JPH0454511A - Highly accurate flow rate control system for plural nozzle groups - Google Patents

Highly accurate flow rate control system for plural nozzle groups

Info

Publication number
JPH0454511A
JPH0454511A JP16140390A JP16140390A JPH0454511A JP H0454511 A JPH0454511 A JP H0454511A JP 16140390 A JP16140390 A JP 16140390A JP 16140390 A JP16140390 A JP 16140390A JP H0454511 A JPH0454511 A JP H0454511A
Authority
JP
Japan
Prior art keywords
flow rate
way valve
valve
nozzle
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16140390A
Other languages
Japanese (ja)
Other versions
JP2510033B2 (en
Inventor
Toshihiro Ishibashi
石橋 俊弘
Hiroyuki Hasegawa
長谷川 博行
Takeshi Hioki
猛 日置
Yoshimi Toriyama
通山 義美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2161403A priority Critical patent/JP2510033B2/en
Priority to DE69113326T priority patent/DE69113326T2/en
Priority to EP91305475A priority patent/EP0462783B1/en
Priority to US07/719,122 priority patent/US5191778A/en
Publication of JPH0454511A publication Critical patent/JPH0454511A/en
Priority to US07/992,402 priority patent/US5259229A/en
Application granted granted Critical
Publication of JP2510033B2 publication Critical patent/JP2510033B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Flow Control (AREA)

Abstract

PURPOSE:To improve the setting accuracy of a flow rate, to facilitate the adjustment and to decrease the number of control loops for flow rate control by arranging plural flow rate control blocks which can be set to each prescribed throttling value in parallel with each other at the throttling mechanism of the draining side and switching freely a 3-way valve. CONSTITUTION:The water is sprayed to the steel stock carried in an attitude H through the multi-stage nozzle groups 13. Thus a flange is cooled. The stages of the groups 13 are selected by opening/closing a valve 7 in accordance with the width of the flange 14. Then plural control blocks are provided in order to satisfy the steel stock cooling conditions, and a cooling pattern is changed by switching a 3-way valve to the nozzle or draining side. The opening amount of an opening amount control valve 8 is obtained at every control block by reference to a computer table when the valve 7 is set. Then the opening amount of the valve 8 is set at the value set with coincidence secured between the pipeline resistance coefficients of the 3-way valve obtained at the nozzle and detaining sides respectively. Thus the flow rate can be easily adjusted, and the highly accurate control of the flow rate is attained together with the complicated switch of the 3-way valve.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ノズルを使用して冷却等の目的に供する配管
設備において、バルブ切り替え時の流量変動を極力小さ
く抑え、かつ、ノズル個数変更によってセット替えを行
う機能を持たせた配管系統の制御システムに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is aimed at suppressing flow rate fluctuations when switching valves as much as possible in piping equipment that uses nozzles for purposes such as cooling, and by changing the number of nozzles. This invention relates to a piping system control system that has a function to change the set.

詳しくは、実施例で後述するが、製造サイズに対応して
ノズル群を段分割を行い、三方弁単位に複数制御ブロッ
クからなる配管系統をもち、厳密な流量制御と、頻繁な
三方弁切り替えを行うH形鋼のフランジ水冷装置に適用
可能である。
The details will be described later in the examples, but the nozzle group is divided into stages according to the manufacturing size, and each three-way valve has a piping system consisting of multiple control blocks, allowing for strict flow control and frequent three-way valve switching. It can be applied to flange water cooling equipment for H-beam steel.

[従来の技術] 液体の配管設備において、バルブ切り替えの流量変動を
極力小さくする方法として、第8図のように三方弁を使
用することが一般的である。図において、1は三方弁、
2は給水側、3はノズル側、4は排水側を示す。三方弁
の原理は給水側2の下流側のノズルを使用していない時
は、排水側4に流体を流し、バルブ切り替え時に、上流
の流体の流れを変えないことにより流量変動を極力小さ
くするものである。
[Prior Art] In liquid piping equipment, it is common to use a three-way valve as shown in FIG. 8 as a method of minimizing flow rate fluctuations due to valve switching. In the figure, 1 is a three-way valve;
2 indicates the water supply side, 3 indicates the nozzle side, and 4 indicates the drainage side. The principle of a three-way valve is that when the nozzle on the downstream side of the water supply side 2 is not in use, the fluid flows to the drain side 4, and when the valve is switched, the flow rate fluctuation is minimized by not changing the flow of the upstream fluid. It is.

