness tends to occur in the
In addition, there is a drawback that the surface is not uniform, both from the mechanical structure and the physical conditions regarding thermal behavior. In the case of manufacturing that aims to tighten the process, there are problems in that the process becomes complicated and difficult to manage, and there is also the disadvantage that the manufacturing cost increases as a result.

又、例えば、実公昭13−7757号公報考案に示さ
れているような薄肉鉄管の内側にセメント等の防
蝕層を隆起等のずれ防止体を介して添設するよう
な技術があるが、かかる技術にあつては外筒の鉄
管が薄肉にされるものであつて、該外筒の強度を
大きくすることが出来ないものである。
In addition, there is a technique, for example, as shown in Utility Model Publication No. 13-7757, in which a corrosion-resistant layer such as cement is attached to the inside of a thin-walled iron pipe via a slip-preventing member such as a bump. In this technology, the iron pipe of the outer cylinder is made thin, and the strength of the outer cylinder cannot be increased.

そして、内体に対し外筒の肉厚を大きくして充
分な強度を求めるような態様の場合には、焼ばめ
等の手段によつて両者を緊結する製造の態様では
そのサイズによつては成形不能であり、又、温度
管理が極めて難しい点等の難点があり、外筒の縮
径が設計通りに行われないという不具合があつ
た。
In cases where the outer cylinder is made thicker than the inner body to obtain sufficient strength, manufacturing methods in which the two are joined together by means such as shrink fitting may be affected depending on the size of the outer cylinder. However, there were other drawbacks such as the fact that it was impossible to form the mold, and that temperature control was extremely difficult, and the diameter of the outer cylinder could not be reduced as designed.

そして、緊結の度合を確実にするために、内体
の外面と外筒の内面の密着性を保つべく両者に対
して機械的加工等による鏡面仕上げを行わねばな
らず、工程が著しく煩瑣となり、しかも精度が厳
しく求められて実際上は工作加工が出来ないとい
う不都合もあつた。
In order to ensure the degree of tightness, the outer surface of the inner body and the inner surface of the outer cylinder must be mirror-finished by mechanical processing to maintain adhesion between them, which makes the process extremely complicated. Moreover, there was also the inconvenience that precision was required so strictly that machining was practically impossible.

<発明の目的> この発明の目的は上述従来技術に基づく二重管
や円形断面の内体に対しリング状断面の外筒が緊
結されている重層体の製造の問題点を解決すべき
技術的課題とし、内体と外筒の間に周方向、軸方
向、或は、両方向に対する相対ずれを拘束し、し
かも、外筒の外面や内体の外面、或は、内面に均
一な結合状態を形成させ、内体と外筒が緊結一体
化されるようにして各種産業における配管技術利
用分野に益する優れた円形断面緊結重層体の製造
方法を提供せんとするものである。
<Objective of the Invention> The object of the present invention is to provide a technical solution to the problems of manufacturing double pipes and multi-layered bodies in which an outer cylinder with a ring-shaped cross section is tightly connected to an inner body with a circular cross-section, based on the above-mentioned prior art. The objective was to restrain the relative displacement between the inner body and the outer cylinder in the circumferential direction, axial direction, or both directions, and to maintain a uniform bonding state on the outer surface of the outer cylinder and the outer surface or inner surface of the inner body. It is an object of the present invention to provide a method for manufacturing an excellent circular cross-section tightly bound multilayer body which is useful in the field of piping technology in various industries by forming an inner body and an outer cylinder in a tightly integrated manner.

