JPH0454541B2 - - Google Patents

Info

Publication number
JPH0454541B2
JPH0454541B2 JP61244040A JP24404086A JPH0454541B2 JP H0454541 B2 JPH0454541 B2 JP H0454541B2 JP 61244040 A JP61244040 A JP 61244040A JP 24404086 A JP24404086 A JP 24404086A JP H0454541 B2 JPH0454541 B2 JP H0454541B2
Authority
JP
Japan
Prior art keywords
molten steel
sectional area
nozzle
cross
discharge hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61244040A
Other languages
Japanese (ja)
Other versions
JPS63101058A (en
Inventor
Koji Hosoya
Katsuo Kinoshita
Masao Oguchi
Kenji Murata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24404086A priority Critical patent/JPS63101058A/en
Publication of JPS63101058A publication Critical patent/JPS63101058A/en
Publication of JPH0454541B2 publication Critical patent/JPH0454541B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶融金属、特に溶鋼の連続鋳造に使
用する浸漬ノズルの構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the structure of a submerged nozzle used for continuous casting of molten metal, particularly molten steel.

(従来の技術とその問題点) 従来、溶鋼の連続鋳造に於いては、タンデイツ
シユから鋳型に溶鋼を注ぐ場合には浸漬ノズルを
使用している。この浸漬ノズルの代表的な例を第
1図に示すが、スラブ連続鋳造用鋳型寸法の制約
から浸漬ノズル中を溶鋼が通過する通路の断面積
は、浸漬ノズルの左右に設けられた吐出孔の面積
の合計よりも小さくなるように設計されている。
このため、浸漬ノズルの通路を高速で流下する溶
鋼が広い吐出孔から鋳型内に吐出する時に、浸漬
ノズルの溶鋼通路を高速で流下する溶鋼の運動量
の下向き成分が残るので、この下向きの溶鋼の流
れに伴つて運ばれるアルミナ等の非金属介在物が
溶鋼中に深く侵入し、凝固シエルにトラツプさ
れ、連鋳鋳片の品質を低下させる原因となる。
(Prior art and its problems) Conventionally, in continuous casting of molten steel, a submerged nozzle is used to pour molten steel from a tundish into a mold. A typical example of this immersion nozzle is shown in Figure 1. Due to the constraints of the mold dimensions for continuous slab casting, the cross-sectional area of the passage through which molten steel passes through the immersion nozzle is limited to the discharge holes provided on the left and right sides of the immersion nozzle. It is designed to be smaller than the total area.
For this reason, when the molten steel flowing down the passage of the immersion nozzle at high speed is discharged into the mold from the wide discharge hole, a downward component of the momentum of the molten steel flowing down the molten steel passage of the immersion nozzle at high speed remains, so this downward molten steel Non-metallic inclusions such as alumina carried along with the flow penetrate deeply into the molten steel and become trapped in the solidification shell, causing deterioration in the quality of the continuously cast slab.

上述した溶鋼の下向成分を防止する対策として
は次の様なことが挙げられる。
Measures to prevent the above-mentioned downward component of molten steel include the following.

浸漬ノズルの吐出孔の面積を小さくすることが
考えられるが、この場合には溶鋼の吐出速度が大
きくなる。このために、浸漬ノズルより吐出した
溶鋼は鋳型の短辺に衝突して下向きの流れに変
り、アルミナ等の非金属介在物が凝固シエルにト
ラツプされる可能性がある。
It is conceivable to reduce the area of the discharge hole of the immersion nozzle, but in this case, the discharge speed of molten steel increases. For this reason, the molten steel discharged from the immersion nozzle collides with the short sides of the mold and changes into a downward flow, and nonmetallic inclusions such as alumina may be trapped in the solidified shell.

また、溶鋼の下向き成分を止めるために、整流
板を設けることを考えられるが、高温の溶鋼流は
高速であるために整流板が耐えられないという問
題がある。
Further, in order to stop the downward component of molten steel, it is possible to provide a current plate, but there is a problem that the current plate cannot withstand the high-speed flow of high-temperature molten steel.

更に、浸漬ノズル内の溶鋼通路の断面積を大き
くすることを考えられるが、鋳型の厚みに制約さ
れ、鋳型と浸漬ノズルの外面との部分に溶鋼を供
給することが困難となる。
Furthermore, it is conceivable to increase the cross-sectional area of the molten steel passage in the immersion nozzle, but this is limited by the thickness of the mold, and it becomes difficult to supply molten steel to the area between the mold and the outer surface of the immersion nozzle.