厳密な流量制御を行う流量制御系において、設定の流量
条件を確保し、かつ、バルブ切り替え時の流量変動を極
力小さくするためには、三方弁を使用し、さらに、その
流量に対するノズル側と排水側の圧損を等しくすること
か必要である。このため従来は、ノズル側の配管圧損を
測定し、排水側にその圧損に見合う圧損を計算または測
定し、オリフィス等の固定圧損絞り機構5を挿入するの
が一般的である。
In a flow control system that performs strict flow control, in order to ensure the set flow rate conditions and minimize flow fluctuations when switching valves, a three-way valve is used, and the nozzle side and drainage It is necessary to equalize the pressure loss on both sides. For this reason, conventionally, the pipe pressure loss on the nozzle side is measured, a pressure loss corresponding to the pressure loss is calculated or measured on the drainage side, and a fixed pressure loss restricting mechanism 5 such as an orifice is inserted.

[発明が解決しようとする課題] 前記の産業上の利用分野の項で説明した利用を前提とし
た場合、上述の従来技術の、適応は以下の理由から精度
上許容し得る範囲は非常に狭い範囲に限定される。
[Problem to be solved by the invention] Assuming the use explained in the section of the industrial application field above, the permissible range of adaptation of the above-mentioned conventional technology in terms of accuracy is very narrow for the following reasons. Limited to a range.

即ち、製造条件上の必要から三方弁下流側のノズル使用
個数を変更する配管系統の三方弁ノズル側3の詳細を第
9図に示す。図において、6は多段ノズル、7は各ノズ
ル6の開閉バルブを示す。
That is, FIG. 9 shows details of the three-way valve nozzle side 3 of the piping system in which the number of nozzles used on the downstream side of the three-way valve is changed according to manufacturing conditions. In the figure, 6 indicates a multi-stage nozzle, and 7 indicates an opening/closing valve for each nozzle 6.

例えば、被冷却材のサイズに対応して開閉バルブ7を開
閉することにより、ノズルの使用個数の変更に伴い、当
然ノズル側の圧損が変わるので、従来の固定圧損の絞り
方法では、厳密な流量制御には対応できない。
For example, by opening and closing the on-off valve 7 in accordance with the size of the material to be cooled, the pressure drop on the nozzle side will naturally change as the number of nozzles used changes. It cannot be controlled.

開閉バルブ7の代わりに三方弁を持つことは可能である
が、三方弁の数か開閉バルブの数たけ必要てそれらの切
り替えタイミングの同調合わせ込みが要求される。一般
的に切り替えタイミンク調整は、三方弁切り替え信号の
ずれ調整、三方弁の機械的動作時間のバラツキ調整等、
かなり難しい。
Although it is possible to have a three-way valve instead of the on-off valve 7, the number of three-way valves or the number of on-off valves requires synchronization of their switching timings. Generally, switching timing adjustment involves adjusting the deviation of the three-way valve switching signal, adjusting the variation in the mechanical operation time of the three-way valve, etc.
Quite difficult.

前記以外に、三方弁のノズル側と排水側にそれぞれ流量
計と流量調整弁からなる流量制御系をもち、使用直前に
流量合わせ込みを行い、使用中は流量調整弁の開度を固
定して使用する方法がある。この方法は流量制御におい
ては確実であるが、流量設定変更の都度、ノズル側と排
水側の流量調整を行う必要があり、また、一つの三方弁
に対して2ループの制御装置か必要となる、などの不利
かある。
In addition to the above, the three-way valve has a flow control system consisting of a flow meter and a flow adjustment valve on the nozzle side and the drainage side, respectively, and the flow rate is adjusted just before use, and the opening of the flow adjustment valve is fixed during use. There is a way to use it. Although this method is reliable for flow rate control, it is necessary to adjust the flow rate on the nozzle side and drain side each time the flow rate setting is changed, and a two-loop control device is required for one three-way valve. There are disadvantages such as .