<課題を解決するための手段・作用> 上述目的に沿い先述特許請求の範囲を要旨とす
るこの発明の構成は、前述課題を解決するため
に、円形断面の内管や柱体等の内体とリング状断
面の外筒とを予めそれぞれ別体に形成しておき、
前者の外面と後者の内面とに亘つて周方向、軸方
向、或は、両方向に対するずれ防止体を予め形成
し、設計によつては更に両者の間に介装する別体
のずれ防止体を形成し、内体と外筒とを所定の間
隙を介して相対重層し、該ずれ防止体が各々対応
するような姿勢にて外筒の外側に環状加熱とその
周辺の冷却を軸方向に相対位相を所定にずらして
移動させて行い外筒に縮径を与えて内体と外筒が
緊結されるようにし、それによつて両者のずれ防
止体、或は、一方のずれ防止体と他のずれ防止体
が緊結されて一体化されて重層体とされ、当該重
層体が稼働中にずれ防止体により周方向、軸方
向、或は、両方向に相対ずれが生じないように
し、常に初期セツト状態のままで所定の機能を発
揮することが出来るようにした技術的手段を講じ
たものである。
<Means/effects for solving the problem> In order to solve the above-mentioned problem, the structure of the present invention, which is summarized in the claims described above, is to solve the above-mentioned problem by using an inner body such as an inner tube or a columnar body having a circular cross section. and an outer cylinder with a ring-shaped cross section are formed separately in advance,
A slip-preventing body in the circumferential direction, axial direction, or both directions is formed in advance between the outer surface of the former and the inner surface of the latter, and depending on the design, a separate slip-preventing member is further interposed between the two. The inner body and the outer cylinder are layered relative to each other through a predetermined gap, and the annular heating and cooling around the outer cylinder are applied to the outside of the outer cylinder relative to each other in the axial direction in such a manner that the anti-slip bodies correspond to each other. By shifting the phase to a predetermined value and reducing the diameter of the outer cylinder, the inner body and the outer cylinder are tightly connected. The anti-slip bodies are tightly tied and integrated to form a multi-layered body, and the multi-layer body prevents relative displacement in the circumferential direction, axial direction, or both directions during operation of the multi-layer body, and is always in the initial set state. Technical measures have been taken to make it possible to perform the specified functions without changing the structure.

<実施例> 次に、この発明の実施例を図面に基づいて説明
すれば以下の通りである。
<Example> Next, an example of the present invention will be described below based on the drawings.

第1〜4図に示す実施例は円形断面緊結重層体
としてのスラリー輸送管等の耐摩耗性二重管の製
造の基本的態様であり、外筒としての外管1に
は、例えば、炭素含有量0.25%程度の低炭素鋼等
の価格が安く、高靭性に富むものを用いて所定の
位置の内面にずれ防止体としての半球体2,2…
を所定数設定間隔で一体的に所定数突出して形成
しておき、又、内体としての内管3は耐摩耗性を
有する、例えば、炭素含有量0.55%程度の高炭素
鋼等を用い、該半球体2に対応して半球状の凹所
4,4…のずれ防止体を対応する数だけ形成し
て、焼入硬化させ、両者1,3を全体的に冷却し
た状態で第1図に示す様に、相対遊挿して二重管
素管5としておく。
The embodiment shown in FIGS. 1 to 4 is a basic mode of manufacturing a wear-resistant double pipe such as a slurry transport pipe as a tightly bound layered body with a circular cross section. Using low-cost, high-toughness materials such as low-carbon steel with a content of about 0.25%, hemispheres 2, 2, as anti-slip bodies are placed on the inner surface of predetermined positions.
A predetermined number of tubes are integrally formed to protrude at predetermined intervals, and the inner tube 3 as the inner body is made of wear-resistant material, for example, high carbon steel with a carbon content of about 0.55%. A corresponding number of hemispherical recesses 4, 4, . As shown in the figure, the double-pipe blank tube 5 is formed by relatively loose insertion.

而して、該二重管素管5を矢印に示す様に軸方
向に所定速度で移動可能にセツトし、更に、第2
図に示す様に、外管1の外周に環状加熱手段とし
て、例えば、高周波誘導加熱装置6をリング状に
セツトすると共に該高周波誘導加熱装置6に所定
距離離して近接して軸方向前後に、例えば、水道
水等のリング状のシヤワー装置の環状冷却用とし
て冷却装置7,7をセツトし、二重管素管5を矢
印方向に移動させることにより加熱装置6、及
び、冷却装置7,7は二重管素管5に対し相対移
動するようにする。
Then, the double tube blank tube 5 is set so as to be movable in the axial direction at a predetermined speed as shown by the arrow, and the second
As shown in the figure, as an annular heating means, for example, a high-frequency induction heating device 6 is set in a ring shape on the outer circumference of the outer tube 1, and the high-frequency induction heating device 6 is placed close to the high-frequency induction heating device 6 at a predetermined distance and moved forward and backward in the axial direction. For example, by setting the cooling devices 7, 7 for annular cooling of a ring-shaped shower device such as tap water, and moving the double-pipe tube 5 in the direction of the arrow, the heating device 6 and the cooling devices 7, 7 are set. is made to move relative to the double tube blank tube 5.