本発明の目的は、従来の浸漬ノズルにみられる
溶鋼の下向き成分を防止して、アルミナ等の非金
属介在物が鋳片中に補足されることを防止するこ
とにある。
An object of the present invention is to prevent the downward component of molten steel seen in conventional immersion nozzles, and to prevent nonmetallic inclusions such as alumina from being trapped in the slab.

(発明が解決しようとする問題点) 本発明は、ノズルの軸心を挟んで左右対称に溶
鋼通路へ開口した吐出孔の対をその本体の長手方
向に沿つて複数設け、該各吐出孔から溶鋼を流出
させる構造になる有底浸漬ノズルであつて、上記
各吐出孔の対の間を、上部の溶鋼通路よりも通路
断面積の小さい溶鋼通路を介して連結してなり、
上記各吐出孔の対は、下部における吐出孔の開口
面積が上部における吐出孔の開口面積よりも大き
く、かつ各吐出孔の総断面積が溶鋼通路の断面積
の2倍以上になることを特徴とする連続鋳造用浸
漬ノズル、とすることが前述した問題点を解決し
た。
(Problems to be Solved by the Invention) The present invention provides a plurality of pairs of discharge holes opening to the molten steel passage symmetrically across the axis of the nozzle along the longitudinal direction of the main body, and from each discharge hole. A bottomed immersion nozzle having a structure for flowing out molten steel, in which the pairs of discharge holes are connected via a molten steel passageway having a smaller cross-sectional area than the upper molten steel passageway,
Each pair of discharge holes is characterized in that the opening area of the discharge holes in the lower part is larger than the opening area of the discharge holes in the upper part, and the total cross-sectional area of each discharge hole is more than twice the cross-sectional area of the molten steel passage. This submerged nozzle for continuous casting has solved the above-mentioned problems.

本発明者等は、実験の結果、浸漬ノズルの吐出
孔を浸漬ノズルの縦方向に複数個設けただけで
は、浸漬ノズルの下部の吐出孔より吐出する溶鋼
流の勢いが強く、浸漬ノズルの上部より吐出する
溶鋼の流量が小さいことを見出した。この現象を
防止するためには、浸漬ノズルの溶鋼通路の下部
を細くすることにより、浸漬ノズルの上部の吐出
孔と、下部の吐出孔より吐出する溶鋼流のバラン
スが得られることが判つた。更に、浸漬ノズルの
上部の吐出孔と下部の吐出孔の面積が略等しい場
合は、浸漬ノズル上部の吐出孔の位置に於ける浸
漬ノズルの溶鋼通路の断面積に対して、浸漬ノズ
ル下部の吐出孔の位置に於ける浸漬ノズルの溶鋼
通路の断面積を0.9以下とすると効果的であるこ
とも判明した。
As a result of experiments, the present inventors have found that if only a plurality of discharge holes are provided in the vertical direction of the immersion nozzle, the force of the molten steel flow discharged from the discharge holes at the bottom of the immersion nozzle is strong; It was found that the flow rate of molten steel discharged was smaller. In order to prevent this phenomenon, it has been found that by narrowing the lower part of the molten steel passage of the immersed nozzle, a balance between the flow of molten steel discharged from the upper discharge hole and the lower discharge hole of the immersion nozzle can be achieved. Furthermore, if the areas of the upper discharge hole and the lower discharge hole of the immersion nozzle are approximately equal, the discharge hole of the lower part of the immersion nozzle will be It has also been found that it is effective to set the cross-sectional area of the molten steel passage of the submerged nozzle at the hole location to 0.9 or less.

また、浸漬ノズルの吐出孔は、ノズルの縦方向
に複数個設けるが、ノズルの縦方向に多数の吐出
孔を設けると、ノズル最上部の吐出孔がメニスカ
ス近傍となるので湯面が変動する等の問題が生じ
る。このため、浸漬ノズルの縦方向に設ける吐出
孔の数は、3個までが好適であり、この場合に於
いても、浸漬ノズルの溶鋼通路の断面積は漸次小
さくすることが有効である。
In addition, a submerged nozzle has a plurality of discharge holes in the vertical direction of the nozzle, but if a large number of discharge holes are provided in the vertical direction of the nozzle, the discharge hole at the top of the nozzle will be near the meniscus, which will cause the melt level to fluctuate. The problem arises. For this reason, the number of discharge holes provided in the vertical direction of the immersion nozzle is preferably up to three, and even in this case, it is effective to gradually reduce the cross-sectional area of the molten steel passage of the immersion nozzle.