本発明はこのような従来技術の欠点を解決し、使用ノズ
ル群を選択使用し、かつ、噴射オンオフ時の流量変動を
極力小さく抑える要求のある三方弁単位の配管系統ブロ
ックを複数個有するシステムにおいて、流量設定精度が
高く、調整が容易て、かつ、流量制御の制御ループ数を
極力少なくする、流量制御システムを提供するものであ
る。
The present invention solves the shortcomings of the prior art and is suitable for systems having a plurality of piping system blocks for each three-way valve, which requires selective use of nozzle groups and minimizing flow rate fluctuations during injection on/off. The present invention provides a flow rate control system that has high flow rate setting accuracy, is easy to adjust, and minimizes the number of control loops for flow rate control.

[課題を解決するための手段] 上記の目的を達成するための本発明に係る流量制御シス
テムは、給水側、ノズル側、排水側のポートを持つ三方
弁と、三方弁のノズル側にノズル群を選択できる複数個
の開閉可能なバルブと、三方弁排水側に可変絞り機構を
有する配管系統をもち、設定流量に対する排水側の圧損
が、ノズル側のそれに等しくなるよう、排水側の絞り機
構にプリセット値を与えるとともに、所定の絞り値に設
定できる前記の流量制御ブロックを複数系統並列に配置
し、自在に三方弁の切り替えを行うことを特徴とする。
[Means for Solving the Problems] A flow control system according to the present invention for achieving the above object includes a three-way valve having ports on the water supply side, a nozzle side, and a drainage side, and a nozzle group on the nozzle side of the three-way valve. It has multiple open/close valves that can be selected, and a piping system with a variable throttle mechanism on the three-way valve drainage side. The present invention is characterized in that a plurality of the flow rate control blocks, which can provide a preset value and set a predetermined aperture value, are arranged in parallel, and the three-way valves can be freely switched.

また、本発明は、複数列並列に配置された流量制御ブロ
ックにおいて、三方弁上流側に配置された流量調整弁の
開度を固定しておき、制御ブロックの単位で三方弁の切
り替え前と切り替え後の流量が等しくなる排水側の絞り
機構の開度をプリセット値として付与することを特徴と
する。
Further, in the flow control blocks arranged in multiple rows in parallel, the opening degree of the flow rate regulating valve arranged on the upstream side of the three-way valve is fixed, and the three-way valve is switched before and after switching in units of control blocks. It is characterized in that the opening degree of the throttle mechanism on the drainage side that makes the subsequent flow rates equal is given as a preset value.

以下本発明の詳細を図面を参照しながら説明する。The details of the present invention will be explained below with reference to the drawings.

第1図は本発明の基本的な構成を示すもので、給水側、
ノズル側及び排水側のポートを持つ三方弁1と、該三方
弁1のノズル側にノズル群6を選択できる複数個の開閉
可能なバルブ7と、三方弁排水側に可変絞り機構5を有
する配管系統をもつ流量制御ブロッックを複数系統(図
ては3系統)並列に配置してなるものである。
Figure 1 shows the basic configuration of the present invention, in which the water supply side,
Piping having a three-way valve 1 having ports on the nozzle side and a drainage side, a plurality of valves 7 that can be opened and closed to select a nozzle group 6 on the nozzle side of the three-way valve 1, and a variable throttle mechanism 5 on the drainage side of the three-way valve. It is made up of a plurality of flow rate control blocks each having a system (three systems in the figure) arranged in parallel.