そこで、二重管素管5を所定速度で軸方向に矢
印に示す様に移動させると、加熱装置6はその前
後の冷却装置7,7による外管1の冷却に対し、
加熱による膨径作用を付与するが、このプロセス
において、模式的に第2,4図の点線に示す様
に、加熱部分の両端がの冷却部分に対して自由端
であれば、当該第2,4図に示す様に、自由に膨
径して周方向に突出しようとするが、実際は加熱
部分に対し当該加熱部分はその両端が冷却装置7
の冷却部分によつて拘束されているために、曲げ
モーメントFが働き当該部分は降伏して、結果的
にリング状の湾曲した塑性変形部分が成形され
る。
Therefore, when the double tube blank tube 5 is moved in the axial direction at a predetermined speed as shown by the arrow, the heating device 6 cools the outer tube 1 by the cooling devices 7 before and after it.
In this process, as shown schematically by the dotted lines in Figs. 2 and 4, if both ends of the heating part are free ends with respect to the cooling part, the second, As shown in Figure 4, it freely expands in diameter and tries to protrude in the circumferential direction, but in reality, both ends of the heated part are connected to the cooling device 7.
Since the cooling portion is restrained by the cooling portion, a bending moment F acts on the portion, causing the portion to yield, and as a result, a ring-shaped curved plastically deformed portion is formed.

そして、二重管素管5が矢印方向に相対移動す
ることにより、加熱装置6により加熱されて塑性
変形した部分は加熱部分を通過して後からの冷却
装置7によつて冷却されると、逆に大きく縮径さ
れ、そこで大きな嵌合代が得られて外管1は内管
3に対し緊結されることになり、又、外管1の半
球体2は対応する内管3の半球状の凹所4に嵌着
して緊結結合されることになる。
Then, as the double tube blank tube 5 moves relatively in the direction of the arrow, the part heated by the heating device 6 and plastically deformed passes through the heated part and is cooled by the cooling device 7 later. On the contrary, the diameter is greatly reduced, so that a large fitting allowance is obtained, and the outer tube 1 is tightly connected to the inner tube 3, and the hemispherical body 2 of the outer tube 1 is connected to the corresponding hemispherical shape of the inner tube 3. It is fitted into the recess 4 and is tightly coupled.

そして、この作用は外管1の全ての周方向部分
に作用するために、二重管素管5を軸方向に連続
的に相対移動することにより外管1の全ての部分
が縮径し、全二重管素管5に於いて内管3に対し
縛りばめ状態が現出され、半球体2と半球状の凹
所4は相互に緊結嵌合し、結果的に周方向、軸方
向共に緊結された自緊二重管が形成される。
Since this action acts on all circumferential portions of the outer tube 1, by continuously moving the double tube element tube 5 relatively in the axial direction, all portions of the outer tube 1 are reduced in diameter. In the full-double tube blank 5, a tight fit is created with respect to the inner tube 3, and the hemisphere 2 and the hemispherical recess 4 are tightly fitted to each other, resulting in a tight fit in the circumferential and axial directions. A self-tapping double tube is formed that is tied together.

そして、上述緊結プロセスは内管3の肉厚に係
わりなく行われ、又、軸方向長さに係わらず、全
二重管素管5に於いて形成されるために、更に外
管1と内管3の接合面の精度にもほとんど無関係
に行われることになり、内管3の肉厚が大で、し
かも、長尺管である耐摩耗性二重管等の製造には
極めて効果的である。
The above-mentioned tightening process is performed regardless of the wall thickness of the inner tube 3, and since it is formed in the full double tube blank tube 5 regardless of the axial length, the outer tube 1 and the inner tube This process has almost no relation to the accuracy of the joint surface of the tube 3, and is extremely effective in manufacturing wear-resistant double tubes, etc., where the inner tube 3 has a large wall thickness and is long. be.