また、浸漬ノズル上部の吐出孔の断面積よりも
ノズル下部の吐出孔の断面積を大きくすると、浸
漬ノズル底部側の吐出孔からは、浸漬ノズルの底
部に当り方向が揃つた安定した溶鋼流が吐出す
る。
In addition, if the cross-sectional area of the discharge hole at the bottom of the nozzle is made larger than the cross-sectional area of the discharge hole at the top of the immersion nozzle, a stable flow of molten steel with a uniform direction hits the bottom of the immersion nozzle from the discharge hole at the bottom of the immersion nozzle. Exhale.

更に、浸漬ノズルの吐出孔の断面積の総和は、
浸漬ノズルの溶鋼通路の断面積の2倍以上とす
る。すなわち、吐出孔の断面積の総和が浸漬ノズ
ルの溶鋼通路の断面積の2倍に達しない場合、流
出する溶鋼吐出流の速度は大きいので、下向きの
流れ成分が大きくなり鋳型内深くに侵入する。し
たがつて、これを十分小さくするには、吐出孔の
断面積の総和を浸漬ノズルの溶鋼通路の断面積の
2倍以上にするとよい。
Furthermore, the total cross-sectional area of the discharge holes of the immersion nozzle is
The cross-sectional area of the molten steel passage in the immersion nozzle should be at least twice that. In other words, if the total cross-sectional area of the discharge holes does not reach twice the cross-sectional area of the molten steel passage of the submerged nozzle, the velocity of the molten steel discharge flow is high, so the downward flow component becomes large and penetrates deeply into the mold. . Therefore, in order to make this sufficiently small, the total cross-sectional area of the discharge holes should be at least twice the cross-sectional area of the molten steel passage of the immersion nozzle.

以下、本発明の浸漬ノズルの一実施例を第2
a,bおよびc図に詳細に説明する。
Hereinafter, a second embodiment of the immersion nozzle of the present invention will be described.
This is explained in detail in figures a, b and c.

同図に示す浸漬ノズル4は、各吐出孔の対8,
8′をノズルの縦方向に2個設けた例である。
The immersion nozzle 4 shown in the figure has a pair of discharge holes 8,
This is an example in which two nozzles 8' are provided in the vertical direction of the nozzle.

上記各吐出孔の対8,8′の間は、上部の溶鋼
通路9よりも通路断面積の小さい溶鋼通路9′を
介して連結してある。
The pairs of discharge holes 8, 8' are connected via a molten steel passage 9' having a smaller cross-sectional area than the molten steel passage 9 in the upper part.

上記の浸漬ノズル4の溶鋼通路9の断面積をa
とし、各吐出孔の対8,8′の総断面積を約3×
aにして、溶鋼を鋳型に注入した時の溶鋼の流動
状態を第3図に示す。
The cross-sectional area of the molten steel passage 9 of the above immersion nozzle 4 is a
The total cross-sectional area of each pair of discharge holes 8, 8' is approximately 3×
Fig. 3 shows the flow state of molten steel when it is poured into a mold at a point a.

本発明の浸漬ノズルを使用した場合の溶鋼の流
動状態を同図中に実線5で、従来の浸漬ノズルを
使用した場合の溶鋼の流動状態を同図中に破線6
で示すが、溶鋼の下向きの流れは強くない。ま
た、吐出孔8′での溶鋼の流速は約半分となる。
The solid line 5 in the figure shows the flow state of molten steel when the immersion nozzle of the present invention is used, and the broken line 6 in the figure shows the flow state of molten steel when the conventional immersion nozzle is used.
However, the downward flow of molten steel is not strong. Further, the flow velocity of the molten steel at the discharge hole 8' is approximately halved.

実施例 1 実寸大の実験装置を用いて、第1図に示す従来
の浸漬ノズルと第2図に示す本発明の浸漬ノズル
で、流入流量400/minで流れる流体中に気泡
を20/min混入させて比較した。この結果、直
径1mmの気泡の巻込み最大深さは、従来の浸漬ノ
ズルでは約120cmであつたのに対し、本発明の浸
漬ノズルでは約105cmであつた。
Example 1 Using a full-scale experimental apparatus, air bubbles were mixed at 20/min into a fluid flowing at an inflow rate of 400/min using a conventional submerged nozzle shown in Fig. 1 and an immersed nozzle of the present invention shown in Fig. 2. I made a comparison. As a result, the maximum entrainment depth of a bubble with a diameter of 1 mm was approximately 120 cm in the conventional submerged nozzle, whereas it was approximately 105 cm in the submerged nozzle of the present invention.