第2図は設定流量に対する三方弁のノズル側と排水側の
圧損を等しくする方法を示している。図において、1は
三方弁、6はノズル、7は開閉バルブである。8は開度
調整バルブてあり、該バルブ8により開閉バルブ7の使
用条件の結果として決まる使用ノズル個数に応して計算
機より開度情報を受取り、その開度により設定流量に対
する排水側の圧損がノズル側のそれと等しくなるように
配管抵抗を調整できる。
FIG. 2 shows a method of equalizing the pressure loss on the nozzle side and the drain side of the three-way valve for a set flow rate. In the figure, 1 is a three-way valve, 6 is a nozzle, and 7 is an on-off valve. Reference numeral 8 denotes an opening adjustment valve, which receives opening information from a computer according to the number of nozzles in use, which is determined as a result of the operating conditions of the on-off valve 7, and the opening determines the pressure drop on the drainage side relative to the set flow rate. The piping resistance can be adjusted to be equal to that on the nozzle side.

配管系の圧損をH1流量をQ、配管内面積をA、流速を
■とすると三者の関係は以下のようになる。
Assuming that the pressure drop in the piping system is H1, the flow rate is Q, the internal area of the piping is A, and the flow velocity is ■, the relationship between the three is as follows.

v = Q / A H=ζ×%×■2/g (ζは配管抵抗係数、gは重力の加速度)圧損は流量の
2乗に比例する。また、ζは配管系固有の値であり、三
方弁以降の圧損はノズル使用の場合は大気解放であるの
で、流量に見合った圧損てバランスする。三方弁のノズ
ル側の圧損は主として、ノズルまでの配管圧損、ノズル
の圧損からなる。ノズル個数が変われば、配管抵抗係数
か変わるので、当然ノズル側の圧損とバランス関係にあ
る流量は変化する。三方弁排水側の配管抵抗係数を三方
弁ノズル側のそれに等しく設定できれば、三方弁切り替
え時の流量変動は、配管抵抗係数設定の誤差のみによっ
て発生すると考えられる。
v=Q/AH=ζ×%×■2/g (ζ is the piping resistance coefficient, g is the acceleration of gravity) The pressure loss is proportional to the square of the flow rate. Further, ζ is a value specific to the piping system, and the pressure loss after the three-way valve is released to the atmosphere when a nozzle is used, so the pressure loss is balanced according to the flow rate. The pressure loss on the nozzle side of a three-way valve mainly consists of the piping pressure loss to the nozzle and the nozzle pressure loss. If the number of nozzles changes, the piping resistance coefficient will also change, so naturally the flow rate, which is in a balanced relationship with the pressure loss on the nozzle side, will change. If the piping resistance coefficient on the drainage side of the three-way valve can be set equal to that on the nozzle side of the three-way valve, it is considered that the flow rate fluctuation when switching the three-way valve is caused only by an error in the setting of the piping resistance coefficient.

なお、9は流量計、10は流量調整弁であり、これらは
三方弁の上流側に配置されている。系の流量制御は流量
計9および流量調整弁10の流量制御ループで行う。前
述したとおり、三方弁ノズル側、排水側の配管抵抗係数
か等しけねば、三方弁切り替え時の流量は、理論上等し
くなるので、この特性を利用することにより、三方弁排
水側の開度調整バルブ8の開度を決定てきる。
Note that 9 is a flow meter and 10 is a flow rate regulating valve, which are arranged on the upstream side of the three-way valve. The flow rate control of the system is performed by a flow rate control loop of a flow meter 9 and a flow rate regulating valve 10. As mentioned above, if the piping resistance coefficients on the three-way valve nozzle side and the drainage side are equal, the flow rate when switching the three-way valve will be theoretically equal, so by using this characteristic, the opening degree of the three-way valve drainage side can be adjusted. The opening degree of the adjustment valve 8 is determined.

以上の説明においては、1個のバルブによる開度調整に
ついて述べたが、流量制御範囲等の制約から第3図に示
す複数個の絞り機構の集合体として三方弁排水側の絞り
機構を考えることも可能である。この場合、ざまざまの
配管抵抗を持つ、抵抗配管体5′のバルブ7′による選
択を行うことにより、上言己説明における三方弁排水側
開度調整バルブ8の開度調整と同等の効果が得られる。
In the above explanation, we have described the opening adjustment using one valve, but due to constraints such as the flow rate control range, it is recommended to consider the throttling mechanism on the drainage side of the three-way valve as an aggregate of multiple throttling mechanisms as shown in Fig. 3. is also possible. In this case, by selecting the valve 7' of the resistance piping body 5' which has various piping resistances, the same effect as the opening adjustment of the three-way drain side opening adjustment valve 8 in the above self-explanation can be obtained. can get.

その方法について説明する。開閉バルブ7の設定をする
ことにより三方弁ノズル側の配管抵抗係数は固有の値と
なる。この固有値を以下の手順て開度調整弁8の開度に
置き直すことがこの調整の目的である。開閉バルブ7の
設定後、まず、流量調整弁IOの開度を固定しておき、
三方弁ノズル側に流体を流し、流量安定時の流量計9の
流量を把握しておく。次に、三方弁を排水側に切り替え
た状態でバルブ8の開度を手動で変更し、安定時の流量
がノズル側の流量になるよう合わせ込みを行う。合わせ
込み終了後三方弁バルブ開度を計算機テーブル上に記憶
させる。開閉バルブ7の使用条件の各ケース毎に上記の
バルブ8の開度を記憶させる。第3図の配管系統を使用
する場合は開閉バルブ7の設定時、同時に開閉バルブ7
′を設定し、上記と同様な方法で配管抵抗体5′の絞り
の合わせ込みを行う。
The method will be explained below. By setting the on-off valve 7, the piping resistance coefficient on the three-way valve nozzle side becomes a unique value. The purpose of this adjustment is to replace this eigenvalue with the opening degree of the opening adjustment valve 8 using the following procedure. After setting the on-off valve 7, first fix the opening degree of the flow rate adjustment valve IO,
Fluid is caused to flow to the three-way valve nozzle side, and the flow rate measured by the flow meter 9 when the flow rate is stable is determined. Next, with the three-way valve switched to the drain side, the opening degree of the valve 8 is manually changed to adjust the flow rate at a stable time to the flow rate on the nozzle side. After the adjustment is completed, the three-way valve opening degree is stored on the computer table. The opening degree of the valve 8 described above is stored for each case of the usage conditions of the on-off valve 7. When using the piping system shown in Figure 3, when setting the on-off valve 7, at the same time
' is set, and the orifice of the piping resistor 5' is adjusted in the same manner as described above.

第4図、第5図は第2図の制御ブロックを複数列並列に
配置した図である。第4図の流量計9、流量調整弁lO
は、8の開度調整弁の調整段階での精度の許すかぎり、
第5図の流量計11、流量調整弁12のように集約可能
である。複数列の制御ブロックを一つの流量制御ループ
でまかなう第5図における、三方弁ノズル側と排水側の
条件毎の開度合わせ込みは、合わせ込み対象以外の制御
ブロックの三方弁の条件を変えずに、対象の三方弁のみ
、切り替えることにょフて可能である。単列て調整する
場合と事なり、使用する流量計が大流量測定用の流量計
のため、流量計測定誤差要因の調整精度を考慮すること
により、経済的な制御ブロックの統合ができる。
4 and 5 are diagrams in which the control blocks of FIG. 2 are arranged in parallel in a plurality of columns. Flowmeter 9 and flow rate adjustment valve lO in Figure 4
As long as the accuracy in the adjustment stage of the opening adjustment valve in step 8 allows,
They can be integrated like the flowmeter 11 and flow rate adjustment valve 12 in FIG. In Figure 5, where multiple rows of control blocks are covered by one flow rate control loop, the opening angle adjustment for each condition of the three-way valve nozzle side and the drainage side is performed without changing the conditions of the three-way valves of the control blocks other than those to be adjusted. In this case, it is possible to switch only the target three-way valve. Unlike when adjusting in a single row, the flowmeter used is a flowmeter for measuring large flow rates, so economical integration of control blocks can be achieved by considering the adjustment accuracy of flowmeter measurement error factors.

[実施例コ H形鋼のフランジ水冷装置において、本発明のシステム
が通用できる例を第6図、第7図にて説明する。第6図
は実際の装置図、第7図は制御手順ブロック図を示す。
[Embodiment] An example in which the system of the present invention can be applied to a flange water cooling device for H-beam steel will be explained with reference to FIGS. 6 and 7. FIG. 6 shows an actual device diagram, and FIG. 7 shows a control procedure block diagram.

H姿勢で搬送される鋼材に対して、多段のノズル群13
より水を噴射させることにより、フランジ14を冷却す
る。ノズル群の選択はフランジ幅に見合った段選択を第
6図に示す開閉バルブ7の開閉設定によって行う。鋼材
冷却条件を満足させるため、第4図、第5図のように複
数の制御ブロックに分け、三方弁のノズル側または排水
側への切り替えによって、冷却パターンを変えるもので
ある。
A multi-stage nozzle group 13 is used for steel materials transported in the H posture.
The flange 14 is cooled by jetting more water. The selection of the nozzle group is performed by selecting a stage corresponding to the flange width by opening/closing the opening/closing valve 7 shown in FIG. In order to satisfy the steel cooling conditions, the control block is divided into a plurality of control blocks as shown in FIGS. 4 and 5, and the cooling pattern is changed by switching the three-way valve to the nozzle side or the drain side.

開閉バルブの設定に併せて、制御ブロック毎に第6図に
示す開度調整バルブ8の開度を計算機テーブルより与え
る。開度調整バルブの開度は前述の手順て三方弁のノズ
ル側と排水側の配管抵抗係数の合わせ込みにより決定し
た値である。複数の配管抵抗体を使用するときは、配管
抵抗体の開閉バルブを選択する。
In conjunction with the setting of the opening/closing valve, the opening degree of the opening adjustment valve 8 shown in FIG. 6 is given for each control block from a computer table. The opening degree of the opening adjustment valve is a value determined by matching the piping resistance coefficients on the nozzle side and the drain side of the three-way valve according to the above-mentioned procedure. When using multiple piping resistors, select the opening/closing valve for the piping resistor.

次に、サイズ毎に登録された制御ブロック内の流量の設
定を行う。
Next, the flow rate in the control block registered for each size is set.

実施例におけるシステムは精度上許容されるので、第5
図に示す複数列の制御ブロックを集約した制御ループと
しているが、三方弁以降の配管抵抗係数が等しいので三
方弁切り替え時の変動の影響をほとんど受けない。また
、第5図に示す11゜I2による流量設定が三方弁排水
側に流体を流している状態で可能、つまりライン側に冷
却剤を噴射することなして可能なので、操業への影響は
極めて小さい。
Since the system in the example is acceptable in terms of accuracy, the fifth
Although the control loop shown in the figure is an aggregation of multiple rows of control blocks, since the piping resistance coefficients after the three-way valve are equal, it is hardly affected by fluctuations when switching the three-way valve. In addition, the flow rate setting using 11°I2 shown in Figure 5 is possible while fluid is flowing to the three-way valve drainage side, that is, it is possible without injecting coolant to the line side, so the impact on operation is extremely small. .

[発明の効果コ 以上説明した本発明によれば、三方弁を用いた流量制御
系において、厳密な流量制御に対応てき、かつバルブ切
替時の流量変動が小さく、調整も容易であるという利点
がある。従って、厳密な流量制御と繁雑な三方弁切り替
えを行う必要のあるH形鋼のフランジ冷却手段に適用す
るに最適である。
[Effects of the Invention] According to the present invention described above, a flow rate control system using a three-way valve has the advantage that it can support strict flow rate control, has small flow rate fluctuations when switching valves, and is easy to adjust. be. Therefore, it is ideal for application to a flange cooling means for H-beam steel that requires strict flow control and complicated three-way valve switching.

【図面の簡単な説明】 第1図は本発明を実施するための基本的な構成例を示す
配管系統図、第2図は三方弁のノズル側と排水側の圧損
を等しくする方法を示す配管系統図、第3図は第2図の
別の例を示す配管系統図、第4図及び第5図は第2図の
制御ブロックを複数列並列に配置した系統図、第6図は
本発明をH形鋼のフランジ水冷装置に適用した例を示す
装置図、第7図は第6図の制御手順を示すブロック図、
第8図及び第9図は従来の流量制御系統を示す図である
。 l・・・三方弁、5・・・可変絞り機構、6・・・ノズ
ル群、7・・・開閉バルブ、8・・・開度調整バルブ、
9・・・流量計、IO・・・流量調整弁、13・・・多
段ノズル群、14・・・フランジ
[Brief explanation of the drawings] Fig. 1 is a piping system diagram showing a basic configuration example for carrying out the present invention, Fig. 2 is a piping system diagram showing a method of equalizing the pressure loss on the nozzle side and the drain side of a three-way valve. System diagram, Fig. 3 is a piping system diagram showing another example of Fig. 2, Figs. 4 and 5 are system diagrams in which control blocks of Fig. 2 are arranged in multiple rows in parallel, and Fig. 6 is a piping system diagram showing another example of Fig. 2. Fig. 7 is a block diagram showing the control procedure of Fig. 6;
FIGS. 8 and 9 are diagrams showing conventional flow control systems. l... Three-way valve, 5... Variable throttle mechanism, 6... Nozzle group, 7... Opening/closing valve, 8... Opening adjustment valve,
9...Flowmeter, IO...Flow rate adjustment valve, 13...Multi-stage nozzle group, 14...Flange

Claims (1)

【特許請求の範囲】 1、給水側、ノズル側、排水側のポートを持つ三方弁と
、三方弁ノズル側にノズル群を選択できる複数個の開閉
可能なバルブと、三方弁排水側に可変絞り機構を有する
配管系統をもち、設定流量に対する排水側の圧損が、ノ
ズル側のそれに等しくなるよう、排水側の絞り機構にプ
リセット値を与えるとともに、所定の絞り値に設定でき
る前記の流量制御ブロックを複数系統並列に配置し、自
在に三方弁の切り替えを行うことを特徴とする流量制御
システム。 2、前記複数列並列に配置された流量制御ブロックにお
いて、三方弁上流側に配置された流量調整弁の開度を固
定しておき、制御ブロックの単位で三方弁の切り替え前
と切り替え後の流量が等しくなる排水側の絞り機構の開
度をプリセット値として付与する請求項1記載のシステ
ム。
[Claims] 1. A three-way valve with ports on the water supply side, nozzle side, and drainage side; a plurality of valves that can be opened and closed to select nozzle groups on the nozzle side of the three-way valve; and a variable throttle on the drainage side of the three-way valve. The flow rate control block has a piping system with a mechanism, and provides a preset value to the throttling mechanism on the drainage side so that the pressure drop on the drainage side with respect to the set flow rate is equal to that on the nozzle side, and can set the restriction to a predetermined throttling value. A flow control system characterized by arranging multiple systems in parallel and freely switching three-way valves. 2. In the flow rate control blocks arranged in multiple rows in parallel, the opening degree of the flow rate regulating valve placed upstream of the three-way valve is fixed, and the flow rate before and after switching of the three-way valve is determined for each control block. 2. The system according to claim 1, wherein the opening degree of the drainage-side throttling mechanism at which the values are equal is given as a preset value.
JP2161403A 1990-06-21 1990-06-21 H-section steel flange cooling device and cooling method Expired - Lifetime JP2510033B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2161403A JP2510033B2 (en) 1990-06-21 1990-06-21 H-section steel flange cooling device and cooling method
DE69113326T DE69113326T2 (en) 1990-06-21 1991-06-18 Method and device for producing steel double-T beams with a thin web.
EP91305475A EP0462783B1 (en) 1990-06-21 1991-06-18 Process and apparatus for producing thin-webbed H-beam steel
US07/719,122 US5191778A (en) 1990-06-21 1991-06-20 Process for producing thin-webbed h-beam steel
US07/992,402 US5259229A (en) 1990-06-21 1992-12-18 Apparatus for cooling thin-webbed H-beam steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2161403A JP2510033B2 (en) 1990-06-21 1990-06-21 H-section steel flange cooling device and cooling method

Publications (2)

Publication Number Publication Date
JPH0454511A true JPH0454511A (en) 1992-02-21
JP2510033B2 JP2510033B2 (en) 1996-06-26

Family

ID=15734427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2161403A Expired - Lifetime JP2510033B2 (en) 1990-06-21 1990-06-21 H-section steel flange cooling device and cooling method

Country Status (1)

Country Link
JP (1) JP2510033B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762345B1 (en) * 2006-03-02 2007-10-02 건국대학교 산학협력단 control system for liquid flow rate
JP2013081888A (en) * 2011-10-07 2013-05-09 Maeda Corp Device and method for controlling flow rate in fluid spraying

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196376A (en) * 1982-05-11 1983-11-15 Tsurusaki Kyodo Doryoku Kk System for opening quickly valve
JPS6091419A (en) * 1983-10-25 1985-05-22 Sumitomo Metal Ind Ltd Flow rate control method
JPH01159911U (en) * 1988-04-25 1989-11-07

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196376A (en) * 1982-05-11 1983-11-15 Tsurusaki Kyodo Doryoku Kk System for opening quickly valve
JPS6091419A (en) * 1983-10-25 1985-05-22 Sumitomo Metal Ind Ltd Flow rate control method
JPH01159911U (en) * 1988-04-25 1989-11-07

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762345B1 (en) * 2006-03-02 2007-10-02 건국대학교 산학협력단 control system for liquid flow rate
JP2013081888A (en) * 2011-10-07 2013-05-09 Maeda Corp Device and method for controlling flow rate in fluid spraying

Also Published As

Publication number Publication date
JP2510033B2 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
JP3856730B2 (en) A gas diversion supply method to a chamber from a gas supply facility provided with a flow rate control device.
US6247493B1 (en) Miniature pulsatile flow controller
CN106233061B (en) The system and method for the flow of mass flow controller are passed through for real-time monitoring
CN101636641B (en) Controller gain scheduling for mass flow controllers
US8555920B2 (en) Flow rate ratio variable type fluid supply apparatus
TWI505386B (en) And a gas shunt supply device for a semiconductor manufacturing apparatus
CA2486349A1 (en) Beverage forming and dispensing system
TWI662389B (en) Gas flow control device, gas flow control method, and semiconductor etching equipment
JPH0454511A (en) Highly accurate flow rate control system for plural nozzle groups
CN107992105B (en) Flow control system and control method thereof
CA2216146A1 (en) Flow control ports for a thermostatic mixing faucet
JP4351495B2 (en) Flow rate ratio controller
CN109237105B (en) A kind of control valve system that can quickly adjust and its control method
CA1253935A (en) Method and apparatus for controlling temperature of a liquid
DE60120281D1 (en) Fluid pressure reducing valve with a rotation angle-limited knob
JP3045221B2 (en) Chemical mixing device
CN207704275U (en) A kind of flow control system
JP2794366B2 (en) Flowmeter
JPH0327799B2 (en)
JPS589920B2 (en) Temperature equilibrium control method for multiple heat exchangers
KR100878717B1 (en) Flow control apparatus using various solenoid valves
JPH02176909A (en) Control method for flow rate control valve and irrigation water use liquid manure mixing device
US20210121841A1 (en) Dosing method and associated facility
JP3687705B2 (en) Agricultural water flow meter using a valve equipped with an opening meter
JP2691454B2 (en) Temperature control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 15