このようにして第3図に示す様な重層体として
の自緊二重管8が得られ、外筒の外管1と内体の
内管3とはその境界面の全てが緊結されるばかり
でなく、設定数のずれ防止体としての半球体2と
半球状の凹所4は強固に緊結されることになり、
化学プラント等の配管にセツトされて夏季高温、
冬期低温にさらされる熱挙動の激しい苛酷な条件
下にて稼働されても、外管1と内管3は軸方向は
勿論のこと、周方向にも何等相対ずれを起こすこ
とはなく、この場合、ずれ防止体としての半球体
2と半球状の凹所4との数が多ければ多いほどそ
の一体的熱挙動は確実に保証される。
In this way, a self-tight double tube 8 as a multi-layered body as shown in FIG. 3 is obtained, and the outer tube 1 of the outer cylinder and the inner tube 3 of the inner body are tightly connected at all their interfaces. Instead, the set number of hemispheres 2 and hemispherical recesses 4, which serve as anti-displacement bodies, are firmly connected.
It is installed in the piping of chemical plants, etc., and is exposed to high temperatures in the summer.
Even if the outer tube 1 and the inner tube 3 are operated under severe conditions with severe thermal behavior such as being exposed to low temperatures in winter, there will be no relative deviation in the circumferential direction as well as in the axial direction. The greater the number of hemispherical bodies 2 and hemispherical recesses 4 as anti-slip bodies, the more reliably their integral thermal behavior is guaranteed.

而して、上述実施例は重層体が化学プラント用
等の二重管の態様であるが、第5図に示す実施例
は前記製鉄工場等に於ける圧延工程でのスリーブ
付きバツクアツプロールの円形断面緊結重層体と
してのロール8′の態様であり、上述実施例の内
管3に相当するものが円柱状の芯体としての内体
3′とされ、外筒1の所定数のずれ防止体の半球
体2に対応して半球状の凹所4が凹設形成され、
その製造工程にて上述実施例同様に外筒1の外側
に対する環状加熱と環状冷却を所定に位相をずら
して第2図同様に軸方向相対移動により行い、外
筒1の縮径を行つてそのずれ防止体の半球体2の
柱体の内体3′のずれ防止体の半球状凹所4に嵌
着緊結させるようにして態様である。
In the above-mentioned embodiment, the layered body is a double pipe for use in chemical plants, etc., but the embodiment shown in FIG. This is an embodiment of the roll 8' as a tightly bound layered body with a circular cross section, and the inner body 3' is a cylindrical core that corresponds to the inner tube 3 of the above-mentioned embodiment, and the outer tube 1 is prevented from shifting by a predetermined number of times. A hemispherical recess 4 is formed corresponding to the hemisphere 2 of the body,
In the manufacturing process, as in the above embodiment, annular heating and annular cooling of the outside of the outer cylinder 1 are performed with a predetermined phase shift and relative movement in the axial direction as in FIG. 2, and the diameter of the outer cylinder 1 is reduced. This embodiment is such that the hemispherical body 2 of the shearing prevention body is tightly fitted into the hemispherical recess 4 of the columnar inner body 3' of the shearing prevention body.

したがつて、当該実施例のロール8′において
も、激しい動的な稼働条件下においても、芯体と
しての内体3′に対しスリーブとしての外筒1は
軸方向はもちろん、周方向にもスパイラル方向に
も、何等相対ずれは起こすことなく、初期形成の
1ブロツクのロールとして設計通りに機能するこ
とが出来、又、当該実施例においても、前述実施
例同様に外筒1の肉厚や内体3′との境界部に於
ける対向面の仕上げ精度はそれ程厳密には行わな
くてもよいものである。
Therefore, even in the roll 8' of this embodiment, even under severe dynamic operating conditions, the outer cylinder 1 as a sleeve with respect to the inner body 3' as a core body is not only in the axial direction but also in the circumferential direction. Also in the spiral direction, it can function as designed as a roll of one block in the initial formation without causing any relative deviation. The finishing accuracy of the opposing surface at the boundary with the inner body 3' does not have to be so strict.

このように、この発明においては円形断面の内
体3は管体でも柱体でもよく、したがつて、該内
体3にリング状断面の外筒1を緊結した円形断面
の対向面は二重管等の管体でも柱体でも適用可能
であり、その緊結面は周方向、軸方向、或は、そ
の双方に対してもずれ止めがなされるようにされ
ればよく、この外筒1と円形断面の内体3につい
ては、更に、例えば、第6図に示す様な波型のず
れ防止体41を相互に相対向して嵌着緊結するよ
うに形成したり、又、第7図に示す様に、ラツク
状のずれ防止体42を形成したり、或は、第8図
に示す様に、半球体と半球面のずれ防止体43を
軸方向に千鳥状に交互にずらして形成させたり出
来、更には第9図に示す様に、外筒1と内体3と
に半球状の凹所44,44を形成させて内体3と
外筒1との各凹所44には別体の球体45をずれ
防止体として介装させて緊結したりすることも可
能である。
As described above, in the present invention, the inner body 3 having a circular cross section may be either a tube or a column, and therefore, the opposing surfaces of the circular cross section where the outer cylinder 1 having a ring-shaped cross section is tightly connected to the inner body 3 are double-sided. It can be applied to either a pipe body such as a pipe or a columnar body, and the connecting surface may be prevented from slipping in the circumferential direction, the axial direction, or both. Regarding the inner body 3 having a circular cross section, for example, wave-shaped anti-slip bodies 41 as shown in FIG. 6 may be formed so as to face each other and be tightly connected, or As shown in FIG. 8, a rack-shaped anti-slip body 42 is formed, or as shown in FIG. Furthermore, as shown in FIG. 9, hemispherical recesses 44, 44 are formed in the outer cylinder 1 and inner body 3, and each recess 44 in the inner body 3 and outer cylinder 1 is formed separately. It is also possible to interpose the sphere 45 of the body as a slip prevention body and tighten it.

尚、この発明の実施態様は上述各実施例に限る
ものでないことは勿論であり、例えば、ずれ防止
体は半球体、半球面等の周方向、及び、軸方向相
互のずれ止めを防止するようにしてもよいが、そ
のいづれか一方に対するずれ止めのずれ防止体に
形成してもよく、用いる材質としては安価で靭性
に富む炭素鋼管や焼き入れによる高炭素鋼や低合
金鋼や耐摩耗性鋳鋼や高クロム鋳鋼やアルミナ、
チツ化ケイ素等のセラミツク等も用いられ、それ
らの材料による内体と外筒の形成は仕様条件やそ
のときに応じて適宜に選択することが出来る等
種々の態様が採用可能である。
It goes without saying that the embodiments of the present invention are not limited to the above-mentioned embodiments. For example, the anti-slip body may be configured to prevent a hemisphere, a hemispherical surface, etc. from shifting in the circumferential direction and in the axial direction. However, it is also possible to form a slip prevention body for either one of them, and the materials used include inexpensive and tough carbon steel pipes, hardened high carbon steel, low alloy steel, and wear-resistant cast steel. or high chromium cast steel or alumina,
Ceramics such as silicon nitride are also used, and the formation of the inner body and outer cylinder using these materials can be appropriately selected depending on the specification conditions and the occasion, and various other forms can be adopted.

<発明の効果> 以上、この発明によれば、基本的に円形断面の
管体や柱体等の内体に対し、リング状断面の外筒
が緊結されている重層体の製造方法に於いて、両
者の境界部に周方向、軸方向、或は、両方向のず
れ防止体が形成されるようにし、しかも、両者の
いづれも外部と遮断された状態で緊結されるよう
にすることにより、得られる緊結重層体は大きな
温度年較差がある厳しい稼働条件の下でも熱挙動
によるずれが防止され、初期設定の安定した姿勢
形状を維持することが出来、又、ロール等の激し
い機械的な動作を伴う圧延装置等の重層体にあつ
ても内体と外筒との間のずれ止めが保持されて、
設計通りの圧延等が経時的に変化なく行われると
いう効果が奏される。
<Effects of the Invention> As described above, according to the present invention, there is provided a method for manufacturing a multi-layered body in which an outer tube having a ring-shaped cross section is tightly connected to an inner body such as a tube or column body having a basically circular cross section. , by forming a circumferential, axial, or both-direction slip prevention body at the boundary between the two, and by tightly connecting the two in a state where both are isolated from the outside. The tightly bound layered body prevents displacement due to thermal behavior even under severe operating conditions with large annual temperature fluctuations, and can maintain a stable initial posture and shape, and can withstand intense mechanical movements such as rolls. Even in the case of a multi-layer body such as a rolling machine, the slip prevention between the inner body and the outer cylinder is maintained.
The effect that rolling etc. are performed as designed without any change over time is achieved.

しかも、内体と外筒のいづれも外方に対して遮
断されるようにされるために、内体の内面や外筒
の外面が均一な面の相を保てて外部の腐蝕性流体
や他の部材との摺動等における変質や変化が避け
られて全面均一な機能が果されるという優れた効
果が奏される。
Moreover, since both the inner body and the outer cylinder are shielded from the outside, the inner surface of the inner body and the outer surface of the outer cylinder can maintain a uniform surface phase, preventing corrosive fluids from outside. This provides an excellent effect in that deterioration or change due to sliding with other members is avoided, and the entire surface functions uniformly.

又、製造工程において円形断面の内体に対しリ
ング状断面外筒を相体重層して両者を緊結するに
際し、両者の対向面に対して相互に直接的に、或
いは、他の材料を介してずれ防止体を予め形成し
て対向的に介装させ緊結するようにしたことによ
り、在来のノツクピンやコツターやキー等の介装
工程が不要となり、緊結プロセスだけで内体と外
筒を緊結することが出来る工程簡略化の効果が奏
される。
In addition, in the manufacturing process, when layering an outer cylinder with a ring-shaped cross section on the inner body with a circular cross-section and bonding them together, it is possible to directly or through another material to the opposing surfaces of the two. By forming the anti-slip bodies in advance and interposing them facing each other for tightening, there is no need for conventional interposition processes such as dowel pins, bolts, keys, etc., and the inner body and outer cylinder can be tightened just by the tightening process. The effect of process simplification that can be achieved is achieved.

更に、内体に相対重層した外筒に対し環状加熱
と環状冷却を位相をずらして軸方向に外筒と相対
移動させることにより、内体の肉厚に関係なく外
筒が大きな嵌合代を介して確実に該内体に緊結す
ることが出来るという優れた効果が奏される。
Furthermore, by shifting the phase of annular heating and annular cooling to the outer cylinder, which is layered relative to the inner body, and moving the outer cylinder relative to the outer cylinder in the axial direction, the outer cylinder can have a large fitting allowance regardless of the wall thickness of the inner body. The excellent effect of being able to reliably connect to the inner body through the inner body is achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの出願の発明の実施例の説明図であ
り、第1〜4図は1実施例の重層体の製造プロセ
ス図であり、第1図は内体と外筒の相対重層部分
縦断面図、第2図は外筒の縮径の部分縦断面図、
第3図は緊結された重層体の部分縦断面図、第4
図はずれ防止体の緊結の模式斜視図、第5図は第
3図相当他の重層体の部分縦断面図、第6〜9図
は様々なずれ防止体の緊結構造概略縦断面図であ
る。 3,3′……内体、1……外筒、2,4,41,
42,43,44,45……ずれ防止体。
The drawings are explanatory diagrams of embodiments of the invention of this application, and FIGS. 1 to 4 are manufacturing process diagrams of a multilayer body in one embodiment, and FIG. 1 is a vertical sectional view of a relative multilayer part of an inner body and an outer cylinder , FIG. 2 is a partial vertical cross-sectional view of the reduced diameter of the outer cylinder,
Fig. 3 is a partial vertical cross-sectional view of the bound multi-layered body;
5 is a partial vertical cross-sectional view of another layered body corresponding to FIG. 3, and FIGS. 6 to 9 are schematic vertical cross-sectional views of the fastening structure of various anti-slip bodies. 3, 3'... Inner body, 1... Outer cylinder, 2, 4, 41,
42, 43, 44, 45...Slip prevention body.

Claims (1)

【特許請求の範囲】[Claims] 1 円形断面の内体とリング状断面の外筒を相対
重層し後両者を緊結して相対ずれのない緊結重層
体を製造する方法において、上記内体と外筒の双
方の対向面に予めずれ防止体を形成させて両者を
相対重層し、該外筒に対する環状加熱と環状冷却
とを軸方向に位置をずらして移動して行わせ、ず
れ防止体を介して外筒と内体とを緊結するように
したことを特徴とする円形断面緊結重層体の製造
方法。
1. In a method for producing a bonded layered body with no relative displacement by layering an inner body with a circular cross section and an outer tube with a ring-shaped cross section and then bonding the two, there is a pre-displacement on the opposing surfaces of both the inner body and the outer tube. A preventive body is formed to relatively overlap the two, and annular heating and annular cooling of the outer cylinder is performed by shifting the position in the axial direction, and the outer cylinder and the inner body are tightly connected via the slippage preventive body. A method for manufacturing a tightly bound layered body with a circular cross section, characterized in that:
JP60257647A 1985-11-19 1985-11-19 Circular-section clamping stack and manufacture thereof Granted JPS62118182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60257647A JPS62118182A (en) 1985-11-19 1985-11-19 Circular-section clamping stack and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60257647A JPS62118182A (en) 1985-11-19 1985-11-19 Circular-section clamping stack and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS62118182A JPS62118182A (en) 1987-05-29
JPH0454579B2 true JPH0454579B2 (en) 1992-08-31

Family

ID=17309149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60257647A Granted JPS62118182A (en) 1985-11-19 1985-11-19 Circular-section clamping stack and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62118182A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639367B2 (en) * 2005-07-22 2011-02-23 株式会社トヨックス Method for manufacturing flexible laminated hose

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194832A (en) * 1981-05-25 1982-11-30 Kawasaki Heavy Ind Ltd Manufacture of double pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194832A (en) * 1981-05-25 1982-11-30 Kawasaki Heavy Ind Ltd Manufacture of double pipe

Also Published As

Publication number Publication date
JPS62118182A (en) 1987-05-29

Similar Documents

Publication Publication Date Title
US4509776A (en) Corrosion-resistant pipe coupling structures
US4600219A (en) Corrosion-resistant pipe coupling structures
US3135295A (en) Bellows expansion unit utilizing support rings
JPH0454579B2 (en)
JPS62117726A (en) Manufacture of multi-layer tube
JP2868430B2 (en) Pipe material flange connection structure
JP6482381B2 (en) Bifurcation structure of fluid pipe and method for attaching coated tubular body of fluid pipe
JPH01154818A (en) Manufacture of duplex tube
JP2575043B2 (en) Double pipe manufacturing method
EP0088817B1 (en) Corrosion-restistant pipe coupling structures
JPS6224216B2 (en)
JPS61283415A (en) Manufacture of wear resistant double pipe
JPH0342116A (en) Manufacture of double tube
JPH0741305B2 (en) Corrosion-resistant and wear-resistant double tube and method for manufacturing the same
JPS623683B2 (en)
JPH0790269B2 (en) Method of manufacturing double-heavy pipe
JPS63299815A (en) Production of double tube
JPH0741476B2 (en) Double tube separation method
EP0163958B1 (en) Corrosion-resistant pipe coupling structures
JPS6261722A (en) Production of double pipe
JPH0576379B2 (en)
JPS5950430B2 (en) Clad pipe manufacturing method
JPS6261721A (en) Method and device for production of double pipe
JPS6261733A (en) Production of double-ply bend pipe
JPH0353516B2 (en)