なお、従来の浸漬ノズルの溶鋼通路の断面積の
約1.8倍の吐出孔の断面積に対し、本発明の浸漬
ノズルの吐出孔の総断面積を3.0とし、浸漬ノズ
ルの上部吐出孔の位置に於ける溶鋼通路の断面積
に対し、浸漬ノズルの下部吐出孔の位置に於ける
溶鋼通路の断面積を0.9とし、また上部吐出孔の
断面積と下部吐出孔の断面積との比を0.8とした。
In addition, while the cross-sectional area of the discharge hole of the conventional immersion nozzle is approximately 1.8 times the cross-sectional area of the molten steel passage, the total cross-sectional area of the discharge hole of the immersion nozzle of the present invention is set to 3.0, and the position of the upper discharge hole of the immersion nozzle is The cross-sectional area of the molten steel passage at the position of the lower discharge hole of the immersion nozzle is 0.9, and the ratio of the cross-sectional area of the upper discharge hole to the cross-sectional area of the lower discharge hole is 0.8. did.

実施例 2 第1図に示す従来の浸漬ノズルの溶鋼通路の断
面積と同じ面積で、上部の吐出孔の断面積と下部
の吐出孔の断面積との比を0.8とした浸漬ノズル
を用い、実施例1と同じ条件で実験した結果、吐
出孔から吐出する流れは略水平となり、直径1mm
の気泡が巻き込む深さは約95cmであつた。
Example 2 Using an immersed nozzle with the same area as the cross-sectional area of the molten steel passage of the conventional immersed nozzle shown in FIG. 1, the ratio of the cross-sectional area of the upper discharge hole to the cross-sectional area of the lower discharge hole was 0.8, As a result of experimenting under the same conditions as in Example 1, the flow discharged from the discharge hole was approximately horizontal, and the diameter was 1 mm.
The depth of the bubbles involved was approximately 95 cm.

なお、浸漬ノズル上部の吐出孔位置に於ける溶
鋼通路の断面積に対し、ノズル下部の吐出孔位置
に於ける溶鋼通路の断面積を0.85とし、吐出孔の
総断面積を溶鋼通路の断面積の3倍とした。
In addition, the cross-sectional area of the molten steel passage at the discharge hole position at the bottom of the nozzle is set to 0.85 relative to the cross-sectional area of the molten steel passage at the discharge hole position at the top of the immersion nozzle, and the total cross-sectional area of the discharge holes is the cross-sectional area of the molten steel passage. It was tripled.

実施例 3 実施例2と同じ形状、寸法の吐出孔をもつ浸漬
ノズル(上部吐出孔の断面積と下部吐出孔の断面
積との比0.8、吐出孔の総断面積を溶鋼通路の断
面積の3倍)で、ノズル上部の吐出孔位置に於け
る溶鋼通路の直径を80mm、ノズル下部の吐出孔位
置に於ける溶鋼通路の直径を70mmとし、実施例1
と同じ条件で実験した結果、直径1mmの気泡が巻
き込む深さは約91cmであり、良好な結果を得た。
Example 3 A submerged nozzle with a discharge hole having the same shape and dimensions as Example 2 (the ratio of the cross-sectional area of the upper discharge hole to the cross-sectional area of the lower discharge hole was 0.8, and the total cross-sectional area of the discharge hole was made equal to the cross-sectional area of the molten steel passage). Example 1
As a result of an experiment conducted under the same conditions as above, the depth that a bubble with a diameter of 1 mm was engulfed was approximately 91 cm, and good results were obtained.

以上述べた例は第2図に示す形状、構造の浸漬
ノズルであるが、この他にも、箱型形状の浸漬ノ
ズルや楕円形状の浸漬ノズルにも有効である。
The example described above is an immersion nozzle having the shape and structure shown in FIG. 2, but it is also effective for box-shaped immersion nozzles and oval-shaped immersion nozzles.

(発明の効果) 以上説明したように本発明によれば、連鋳鋳片
内部への非金属介在物の巻込み量が減少して、鋳
片の品質が著しく向上する。
(Effects of the Invention) As described above, according to the present invention, the amount of nonmetallic inclusions trapped inside the continuously cast slab is reduced, and the quality of the slab is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の浸漬ノズルを示す図であり、
第2a図は本発明の浸漬ノズルの正面図であり、
第2b図はその側面図であり、第2c図はその断
面図であり、第3図は、本発明の浸漬ノズルと従
来の浸漬ノズルを使用した場合の鋳型内の流動状
態を示す図である。 1…従来型浸漬ノズル、2…鋳型、3…溶鋼
流、4…本発明の浸漬ノズル、5,6…溶鋼流、
8,8′…吐出孔、9,9′…溶湯通路。
FIG. 1 is a diagram showing a conventional immersion nozzle,
Figure 2a is a front view of the submerged nozzle of the present invention;
Fig. 2b is a side view thereof, Fig. 2c is a sectional view thereof, and Fig. 3 is a diagram showing the flow state in the mold when the immersion nozzle of the present invention and the conventional immersion nozzle are used. . 1... Conventional immersion nozzle, 2... Mold, 3... Molten steel flow, 4... Immersion nozzle of the present invention, 5, 6... Molten steel flow,
8, 8'...discharge hole, 9,9'...molten metal passage.

Claims (1)

【特許請求の範囲】 1 ノズルの軸心を挟んで左右対称に溶鋼通路へ
開口した吐出孔の対をその本体の長手方向に沿つ
て複数設け、該各吐出孔から溶鋼を流出させる構
造になる有底浸漬ノズルであつて、 上記各吐出孔の対の間を、上部の溶鋼通路より
も通路断面積の小さい溶鋼通路を介して連結して
なり、上記各吐出孔の対は、下部における吐出孔
の開口面積が上部における吐出孔の開口面積より
も大きく、かつ各吐出孔の総断面積が溶鋼通路の
断面積の2倍以上になることを特徴とする連続鋳
造用浸漬ノズル。
[Claims] 1. A structure in which a plurality of pairs of discharge holes opening into the molten steel passage symmetrically across the axis of the nozzle are provided along the longitudinal direction of the main body, and the molten steel flows out from each of the discharge holes. The bottomed immersion nozzle is configured such that the pairs of discharge holes are connected through a molten steel passageway having a smaller passage cross-sectional area than the molten steel passageway in the upper part, and each pair of discharge holes is connected to the discharge hole in the lower part. 1. A submerged nozzle for continuous casting, characterized in that the opening area of the hole is larger than the opening area of the discharge hole in the upper part, and the total cross-sectional area of each discharge hole is at least twice the cross-sectional area of the molten steel passage.
JP24404086A 1986-10-16 1986-10-16 Submerged nozzle for continuous casting Granted JPS63101058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24404086A JPS63101058A (en) 1986-10-16 1986-10-16 Submerged nozzle for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24404086A JPS63101058A (en) 1986-10-16 1986-10-16 Submerged nozzle for continuous casting

Publications (2)

Publication Number Publication Date
JPS63101058A JPS63101058A (en) 1988-05-06
JPH0454541B2 true JPH0454541B2 (en) 1992-08-31

Family

ID=17112818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24404086A Granted JPS63101058A (en) 1986-10-16 1986-10-16 Submerged nozzle for continuous casting

Country Status (1)

Country Link
JP (1) JPS63101058A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949778A (en) * 1987-12-16 1990-08-21 Kawasaki Steel Corporation Immersion nozzle for continuous casting

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132820Y2 (en) * 1971-05-28 1976-08-16
JPS5588347U (en) * 1978-12-12 1980-06-18

Also Published As

Publication number Publication date
JPS63101058A (en) 1988-05-06

Similar Documents

Publication Publication Date Title
KR960004421B1 (en) Immersion nozzle for continuous casting
JPH0454541B2 (en)
CA1052529A (en) Casting method of molten metal
JPH0120052Y2 (en)
JP3460185B2 (en) Immersion nozzle for casting
JPH09108793A (en) Continuous casting method and straight immersion nozzle
KR900001783Y1 (en) Long nozzle for continuos casting
JP3595464B2 (en) Immersion nozzle for continuous casting and continuous casting method for steel
JPH0428687Y2 (en)
JP3012912B2 (en) Mold structure
JP4209976B2 (en) Dipping nozzle for continuous casting and method for continuous casting of steel
JPS623857A (en) Continuous casting method using single hole type immersion nozzle
JPS6114051A (en) Immersion nozzle for continuous casting
JPS55128356A (en) Decreasing method for inclusion in molten steel at continuous cast pouring time
SU757246A1 (en) Apparatus for bottom pouring
JPH0560645U (en) Twin-roll type thin plate continuous casting equipment pouring equipment
JPS62187556A (en) Continuous casting method
JP2000202602A (en) Method for removing inclusion in tundish for continuos casting
SU1194571A1 (en) Closed-end submersible sleeve for continuous metal-casting
JPH01113159A (en) Submerged nozzle for continuous casting
Campbell Filling and Feeding Systems for Cast Irons
KR880002056Y1 (en) Tun dish nozzle
JP2024085134A (en) Continuous Casting Method
SU1444063A1 (en) Apparatus for casting metal
JPS6331817Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees